

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Sunday 26th June, 2022)

TIME: 3:00 PM to 6:00 PM

CHEMISTRY		TEST PAPER WITH SOLUTION		
S The number of prbital are. respect A) 1 and 2 C) 1 and 0 Difficial Ans. by Allen Ans. (A) Radial node = $n - = 4 - = 1$ Angular node (<i>l</i>) Match List I with List I Enzyme A. Invertase B. Zymase C. Diastase D. Maltase Choose the mod	ECTION-A radial and angular nodes in 4d ctively (B) 3 and 2 (D) 2 and 1 NTA (A) -l-1 -2-1 = 2 List II. List II Conversion of I. Starch into maltose II. Maltose into glucose III. Glucose into ethanol IV. Cane sugar into glucose st appropriate answer from the	4. Sol. 5.	TEST PAPER WITH SOLUTION The role of depressants in Froth Flotation method is to (A) selectively prevent one component of the or from coming to the froth. (B) reduce the consumption of oil for frot formation. (C) stabilize the froth. (D) enhance non-wettability of the mineral particles. Official Ans. by NTA (A) Allen Ans. (A) Depressant prevent one component from coming to the froth. For eg., in Galena ore, the depressant (NaCN prevents impurity (ZnS) from coming to the froth. Boiling of hard water is helpful in removing th temporary hardness by converting calcium hydrogen carbonate and magnesium hydroger carbonate to (A) CaCO ₃ and Mg(OH) ₂	
B) A-III. B-II. C C) A-IV, B-IIL (D) A-IV, B-II. C Official Ans. by Allen Ans. (C) nvertase : Cane s	-I. D-IV C-I. D-II C-III. D-I NTA (C) sugar → Glucose and fructose	Sol. 6.	(B) CaCO ₃ and M ₂ CO ₃ (C) Ca(OH) ₂ and MgCO ₃ (D) Ca(OH) ₂ and Mg(OH) ₂ Official Ans. by NTA (A) Allen Ans. (A) Mg(HCO ₃) ₂ $\xrightarrow{\text{Boil}}$ Mg(OH) ₂ + 2CO ₂ ↑ Ca(HCO ₃) ₂ $\xrightarrow{\text{Boil}}$ CaCO ₃ + H ₂ O + CO ₂ ↑ s-block element which cannot be qualitativel confirmed by the flame test is	
Diastase : Starch Maltase : Maltose Which of the foll netalloid?	$\rightarrow \text{Maltose}$ e $\rightarrow \text{Glucose}$ owing elements in considered as a Pb (C) Bi (D) Te	Sol.	confirmed by the flame test is(A) Li(B) Na(C) Rb(D) BeOfficial Ans. by NTA (D)Allen Ans. (D)I.Flame colorLiCrimson RedNaYellowRbRed violet	
	Since the number of orbital are. respected A) 1 and 2 C) 1 and 0 Difficial Ans. by Milen Ans. (A) Radial node = $n - = 4 - = 1$ Angular node (l) Match List I with List I with List I Enzyme A. Invertase B. Zymase C. Diastase D. Maltase C. Diastase C. Diastase C. Diastase C. Diastase C. Diastase C. Diastase C. Diastase C. Maltase C. Maltase : Cane s Cymase : Glucose Cymase : Starch Maltase : Maltose Which of the foll netalloid?	SECTION-A The number of radial and angular nodes in 4d orbital are. respectively A) 1 and 2 (B) 3 and 2 C) 1 and 0 (D) 2 and 1 Official Ans. by NTA (A) Allen Ans. (A) Radial node = $n - l - 1$ = 4 - 2 - 1 = 1 Angular node (l) = 2 Match List I with List II. List I List I Conversion of A. Invertase I. Starch into maltose B. Zymase II. Maltose into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. Glucose into ethanol D. Maltase IV. Cane sugar into glucose C. Diastase III. D-I D. A-III, B-IV. C-II. D-I B) A-III. B-II. C-I. D-IV C) A-IV, B-II. C-I. D-IV C) A-IV, B-II. C-II. D-I D) A-IV, B-II. C-III. D-I Dificial Ans. by NTA (C) Allen Ans. (C) nvertase : Cane sugar → Glucose and fructose Zymase : Glucose → Ethanol and CO ₂ Diastase : Starch → Maltose Maltase : Maltose → Glucose Which of the following elements in considered as a netalloid?	SECTION-A4.Che number of radial and angular nodes in 4d wrbital are. respectivelyA) 1 and 2(B) 3 and 2(C) 1 and 0(D) 2 and 1Official Ans. by NTA (A) Allen Ans. (A) Radial node $= n - l - 1$ $= 4 - 2 - 1$ $= 1$ (A) Radial node $= n - l - 1$ $= 4 - 2 - 1$ $= 1$ (A)(A)(A)Allen Ans. (A) Radial node $= n - l - 1$ $= 4 - 2 - 1$ $= 1$ (A)(A)(A)Angular node (l) = 2 Match List I with List II.(C) Nertase(C) Number of Conversion of (A)(A)A. InvertaseI. Starch into maltose(B)(C)A. InvertaseI. Starch into maltose(A)B. ZymaseIII. Maltose into glucose(C)C. DiastaseIII. Glucose into ethanol(C)D. MaltaseIV. Cane sugar into glucose(C)Choose the most appropriate answer from the options given below :(C)A) A-III, B-IV. C-II. D-I(C)(C)Dificial Ans. by NTA (C)(C)Nulen Ans. (C)(C)nvertase : Cane sugar \rightarrow Glucose and fructose(C)Nuertase : Cane sugar \rightarrow Glucose and fructose(C)Cymase : Glucose \rightarrow Ethanol and CO2(C)Diastase : Starch \rightarrow Maltose(C)Maltase : Maltose \rightarrow Glucose(C)Which of the following elements in considered as a netalloid?(C)	

The oxide which contains an odd electron at the nitrogen atom is
(A) N₂O
(B) NO₂
(C) N₂O₃
(D) N₂O₅

 $(A) N_2 O \quad (B) NO_2 \quad (C) N_2 O_3 \quad (D) N_2 O_5 \\ Official Ans. by NTA (B)$

Allen Ans. (B)

Sol.

8. Which one of the following is an example of disproportionation reaction?

(A)
$$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$$

(B)
$$MnO_4^{2-} + 4H^+ + 4e^- \rightarrow MnO_2 + 2H_2C$$

(C)
$$10I^{-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$$

$$(D) 8MnO_{4}^{-} + 3S_{2}O_{3}^{2-} + H_{2}O \rightarrow 8MnO_{2} + 6SO_{4}^{2-} + 2OH^{-}$$

Official Ans. by NTA (A)

Allen Ans. (A)

Sol.

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ 3 & & \\ MnO_4^{2^-} + 4H^+ \rightarrow 2 & & \\ MnO_4^- + & & \\ MnO_2 + 2H_2O \\ & & \\ & \\ &$

- 9. The most common oxidation state of Lanthanoid elements is +3. Which of the following is likely to deviate easily from +3 oxidation state?
 - (A) Ce (At. No. 58) (B) La (At. No. 57)
 - (C) Lu (At. No. 71) (D) Gd (At. No. 64)

Official Ans. by NTA (A)

Allen Ans. (A)

- **Sol.** Ce = [Xe] $4f^1 5d^1 6s^2$
 - $Ce^{3+} = [Xe] 4f^1 5d^0$
 - $Ce^{+4} = [Xe] 4f^0 5d^0$ (Noble gas configuration)
- **10.** The measured BOD values for four different water samples (A-D) are as follows:

A = 3 ppm: B=18 ppm: C-21 ppm: D=4 ppm. The water samples which can be called as highly polluted with organic wastes, are

(A) A and B	(B) A and D
(C) B and C	(D) B and D

Official Ans. by NTA (C)

Allen Ans. (C)

- Sol. Clean water \longrightarrow B.O.D. < 5 ppm Highly polluted water \longrightarrow B.O.D. > 17 ppm
- **11.** The correct order of nucleophilicity is

(A)
$$F^- > OH^-$$
 (B) $H_2 \ddot{O} > OH^-$

(C) $\ddot{ROH} > RO^{-}$ (D) $NH_2^{-} > NH_3$

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. Nucleophilicity ∞ electro density on donor atom ∞ size of donor atom (in gas)

$$\propto \frac{1}{\text{EN of atom}}$$
 (for period)

12. Oxidation of toluene to Benzaldehyde can be easily carried out with which of the following reagents?
(A) CrO₃/acetic acid, H₃O⁺
(B) CrO₃/acetic anhydride, H₃O⁺
(C) KMnO₄/HCl, H₃O⁺
(D) CO/HCl, anhydrous AlCl₃
Official Ans. by NTA (B)
Allen Ans. (B)

Sol.

13. The major product in the following reaction

Official Ans. by NTA (A)

Allen Ans. (A)

Final JEE-Main Exam June 2022/26-06-2022/Evening Session

Sol.
$$(1) \operatorname{Hg}(OA_{\mathcal{G}}), \operatorname{HO}$$

Oxymercuration – Demercuration Addition of H_2O

Markovnikov's addition without rearrangement

14. Halogenation of which one of the following will yield m-substituted product with respect to methyl group as a major product?

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. Electrophile will attack at ortho and para position with respect to better electron releasing group (ERG)

 $ERG : -OH > -CH_3$

Para position with respect to - OH (+R) group and it will be meta position with respect to $- CH_3$ group.

15. The reagent, from the following, which converts benzoic acid to benzaldehyde in one step is

$$C_{e}H_{5} - \underbrace{\begin{matrix} O \\ H_{5} \\ C_{-}OH + HO \end{matrix}}_{C_{e}H_{5}} - \underbrace{\begin{matrix} O \\ C_{-}OH + HO \\ C_{-}OH + HO \end{matrix}}_{C_{e}H_{5}} - \underbrace{\begin{matrix} O \\ C_{-}OH \\ C_{-}OH + HO \\ C_{-}OH \end{matrix}}_{C_{e}H_{5}} - \underbrace{\begin{matrix} O \\ C_{-}OH \\ C_{-}OH \\ C_{-}OH \\ C_{-}OH \end{matrix}}_{\Delta} + \underbrace{\begin{matrix} O \\ C_{-}OH \\ C_{-}OH$$

16. The final product 'A' in the following reaction sequence

$$CH_{3} CH_{2} - C - CH_{3} \xrightarrow{HCN}? \xrightarrow{95\% H_{2}SO_{4}} A$$

$$(A) CH_{3} - CH = C - COOH$$

$$(B) CH_{3} - CH = C - CN$$

$$(C) CH_{3} - CH = C - CN$$

$$(C) CH_{3} - CH - CH - C - COOH$$

$$(D) CH_{3} - CH = C - CONH_{2}$$

$$(C) CH_{3} - CH = C - CONH_{2}$$

$$(C) CH_{3} - CH = C - CONH_{2}$$

Official Ans. by NTA (A)

Allen Ans. (A)

Sol.

Sol.

Н

$$CH_{3}CH_{2} - C - CH_{3} \xrightarrow{HCN} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{HCN} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{95\% H,SO_{4}} Heat$$

$$CH_{3} - CH = C - COOH$$

17. Which statement is NOT correct for p-toluenesulphonyl chloride?

(A) It is known as Hinsberg's reagent.

(B) It is used to distinguish primary and secondary amines.

(C) On treatment with secondary amine, it leads to a product, that is soluble in alkali.

(D) It doesn't react with tertiary amines.

Official Ans. by NTA (C)

Allen Ans. (C)

Sol.

Final JEE-Main Exam June 2022/26-06-2022/Evening Session

18. The final product 'C' is the following series series of reactions

19. Which of the following is NOT an example of synthetic detergent?

(D) CH₃(CH₂)₁₆COO(CH₂CH₂O)_nCH₂CH₂OH Official Ans. by NTA (B) Allen Ans. (B)

- **Sol.** Refer NCERT (Page No. 452)
- 20. Which one of the following is a water soluble vitamin, that is not excreted easily?
 (A) Vitamin B₂
 (B) Vitamin B₁
 (C) Vitamin B₆
 (D) Vitamin B₁₂
 Official Ans. by NTA (D)

Allen Ans. (D)

Sol. Refer NCERT (Page No. 426)

SECTION-B

1. CNG is an important transportation fuel. When 100 g CNG is mixed with 208 oxygen in vehicles, it leads to the formation of CO_2 and H_2O and produces large quantity of heat during this combustion, then the amount of carbon dioxide, produced in grams is_____. [nearest integer]

[Assume CNG to be methane]

Official Ans. by NTA (143)

Allen Ans. (143)

Sol.

[Assume steam to be an ideal gas. Given $A_{vap}H^{\odot}$

 $\frac{n_{O_2}}{2} = \frac{n_{cO_2}}{1}$ $\frac{6.5}{2} = n_{cO_2}$

Mass of $CO_2 = \frac{6.5}{2} \times 44 = 143 \text{ gm}$

2. In a solid AB. A atoms are in ccp arrangement and B atoms occupy all the octahedral sites. If two atoms from the opposite faces are removed, then the resultant stoichiometry of the compound is A_xB_y . The value of x is_____. [nearest integer]

Official Ans. by NTA (3)

Allen Ans. (3)

Sol. $A \rightarrow 4 - \left(2 \times \frac{1}{2}\right) = 3$ $B \rightarrow 12 \times \frac{1}{4} + 1 \times 1 = 4$

> So, Compound is A_3B_4 The value of x is 3.

3. Amongst SF₄, XeF₄, CF₄ and H₂O, the number of species with two lone pairs of electrons ______.

Official Ans. by NTA (2)

Allen Ans. (1)

Sol.

4. A fish swimming in water body when taken out from the water body is covered with a film of water of weight 36 g. When it is subjected to cooking at 100°C, then the internal energy for vaporization in kJ mol⁻¹ is _____.

[nearest integer]

[Assume steam to be an ideal gas. Given A_{vap} I for water at 373 K and 1 bar is 41.1 kJ mol⁻¹; R = 8.31 JK⁻¹mol⁻¹]

Official Ans. by NTA (38)

Allen Ans. (38)

Sol.
$$H_2O(l) \to H_2O(g)$$

 $n = \frac{36}{18} = 2 \text{ mol}$

 Δ

$$U = \Delta H - \Delta n_g RT$$
$$= 41.1 - \frac{1 \times 8.31 \times 373}{1000} kJ / mol$$
$$= 38 kJ/mol$$

5. The osmotic pressure exerted by a solution prepared by dissolving 2.0 g of protein of molar mass 60 kg mol⁻¹ in 200 mL of water at 27°C is _____ Pa. [integer value]

(use $R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}$)

Official Ans. by NTA (415)

Allen Ans. (415)

Sol.
$$\pi = iCRT$$

$$= \frac{1 \times 2}{60000 \times 0.2} \times 0.083 \times 300$$

= 0.00415 bar (\therefore 1 bar = 10⁵ Pa)
So, 0.00415 × 10⁵ Pa = 415 Pa

6. 40° of HI undergoes decomposition to H₂ and I₂ at 300 K. ΔG^{\odot} for this decomposition reaction at one atmosphere pressure is ______ J mol⁻¹. [nearest integer] (Use R = 8.31 J K⁻¹ mol⁻¹; log 2 = 0.3010. In 10 = 2.3, log 3 = 0.477) Official Ans. by NTA (2735) Allen Ans. (2735) Sol. HI $\rightleftharpoons \frac{1}{2}$ H₂ + $\frac{1}{2}$ I₂

teq
$$1 - 0.4 \quad \frac{0.4}{2} \quad \frac{0.4}{2}$$

• •

$$K_{p} = \frac{(0.2)^{\frac{1}{2}}(0.2)^{\frac{1}{2}}}{1 - 0.4} = \frac{0.2}{0.6} = \frac{1}{3}$$

Final JEE-Main Exam June 2022/26-06-2022/Evening Session

 $\Delta G = \Delta G^{\circ} + RT \ln K = 0$ $\Delta G^{\circ} = -RT \ln K \Longrightarrow -8.31 \times 300 \times 2.3 \times \log \left(\frac{1}{3}\right)$ = 2735 J/mol $Cu(s) + Sn^{2+}(0.001M) \rightarrow Cu^{2+}(0.01M) + Sn(s)$ 7. The Gibbs free energy change for the above reaction at 298 K is $x \times 10^{-1}$ kJ mol⁻¹; The value of x is_____. [nearest integer] $\left[\text{Given}: E_{\text{Cu}^{2+}/\text{Cu}}^{\odot} = 0.34\text{V}; E_{\text{Sn}^{2+}/\text{Sn}}^{\odot} = -0.14\text{V}; \text{F} = 96500\text{C mol}^{-1}\right]$ Official Ans. by NTA (983) Allen Ans. (983) **Sol.** $Cu_{(s)} + Sn^{2+} (0.001 \text{ M}) \rightarrow Cu^{2+} (0.01 \text{ M}) + Sn_{(s)}$ $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ = -0.14 - (0.34)= -0.48 V $E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} \log \frac{[Cu^{2+}]}{[Sn^{2+}]}$ $= -0.48 - \frac{0.059}{2} \log \frac{0.01}{0.001}$ = -0.509 $\Delta G = - nF E_{cell}$ $= -2 \times 96500 \times (-0.5095)$ = 98333.5 J/mol = 98.335 kJ/mol $= 983.35 \times 10^{-1}$ kJ/mol Nearest Integer: 983 Catalyst A reduces the activation energy for a 8. reaction by 10 kJ mol⁻¹ at 300 K. The ratio of rate ^kT,Catalysed ^kT,Uncatalysed is e^x. The value of x is constants. _____. [nearest integer]

[Assume theat the pre-exponential factor is same in both the cases.

Given $R = 8.31 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$]

Official Ans. by NTA (4)

Allen Ans. (4)

Sol.

$$K = Ae^{\frac{-Ea}{RT}}$$

$$K_{cat} = Ae^{\frac{-Ea^{1}}{RT}}, \quad K_{uncat.} = Ae^{\frac{-Ea}{RT}}$$

$$\frac{K_{cat}}{K_{uncat.}} = e^{\frac{E_{a}-Ea^{1}}{RT}} = e^{\frac{10\times1000}{8.31\times300}} = e^{4.009} = e^{x}$$

$$\therefore x = 4$$

9. Reaction of $[Co(H_2O)_6]^{2+}$ with excess ammonia and in the presence of oxygen results into a diamagnetic product. Number of electrons present in t_{2g} -orbitals of the product is _____.

Official Ans. by NTA (6)

Allen Ans. (6)

Sol. $[Co(H_2O)_6]^{2+}$ +NH₃(excess) $\rightarrow [Co(NH_3)_6]^{3+}$ + 6H₂O

Diamagnetic

```
\downarrow
```

Low spin complex

$$\operatorname{Co}^{3+} \Rightarrow 3d^{6} 4s^{0}$$

 $\Rightarrow t_{2g}^{6} e_{g}^{0}$
Total number electrons = 6

10. The moles of methane required to produce 81 g of water after complete combustion is $___ \times 10^{-2}$ mol. [nearest integer]

Official Ans. by NTA (225)

Allen Ans. (225)

Sol. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

POAC on H atom

$$n_{CH4} \times 4 = n_{H2O} \times 2$$

$$n_{CH_4} = \frac{81}{18} \times 2 \times \frac{1}{4} = \frac{81}{36}$$

$$n_{CH_4} = 2.25$$

 $= 225 \times 10^{-2}$

Nearest Integers = 225