ALLEN
CARER INTITHTE
KOTA (RANASTHAN)
FINAL JEE-MAIN EXAMINATION - JULY, 2022
(Held On Monday 25th July, 2022)

CHEMISTRY

SECTION-A

1. Match List I with List II :

List-I (molecule)	List-II (hybridization; shape)
A. XeO_{3}	I. sp^{3}; $;$ linear
B. XeF_{2}	II. $\mathrm{sp}^{3} ;$ pyramidal
C. XeOF_{4}	III. $\mathrm{sp}^{3} \mathrm{~d}^{3} ;$ distorted octahedral
D. XeF_{6}	IV. $\mathrm{sp}^{3} \mathrm{~d}^{2} ;$ square pyramidal

Choose the correct answer from the options given below:
(A) A-II, B-I, C-IV, D-III
(B) A-II, B-IV, C-III, D-I
(C) A-IV, B-II, C-III, D-I
(D) A-IV, B-II, C-I, D-III

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. (A)

(B)

(C)

d^{2}-square pyramidal
(D)

TIME: 3:00 PM to 06:00 PM

TEST PAPER WITH SOLUTION

2. Two solutions A and B are prepared by dissolving 1 g of non-volatile solutes X and Y . respectively in 1 kg of water. The ratio of depression in freezing points for A and B is found to be $1: 4$. The ratio of molar masses of X and Y is :
(A) $1: 4$
(B) $1: 0.25$
(C) $1: 0.20$
(D) $1: 5$

Official Ans. by NTA (B)
Allen Ans. (B)

Sol. $\frac{\Delta T_{f x}}{\Delta T_{f y}}=\frac{k_{f} \cdot m_{x}}{k_{f} \cdot m_{y}}=\frac{\frac{1 / M_{x}}{1 / M_{y}}}{\frac{1}{1}}$
$\Rightarrow \frac{1}{4}=\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{M}_{\mathrm{x}}}$
$\Rightarrow M_{x}: M_{y}=1: 0.25$
3. $\mathrm{Ka}_{1}, \mathrm{Ka}_{2}$ and Ka_{3} are the respective ionization constants for the following reactions (a),(b), and (c).
(a) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
(b) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{2-}$
(c) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

The relationship between $\mathrm{K}_{\mathrm{a}_{1}}, \mathrm{~K}_{\mathrm{a}_{2}}$ and $\mathrm{K}_{\mathrm{a}_{3}}$ is given as
(A) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}}+\mathrm{K}_{\mathrm{a}_{2}}$
(B) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}}-\mathrm{K}_{\mathrm{a}_{2}}$
(C) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}} / \mathrm{K}_{\mathrm{a}_{2}}$
(D) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{K}_{\mathrm{a}_{1}}$
$\begin{array}{ll}\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{K}_{\mathrm{a}_{2}} \\ \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}\end{array}$
4. The molar conductivity of a conductivity cell filled with 10 moles of 20 mL NaCl solution is $\Lambda_{\mathrm{m} 1}$ and that of 20 moles another identical cell heaving 80 mL NaCl solution is $\Lambda_{\mathrm{m} 2}$, The conductivities exhibited by these two cells are same.
The relationship between $\Lambda_{\mathrm{m} 2}$ and $\Lambda_{\mathrm{m} 1}$ is
(A) $\Lambda_{m 2}=2 \Lambda_{\mathrm{m} 1}$
(B) $\Lambda_{\mathrm{m} 2}=\Lambda_{\mathrm{m} 1} / 2$
(C) $\Lambda_{\mathrm{m} 2}=\Lambda_{\mathrm{m} 1}$
(D) $\Lambda_{\mathrm{m} 2}=4 \Lambda_{\mathrm{m} 1}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\Lambda_{\mathrm{m}}=\kappa \times \frac{1000}{\mathrm{M}}$
$\Rightarrow \Lambda_{\mathrm{m}} \propto \frac{1}{\mathrm{M}}$
$\frac{\Lambda_{\mathrm{m}_{1}}}{\Lambda_{\mathrm{m}_{2}}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{\frac{20}{80}}{\frac{10}{20}}=\frac{1}{4} \times \frac{2}{1}=\frac{1}{2}$
$\Rightarrow \Lambda_{\mathrm{m}_{2}}=2 \Lambda_{\mathrm{m}_{1}}$
5. For micelle formation, which of the following statements are correct?
(A) Micelle formation is an exothermic process.
(B) Micelle formation is an endothermic process.
(C) The entropy change is positive.
(D) The entropy change is negative.
(A) A and D only
(B) A and C only
(C) B and C only
(D) B and D only

Official Ans. by NTA (B)
Allen Ans. (C)
Sol. For micelle formation, $\Delta \mathrm{S}>0$ (hydrophobic effect) This is possible because, the decrease in entropy due to clustering is offset by increase in entropy due to desolvation of the surfactant, Also $\Delta \mathrm{H}>0$
6. The first ionization enthalpies of $\mathrm{Be}, \mathrm{B}, \mathrm{N}$ and O follow the order
(A) $\mathrm{O}<\mathrm{N}<\mathrm{B}<\mathrm{Be}$
(B) $\mathrm{Be}<$ B $<\mathrm{N}<\mathrm{O}$
(C) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{O}$
(D) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. 1 ${ }^{\text {st }}$ I.E. $\underset{\left(2 p^{3}\right)}{\mathrm{N}}>\underset{\left(2 p^{4}\right)}{\mathrm{O}}>\underset{\left(2 s^{2}\right)}{\mathrm{Be}}>\underset{\left(2 p^{1}\right)}{\mathrm{B}}$
7. Given below are two statements.

Statement I : Pig iron is obtained by heating cast iron with scrap iron.
Statement II: Pig iron has a relatively lower carbon content than that of cast iron. In the light of the above statements, choose the correct answer from the options given below.
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are not correct.
(C) Statement I is correct but Statement II is not correct
(D) Statement I is not correct but Statement II is correct.

Official Ans. by NTA (B)

Allen Ans. (B)
Sol. Statement $-I$ is incorrect because cast iron is obtained by heating pig iron with scrap iron Statement-II is also incorrect because pig iron has more carbon content $(\sim 4 \%)$ than cast iron ($\sim 3 \%$)
8. High purity ($>99.95 \%$) dihydrogen is obtained by
(A) reaction of zinc with aqueous alkali.
(B) electrolysis of acidified water using platinum electrodes.
(C) electrolysis of warm aqueous barium hydroxide solution between nickel electrodes.
(D) reaction of zinc with dilute acid.

Official Ans. by NTA (C)

Allen Ans. (C)
Sol. High purity ($>99.95 \%$) dihydrogen is obtained by electrolysis of warm aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$ solution between Ni-electrodes
9. The correct order of density is
(A) $\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}$
(B) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}>\mathrm{Be}$
(C) $\mathrm{Sr}>\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}$
(D) $\mathrm{Be}>\mathrm{Sr}>\mathrm{Mg}>\mathrm{Ca}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. In II'A' group density decreases down the group till Ca and after that it increases.
Correct order of density is
$\mathrm{Sr}>\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}$

ALLEM
CAREER INSTITUTE
KOTA (RALASTHAN)
10. The total number of acidic oxides from the following list is: $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{CO}$, $\mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
(A) 3
(B) 4
(C) 5
(D) 6

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. Neutral Oxides - $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{CO}$
Acidic Oxides - $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
11. The correct order of energy of absorption for the following metal complexes is
A: $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}, \mathrm{B}:\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}, \mathrm{C}:\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(A) $\mathrm{C}<\mathrm{B}<\mathrm{A}$
(B) $\mathrm{B}<\mathrm{C}<\mathrm{A}$
(C) $\mathrm{C}<\mathrm{A}<$ B
(D) A $<$ C $<$ B

Official Ans. by NTA (A)

Allen Ans. (A)
Sol. Stronger the ligand, larger the splitting \& higher the energy of absorption.

$$
\left.\underset{(\mathrm{A})}{\left[\mathrm{Ni}(\mathrm{en})_{3}\right.}\right]^{+2}>\underset{(\mathrm{B})}{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}}>\underset{(\mathrm{C})}{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}}
$$

12. Match List I with List II.

List-I		List-II	
A.	Sulphate	I.	Pesticide
B.	Fluoride	II.	Bending of bones
C.	Nicotine	III.	Laxative effect
D.	Sodium arsinite	IV.	Herbicide

Choose the correct answer from the options given below:
(A) A-II, B-III. C-IV, D-I
(B) A-IV, B-III, C-II, D-I
(C) A-III, B-II, C-I, D-IV
(D) A-III, B-II, C-IV, D-I

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. A-Sulphate - III (Laxative effect)
B-Fluoride - II (Bending of bones)
C-Nictoine - I (pesticides)
D-Sodium Arsinite - IV (herbicide)
13. Major product of the following reaction is

(A)

(B)

(C)

(D)

Official Ans. by NTA (D)

Allen Ans. (D)

Sol.

14. What is the major product of the following reaction?

(A)

(B)

(C)

(D)

Official Ans. by NTA (B)
Allen Ans. (B)

Sol.

Aldol formation takes place.
15. Arrange the following in decreasing acidic strength.

(A)

(C)

(D)
(A) A $>$ B $>$ C $>$ D
(B) B $>$ A $>$ C $>$ D
(C) D $>$ C $>$ A $>$ B
(D) D $>$ C $>$ B $>$ A

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. The correct order of acid strength is

16.

The correct structure of C is
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(B)

(C)

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol.

(Clemmensen Reduction)
17. Match List I with List II :

Choose the correct answer from the options given below:
(A) A-III, B-I, C-IV, D-II
(B) A-III, B-IV, C-I, D-II
(C) A-II, B-I, C-IV, D-III
(D) A-II, B-IV, C-I, D-III

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. LDPE \rightarrow Toys
HDPE \rightarrow Buckets (As per NCERT)

ALLEM
tath to mesces
CAREER INSTITUTE
KOTA (RAJASTHAN)
18. Glycosidic linkage between C_{1} of α-glucose and C_{2} of β-fructose is found in
(A) maltose
(B) sucrose
(C) lactose
(D) amylose

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. Theoretical

19. Some drugs bind to a site other than, the active site of an enzyme. This site is known as
(A) non-active site
(B) allosteric site
(C) competitive site
(D) therapeutic site

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. Theoretical
20. In base vs. Acid titration, at the end point methyl orange is present as
(A) quinonoid form
(B) heterocyclic form
(C) phenolic form
(D) benzenoid form

Official Ans. by NTA (A)
Allen Ans. (A)

Sol.

(QUINONOID FORM)
SECTION-B

1. 56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas is found to be \qquad L.

Official Ans. by NTA (46)

Allen Ans. (46)

2. A sealed flask with a capacity of $2 \mathrm{dm}^{3}$ contains

11 g of propane gas. The flask is so weak that it will burst if the pressure becomes 2 MPa . The minimum temperature at which the flask will burst is \qquad ${ }^{\circ} \mathrm{C}$. [Nearest integer]
(Given: $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Atomic masses of C and H are 12 u and 1 u respectively.) (Assume that propane behaves as an ideal gas.)

Official Ans. by NTA (1655)

Allen Ans. (1655)
Sol. Moles of $\mathrm{C}_{3} \mathrm{H}_{8}=\frac{11}{44}=0.25$ moles
$\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow 2 \times 10^{6} \times 2 \times 10^{-3}=0.25 \times 8.3 \times \mathrm{T}$
$\Rightarrow \mathrm{T}=1927.710 \mathrm{~K}=1654.56^{\circ} \mathrm{C}$
3. When the excited electron of a H atom from $\mathrm{n}=5$ drops to the ground state, the maximum number of emission lines observed are \qquad
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Since only a single H atom is present, maximum number of spectral lines $=4$

4. While performing a thermodynamics experiment, a student made the following observations,
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}=-55.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
The enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ as calculated by the student is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$. (nearest integer)
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\quad \Delta \mathrm{H}_{\text {ionisation }}$ of $\mathrm{CH}_{3} \mathrm{COOH}=|-57.3-(-55.3)|$
$=2 \mathrm{KJ} / \mathrm{mol}$
5. For the decomposition of azomethane.
$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{CH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$ a first order reaction, the variation in partial pressure with time at 600 K is given as

The half life of the reaction is \qquad $\times 10^{-5} \mathrm{~s}$.
[Nearest integer]
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. For first order reaction
$\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)$
$\ln \left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)=\mathrm{kt}$
$\mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{k}}=\frac{0.693}{3.465 \times 10^{4}}=2 \times 10^{-5}$
6. The sum of number of lone pairs of electrons present on the central atoms of $\mathrm{XeO}_{3}, \mathrm{XeOF}_{4}$ and XeF_{6} is \qquad

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.

7. The spin-only magnetic moment value of M^{3+} ion (in gaseous state) from the pairs $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$, $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2}, \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Co}^{3+} / \mathrm{Co}^{2+}$ that has negative standard electrode potential, is B.M.
[Nearest integer]

Official Ans. by NTA (4)

Allen Ans. (4)

Sol. $\left.\quad E_{\mathrm{Cr}^{+3}}^{0}\right|_{\mathrm{Cr}^{+2}}=-0.41 \mathrm{~V}$

$$
\left[\mathrm{Cr}^{+3}\right]=4 \mathrm{~s}^{0} 3 \mathrm{~d}^{3}
$$

$$
\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{B} \cdot \mathrm{M}
$$

$$
=\sqrt{15} \text { B.M } \sim 4 \text { B.M }
$$

8. A sample of 4.5 mg of an unknown monohydric alcohol, $\mathrm{R}-\mathrm{OH}$ was added to methylmagnesium iodide. A gas is evolved and is collected and its volume measured to be 3.1 mL . The molecular weight of the unknown alcohol is \qquad $\mathrm{g} / \mathrm{mol}$. [Nearest integer]

Official Ans. by NTA (33)

Allen Ans. (33)
Sol. $\mathrm{ROH}+\mathrm{CH}_{3} \mathrm{MgI} \rightarrow \mathrm{ROMgI}+\mathrm{CH}_{4}(\mathrm{~g})$
moles of $\mathrm{CH}_{4}=$ moles of ROH
$\Rightarrow \frac{\mathrm{V}}{22400}=\frac{\mathrm{m}}{\mathrm{M} \cdot \mathrm{M}}$ (Assuming NTP Condition)
$\Rightarrow \frac{3.1}{22400}=\frac{4.5 \times 10^{-3}}{\text { M.M }}$
$\Rightarrow \mathrm{MM}=32.51$
Nearest Integer $=33$
9. The separation of two coloured substances was done by paper chromatography. The distances travelled by solvent front, substance A and substance B from the base line are 3.25 cm .2 .08 cm and 1.05 cm . respectively. The ratio of R_{f} values of A to B is \qquad
Official Ans. by NTA (2)
Allen Ans. (2)

Sol. $\frac{\mathrm{R}_{\mathrm{F}_{\mathrm{A}}}}{\mathrm{R}_{\mathrm{F}_{\mathrm{B}}}}=\frac{\frac{2.08}{3.25}}{\frac{1.05}{3.25}}=\frac{2.08}{1.05} \simeq 2$
10. The total number of monobromo derivatives formed by the alkanes with molecular formula $\mathrm{C}_{5} \mathrm{H}_{12}$ is (excluding stereo isomers) \qquad
Official Ans. by NTA (8)
Allen Ans. (8)
Sol. The Alkanes and their monobromodervative are
1.

2.

3.

