FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Tuesday 26th July, 2022)

TIME : 3: 00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. The minimum value of the sum of the squares of the roots of $x^{2}+(3-a) x+1=2 a$ is:
(A) 4
(B) 5
(C) 6
(D) 8

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
let $f(a)=(3-a)^{2}-2(1-2 a)$
$f(a)=a^{2}-2 a+7$
$f(a)=(a-1)^{2}+6$

$$
\mathrm{f}(\mathrm{a}))_{\min .}=6
$$

2. If $z=x+i y$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then
(A) $x+2 y-4=0$
(B) $x^{2}+y-4=0$
(C) $x+2 y+4=0$
(D) $x^{2}-y+3=0$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $|z-i|-|z+5 i|=0$
$\Rightarrow|x+(y-1) i|=|x+(y+5) i|$
$x^{2}+(y-1)^{2}=x^{2}+(y+5)^{2}$
$(y-1)^{2}-(y+5)^{2}=0$
$(2 y+4)(-6)=0$
$y=-2$
$\therefore \mathrm{x}^{2}+(-2)^{2}=4$
$\mathrm{x}=0$
$Z \equiv(0,-2)$, check options
3. Let $\mathrm{A}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]$, then the value of $\mathrm{A}^{\prime} \mathrm{BA}$ is:
(A) 1224
(B) 1042
(C) 540
(D) 539

Official Ans. by NTA (D)

TEST PAPER WITH SOLUTION

Allen Ans. (D)
Sol. $\mathrm{A}^{\prime} \mathrm{BA}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{lrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$=\left[\begin{array}{lll}9^{2}+12^{2}-15^{2}-10^{2}+13^{2}+16^{2} & 11^{2}-14^{2}+17^{2}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$=\left[9^{2}+12^{2}-15^{2}-10^{2}+13^{2}+16^{2}+11^{2}-14^{2}+17^{2}\right]$
$=[539]$
4. $\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ is equal to
(A) $2^{2 n}-{ }^{2 n} C_{n}$
(B) $2^{2 n-1}-{ }^{2 n-1} C_{n-1}$
(C) $2^{2 \mathrm{n}}-\frac{1}{2}{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
(D) $2^{\mathrm{n}-1}+{ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$
$=\sum_{\mathrm{i}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{i}} \cdot \sum_{\mathrm{j}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{j}}-\sum_{\mathrm{i}=\mathrm{j}=0}^{\mathrm{n}}\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}\right)^{2}$
$=\left(2^{\mathrm{n}}\right)\left(2^{\mathrm{n}}\right)-{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
$=2^{2 \mathrm{n}}-{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
5. Let P and Q be any points on the curves ($\mathrm{x}-$ $1)^{2}+(y+1)^{2}=1$ and $y=x^{2}$, respectively. The distance between P and Q is minimum for some value of the abscissa of P in the interval
(A) $\left(0, \frac{1}{4}\right)$
(B) $\left(\frac{1}{2}, \frac{3}{4}\right)$
(C) $\left(\frac{1}{4}, \frac{1}{2}\right)$
(D) $\left(\frac{3}{4}, 1\right)$

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

$\mathrm{Q}=\left(\mathrm{t}, \mathrm{t}^{2}\right)$
$\mathrm{m}_{\mathrm{CQ}}=\mathrm{m}_{\text {normal }}$
$\frac{\mathrm{t}^{2}+1}{\mathrm{t}-1}=-\frac{1}{2 \mathrm{t}}$
Let $\mathrm{f}(\mathrm{t})=2 \mathrm{t}^{3}+3 \mathrm{t}-1$
$\mathrm{f}\left(\frac{1}{4}\right) \mathrm{f}\left(\frac{1}{3}\right)<0 \Rightarrow \mathrm{t} \in\left(\frac{1}{4}, \frac{1}{3}\right)$
$\mathrm{P} \equiv(1+\cos (90+\theta),-1+\sin (90+\theta))$
$\mathrm{P}=(1-\sin \theta,-1+\cos \theta)$
$\mathrm{m}_{\text {normal }}=\mathrm{m}_{\mathrm{CP}} \Rightarrow-\frac{1}{2 \mathrm{t}}=\frac{\cos \theta}{-\sin \theta} \Rightarrow \tan \theta=2 \mathrm{t}$
$\mathrm{x}=1-\sin \theta=1-\frac{2 \mathrm{t}}{\sqrt{1+4 \mathrm{t}^{2}}}=\mathrm{g}(\mathrm{t}) \quad$ (let)
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{t})<0$
$\mathrm{g}(\mathrm{t}) \downarrow$ function
$\mathrm{t} \in\left(\frac{1}{4}, \frac{1}{3}\right)$
$\Rightarrow \mathrm{g}(\mathrm{t}) \in(0.44,0.485) \in\left(\frac{1}{4}, \frac{1}{2}\right)$
6. If the maximum value of a, for which the function $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\tan ^{-1} 2 \mathrm{x}-3 \mathrm{ax}+7$ is non-decreasing in $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$, is $\overline{\mathrm{a}}$, then $\mathrm{f}_{\overline{\mathrm{a}}}\left(\frac{\pi}{8}\right)$ is equal to
(A) $8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}$
(B) $8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}$
(C) $8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)$
(D) $8-\frac{\pi}{4}$

Official Ans. by NTA (Drop)
Allen Ans. (Bonus)

Sol. $\quad f_{a}(x)=\tan ^{-1} 2 x-3 a x+7$
$\mathrm{f}_{\mathrm{a}}^{\prime}(\mathrm{x})=\frac{2}{1+4 \mathrm{x}^{2}}-3 \mathrm{a} \geq 0$
$\mathrm{a} \leq\left(\frac{2}{3\left(1+4 \mathrm{x}^{2}\right)}\right)_{\text {min. }}$ at $\mathrm{x}= \pm \frac{\pi}{6}$
$\mathrm{a}_{\text {max }}=\overline{\mathrm{a}}=\frac{6}{9+\pi^{2}}$
$\mathrm{f}_{\mathrm{a}}\left(\frac{\pi}{8}\right)=\tan ^{-1} \frac{\pi}{4}-3 \frac{6}{9+\pi^{2}} \frac{\pi}{8}+7=\tan ^{-1} \frac{\pi}{4}-\frac{9 \pi}{4\left(\pi^{2}+9\right)}+7$
7. Let $\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(\mathrm{e}^{3 x}-1\right)}{\alpha x\left(\mathrm{e}^{3 x}-1\right)}$ for some $\alpha \in \mathbb{R}$. Then the value of $\alpha+\beta$ is :
(A) $\frac{14}{5}$
(B) $\frac{3}{2}$
(C) $\frac{5}{2}$
(D) $\frac{7}{2}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$
$\beta=\lim _{x \rightarrow 0} \frac{1+\alpha x-\left[1+3 x+\frac{9 x^{2}}{2!}+\ldots . .\right]}{(\alpha x) \frac{\left(e^{3 x}-1\right)}{3 x} 3 x}$
$\beta=\lim _{x \rightarrow 0} \frac{(\alpha x-3 x)-\frac{9 x^{2}}{2!}-\ldots \ldots . .}{3 \alpha x^{2}}$
For existence of limit $\alpha-3=0$
$\alpha=3$
Limit $\beta=\frac{-3}{2 \alpha}$
$\beta=-\frac{1}{2}$
Now,
$\alpha+\beta=\frac{5}{2}$
8. The value of $\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$ at $x=\frac{\pi}{4}$ is
(A) $-2 \sqrt{2}$
(B) $2 \sqrt{2}$
(C) -4
(D) 4

Official Ans. by NTA (D)
Allen Ans. (D)

Sol. $\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$
Let,
$y=\log _{\cos x} \operatorname{cosec} x$
$y=-\frac{\ln (\sin x)}{\ln (\cos x)}$
$\frac{d y}{d x}=-\frac{[\cot x \cdot \ln (\cos x)+\tan x \cdot \ln (\sin x)]}{(\ln (\cos x))^{2}}$
$\left.\frac{d y}{d x}\right)_{x=\frac{\pi}{4}}=\frac{4}{\ln 2}$
Now,
$\Rightarrow \log _{\mathrm{e}} 2 \cdot \frac{4}{\ln 2}=4$
9. $\quad \int_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x$ is equal to :-
(A) $10(\pi+4)$
(B) $10(\pi+2)$
(C) $20(\pi-2)$
(D) $20(\pi+2)$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\mathrm{I}=\int_{0}^{20 \pi}(|\sin \mathrm{x}|+|\cos \mathrm{x}|)^{2} \mathrm{dx} \quad ;($ Jack property $)$
$I=40 \int_{0}^{\pi / 2}(\sin x+\cos x)^{2} d x$
$I=40 \int_{0}^{\pi / 2}(1+\sin 2 x) d x$
$\mathrm{I}=20[\pi+2]$
10. Let the solution curve $y=f(x)$ of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}, x \in(-1,1) \quad$ pass through the origin. Then $\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x$ is equal to
(A) $\frac{\pi}{3}-\frac{1}{4}$
(B) $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
(C) $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
(D) $\frac{\pi}{6}-\frac{\sqrt{3}}{2}$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$
I.F $=\mathrm{e}^{\int \frac{\mathrm{x}}{\mathrm{x}^{2}-1} \mathrm{dx}}$
$\mathrm{I} . \mathrm{F}=\sqrt{1-\mathrm{x}^{2}}$
Solution of D.E.
$y \cdot \sqrt{1-x^{2}}=\int \frac{x^{4}+2 x}{\sqrt{1-x^{2}}} \cdot \sqrt{1-x^{2}} d x$
$y \cdot \sqrt{1-x^{2}}=\int\left(x^{4}+2 x\right) d x$
$y \cdot \sqrt{1-x^{2}}=\frac{x^{5}}{5}+x^{2}+C$
At $\mathrm{x}=0, \mathrm{y}=0$, get $\mathrm{C}=0$
$y=\frac{x^{5}}{5 \sqrt{1-x^{2}}}+\frac{x^{2}}{\sqrt{1-x^{2}}}$
Now,
$\int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x=\int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \frac{x^{5}}{5 \sqrt{1-x^{2}}} d x+\int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
$\int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x=0+2 \int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
$\int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x=\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
11. The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is
(A) $\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$
(B) $\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$
(C) $\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$
(D) $\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. Equation of tangent to the ellipse $2 x^{2}+3 y^{2}=5$ is

$$
\mathrm{y}=\mathrm{mx} \pm \sqrt{\frac{5}{2} \mathrm{~m}^{2}+\frac{5}{3}}
$$

It pass through $(1,3)$
$3=m \pm \sqrt{\frac{5}{2} m^{2}+\frac{5}{3}}$
$3 m^{2}+12 m-\frac{44}{3}=0$
Let θ be the angle between the tangents
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\tan \theta=\left|\frac{3 \sqrt{320}}{-35}\right|$
$\theta=\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$
12. The equation of a common tangent to the parabolas $y=x^{2}$ and $y=-(x-2)^{2}$ is
(A) $y=4(x-2)$
(B) $y=4(x-1)$
(C) $y=4(x+1)$
(D) $y=4(x+2)$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Equation of tangent of $y=x^{2}$ be
$t x=y+a t^{2}$
$y=t x-\frac{t^{2}}{4}$
Solve with $\mathrm{y}=-(\mathrm{x}-2)^{2}$
$t x-\frac{t^{2}}{4}=-(x-2)^{2}$
$x^{2}+x(t-4)-\frac{t^{2}}{4}+4=0$
$\mathrm{D}=0$
$(\mathrm{t}-4)^{2}-4 \cdot\left(4-\frac{\mathrm{t}^{2}}{4}\right)=0$
$\mathrm{t}^{2}-4 \mathrm{t}=0$
$\mathrm{t}=0$ or $\mathrm{t}=4$
From eq. (1), required common tangent is
$y=4(x-1)$
13. Let the abscissae of the two points P and Q on a circle be the roots of $x^{2}-4 x-6=0$ and the ordinates of P and Q be the roots of $y^{2}+2 y-7=$ 0.If PQ is a diameter of the circle $x^{2}+y^{2}+2 a x+$ $2 b y+c=0$, then the value of $(a+b-c)$ is
(A) 12
(B) 13
(C) 14
(D) 16

Official Ans. by NTA (A)
Allen Ans. (A)

Sol.

Equation of circle diameter form
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
(where x_{1}, x_{2} are the roots of $x^{2}-4 x-6=0$ and y_{1}, y_{2} are the roots of $y^{2}+2 y-7=0$)
$x^{2}+y^{2}-4 x+2 y-13=0$
Now,
Compare it with the given equation, we get
$\mathrm{a}=-2, \mathrm{~b}=1, \mathrm{c}=-13$
Now
$\mathrm{a}+\mathrm{b}-\mathrm{c}=12$
14. If the line $x-1=0$, is a directrix of the hyperbola $\mathrm{kx}^{2}-\mathrm{y}^{2}=6$, then the hyperbola passes through the point
(A) $(-2 \sqrt{5}, 6)$
(B) $(-\sqrt{5}, 3)$
(C) $(\sqrt{5},-2)$
(D) $(2 \sqrt{5}, 3 \sqrt{6})$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\frac{x^{2}}{6 / k}-\frac{y^{2}}{6}=1$
$e^{2}=1+\frac{6}{6 / k}$
$e=\sqrt{1+k}$
$a=\sqrt{\frac{6}{k}}$
Eq. of directrix $x=\frac{a}{e} \Rightarrow x=\sqrt{\frac{6}{k(k+1)}}$
$\frac{6}{k(k+1)}=1$
$\mathrm{k}=2$
From eq. (1), we get $2 x^{2}-y^{2}=6$
Check options
15. A vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and the plane determined by the vectors $\hat{\mathrm{i}}-\hat{\mathrm{j}}, \hat{\mathrm{i}}+\hat{\mathrm{k}}$. The obtuse angle between \vec{a} and the vector $\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$ is
(A) $\frac{3 \pi}{4}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{4 \pi}{5}$
(D) $\frac{5 \pi}{6}$

Official Ans. by NTA (A)

Allen Ans. (A)
Sol. $\quad \vec{n}_{1}=\hat{i} \times(\hat{i}+\hat{j})=\hat{k}$
$\overrightarrow{\mathrm{n}}_{2}=(\hat{\mathrm{i}}+\hat{\mathrm{k}}) \times(\hat{\mathrm{i}}-\hat{\mathrm{j}})$
$=\hat{i}+\hat{j}-\hat{k}$
Line of intersection along $\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}$
$=\hat{\mathrm{k}} \times(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=-\hat{\mathrm{i}}+\hat{\mathrm{j}}$
D.R of $\vec{a}=-\hat{i}+\hat{j}$
D.R of $\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$
$\vec{a} \cdot \vec{b}=-3$ and $(\vec{a} \wedge \vec{b})=\theta$
$\cos \theta=\frac{-3}{\sqrt{2} \times 3}$
$\theta=\frac{3 \pi}{4}$
16. If $0<x<\frac{1}{\sqrt{2}}$ and $\frac{\sin ^{-1} x}{\alpha}=\frac{\cos ^{-1} x}{\beta}$, then a value of $\sin \left(\frac{2 \pi \alpha}{\alpha+\beta}\right)$ is
(A) $4 \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$
(B) $4 x \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$
(C) $2 x \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$
(D) $4 \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\quad \frac{\sin ^{-1} x}{\alpha}=\frac{\cos ^{-1} x}{\beta}=k$
$\sin ^{-1} \mathrm{x}=\mathrm{k} \alpha$
$\cos ^{-1} \mathrm{x}=\mathrm{k} \beta$
$\mathrm{k}=\frac{\pi}{2(\alpha+\beta)}$
$\sin \left(\frac{2 \pi \alpha}{\alpha+\beta}\right)=\sin \left(4 \sin ^{-1} \mathrm{x}\right)$
$=2 \sin \left(2 \sin ^{-1} \mathrm{x}\right) \cos \left(2 \sin ^{-1} \mathrm{x}\right)$
$=4 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\left(1-2 \mathrm{x}^{2}\right)$
17. Negation of the Boolean expression $p \Leftrightarrow(q \Rightarrow p)$ is
(A) $(\sim p) \wedge q$
(B) $\mathrm{p} \wedge(\sim \mathrm{q})$
(C) $(\sim \mathrm{p}) \vee(\sim \mathrm{q})$
(D) $(\sim \mathrm{p}) \wedge(\sim \mathrm{q})$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\quad \sim(\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p}))$
$\sim(\mathrm{p} \leftrightarrow \mathrm{q})=(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{q} \wedge \sim \mathrm{p})$
$\sim(\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p}))=(\mathrm{p} \wedge \sim(\mathrm{q} \rightarrow \mathrm{p})) \vee((\mathrm{q} \rightarrow \mathrm{p}) \wedge \sim \mathrm{p})$
$(\mathrm{p} \wedge \sim(\mathrm{q} \rightarrow \mathrm{p}))=\mathrm{p} \wedge(\mathrm{q} \wedge \sim \mathrm{p})=(\mathrm{p} \wedge \sim \mathrm{p}) \wedge \mathrm{q}=\mathrm{c}$
$(\mathrm{q} \rightarrow \mathrm{p}) \wedge \sim \mathrm{p}=(\sim \mathrm{q} \vee \mathrm{p}) \wedge \sim \mathrm{p}=\sim \mathrm{p} \wedge(\sim \mathrm{q} \vee \mathrm{p})$
$=(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{p} \wedge \mathrm{p})=\sim \mathrm{p} \wedge \sim \mathrm{q}$
$\sim(\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p}))=\mathrm{c} \vee(\sim \mathrm{p} \wedge \sim \mathrm{q})=\sim \mathrm{p} \wedge \sim \mathrm{q}$
18. Let X be a binomially distributed random variable with mean 4 and variance $\frac{4}{3}$. Then $54 \mathrm{P}(\mathrm{X} \leq 2)$ is equal to
(A) $\frac{73}{27}$
(B) $\frac{146}{27}$
(C) $\frac{146}{81}$
(D) $\frac{126}{81}$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $\mathrm{np}=4$
$n p q=4 / 3$
$\mathrm{n}=6, \mathrm{p}=2 / 3, \mathrm{q}=1 / 3$
$54(\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=0))$
$54\left({ }^{6} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{4}+{ }^{6} \mathrm{C}_{1}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{5}+{ }^{6} \mathrm{C}_{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{6}\right)$
$=\frac{146}{27}$
19. The integral $\int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x$ is equal to
(A) $\frac{1}{2} \log _{\mathrm{e}}\left|\frac{\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{12}\right)}{\left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+\mathrm{C}$
(B) $\frac{1}{2} \log _{\mathrm{e}}\left|\frac{\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{6}\right)}{\left(\frac{\mathrm{x}}{2}+\frac{\pi}{3}\right)}\right|+\mathrm{C}$
(C) $\log _{\mathrm{e}}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+\mathrm{C}$
(D) $\frac{1}{2} \log _{\mathrm{e}}\left|\frac{\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{6}\right)}\right|+\mathrm{C}$

Official Ans. by NTA (A)

Allen Ans. (A)
Sol. $I=\int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x$
$\frac{\sqrt{3}}{2} \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(\frac{\sqrt{3}}{2}+\sin 2 x\right)} d x$
$\int \frac{\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)(\cos \mathrm{x}-\sin \mathrm{x})}{\sin 60^{\circ}+\sin 2 \mathrm{x}} \mathrm{dx}$
$\int \frac{\left(\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x+\frac{1}{2} \sin x\right)}{2 \sin \left(x+\frac{\pi}{6}\right) \cos \left(x-\frac{\pi}{6}\right)} d x$
$\int \frac{\left(\cos \left(x-\frac{\pi}{6}\right)-\sin \left(x+\frac{\pi}{6}\right)\right)}{2 \sin \left(x+\frac{\pi}{6}\right) \cos \left(x-\frac{\pi}{6}\right)} d x$
$\frac{1}{2}\left(\int \frac{d x}{\sin \left(x+\frac{\pi}{6}\right)}-\int \frac{d x}{\cos \left(x-\frac{\pi}{6}\right)}\right)$
$\frac{1}{2} \ln \left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|$
20. The area bounded by the curves $y=\left|x^{2}-1\right|$ and $y=$ 1 is
(A) $\frac{2}{3}(\sqrt{2}+1)$
(B) $\frac{4}{3}(\sqrt{2}-1)$
(C) $2(\sqrt{2}-1)$
(D) $\frac{8}{3}(\sqrt{2}-1)$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $y=\left|x^{2}-1\right|$

Area $=\mathrm{ABCDEA}$
$=2\left(\int_{0}^{1}\left(1-\left(1-x^{2}\right)\right) d x+\int_{1}^{\sqrt{2}}\left(1-\left(x^{2}-1\right)\right) d x\right)$
$=\frac{8}{3}(\sqrt{2}-1)$

SECTION-B

1. Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{3,6,7,9\}$. Then the number of elements in the set $\{\mathrm{C} \subseteq \mathrm{A}: \mathrm{C} \cap \mathrm{B} \neq \phi\}$ is \qquad
Official Ans. by NTA (112)
Allen Ans. (112)
Sol. $\mathrm{A}=\{1,2,3,4,5,6,7\}$ and
$B=\{3,6,7,9\}$
Total subset of $\mathrm{A}=2^{7}=128$
$\mathrm{C} \cap \mathrm{B}=\phi$ when set C contains the element $1,2,4,5$
$\therefore \mathrm{S}=\{\mathrm{C} \subseteq \mathrm{A} ; \mathrm{C} \cap \mathrm{B} \neq \phi\}$
$=$ Total $-(\mathrm{C} \cap \mathrm{B}=\phi)$
$=128-2^{4}=112$
2. The largest value of a , for which the perpendicular distance of the plane containing the lines $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+a \hat{j}-\hat{k})$ and $\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-a \hat{k})$ from the point $(2,1,4)$ is $\sqrt{3}$, is \qquad .

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\mathrm{a} \hat{\mathrm{j}}-\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\mu(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-\mathrm{a} \hat{\mathrm{k}})$
D.R's of plane containing these lines is
$\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & \mathrm{a} & -1 \\ -1 & 1 & -a\end{array}\right|=\hat{\mathrm{i}}\left(1-\mathrm{a}^{2}\right)-\hat{\mathrm{j}}(-a-1)+\hat{\mathrm{k}}(1+\mathrm{a})$
$\overrightarrow{\mathrm{n}}=(1-\mathrm{a}) \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
One point in plane : $(1,1,0)$
\therefore equation of plane is
$(1-a)(x-1)+(y-1)+(z-0)=0$
$(1-a) x+y+z+a-2=0$
$\therefore \mathrm{D}=\frac{|(1-\mathrm{a}) 2+1+4+\mathrm{a}-2|}{\sqrt{(1-\mathrm{a})^{2}+1+1}}$
$\Rightarrow|5-a|=\sqrt{3} \cdot \sqrt{a^{2}-2 a+3}$
$\Rightarrow a^{2}+2 a-8=0$
$\Rightarrow \mathrm{a}=2,-4$
\therefore largest value of $\mathrm{a}=2$
3. Numbers are to be formed between 1000 and 3000 , which are divisible by 4 , using the digits $1,2,3,4,5$ and 6 without repetition of digits. Then the total number of such numbers is \qquad —.

Official Ans. by NTA (30)

Allen Ans. (30)
Sol. Here $1^{\text {st }}$ digit is 1 or 2 only

Case-I

If first digit is 1
Then last two digits can be $24,32,36,52,56,64$

Case - II
If first digit is 2 then last two digit can be 16, 36,
56, 64

Total ways $=12+18=30$ ways
4. If $\sum_{k=1}^{10} \frac{k}{k^{4}+k^{2}+1}=\frac{m}{n}$, where m and n are coprime, then $m+n$ is equal to

Official Ans. by NTA (166)
Allen Ans. (166)
Sol. $\sum_{\mathrm{k}=1}^{10} \frac{\mathrm{k}}{\mathrm{k}^{4}+\mathrm{k}^{2}+1}=\frac{\mathrm{m}}{\mathrm{n}}$
$\Rightarrow \frac{1}{2} \sum_{\mathrm{k}=1}^{10} \frac{\left(\mathrm{k}^{2}+\mathrm{k}+1\right)-\left(\mathrm{k}^{2}-\mathrm{k}+1\right)}{\left(\mathrm{k}^{2}+\mathrm{k}+1\right)\left(\mathrm{k}^{2}-\mathrm{k}+1\right)}$
$\Rightarrow \frac{1}{2}\left(\sum_{\mathrm{k}=1}^{10}\left(\frac{1}{\left(\mathrm{k}^{2}-\mathrm{k}+1\right)}-\frac{1}{\mathrm{k}^{2}+\mathrm{k}+1}\right)\right)$
$\Rightarrow \frac{55}{111}=\frac{\mathrm{m}}{\mathrm{n}}$
$\mathrm{m}+\mathrm{n}=166$
5. If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $\mathrm{k} \pi$, then k is equal to \qquad _.

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $2 \sin ^{2} \theta-\cos 2 \theta=0$
$2 \sin ^{2} \theta-\left(1-2 \sin ^{2} \theta\right)=0$

ALLEM
$\Rightarrow \sin ^{2} \theta=\left(\frac{1}{2}\right)^{2}$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
$2 \cos ^{2} \theta+3 \sin \theta=0$
$\Rightarrow 2 \sin ^{2} \theta-3 \sin \theta-2=0$
$\therefore \sin \theta=-\frac{1}{2}$
$\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
So, the common solution is
$\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
Sum $=\frac{7 \pi+11 \pi}{6}=3 \pi=k \pi$
$\mathrm{K}=3$
6. The mean and standard deviation of 40 observations are 30 and 5 respectively. It was noticed that two of these observations 12 and 10 were wrongly recorded. If σ is the standard deviation of the data after omitting the two wrong observations from the data, then $38 \sigma^{2}$ is equal to \qquad .
Official Ans. by NTA (238)
Allen Ans. (238)
Sol. Wrong mean $=\mu_{1}=30$
Wrong S.D $=\sigma_{1}=5$
$\frac{\sum \mathrm{x}_{\mathrm{i}}}{40}=30$
$\Rightarrow \sum \mathrm{x}_{\mathrm{i}}=1200$
$\sigma_{1}^{2}=25$
$\Rightarrow \frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{40}-30^{2}=25$
$\Rightarrow \sum \mathrm{x}_{\mathrm{i}}^{2}=925 \times 40=37000$
New sum $=\sum \mathrm{x}_{\mathrm{i}}^{\prime}=1200-10-12=1178$

New mean $=\mu_{1}^{\prime}=\frac{1178}{38}=31$
New $\sum \mathrm{x}_{\mathrm{i}}^{2}=37000-(10)^{2}-(12)^{2}=36756$
New S.D, $\sigma_{1}^{\prime}=\sqrt{\frac{36756}{38}-(31)^{2}}=\sigma$
$36756-(31)^{2} \times 38=38 \sigma^{2}$
$\Rightarrow 38 \sigma^{2}=238$
7. The plane passing through the line $L: \ell x-y+3(1-\ell$) $\mathrm{z}=1, \mathrm{x}+2 \mathrm{y}-\mathrm{z}=2$ and perpendicular to the plane $3 x+2 y+z=6$ is $3 x-8 y+7 z=4$. If θ is the acute angle between the line L and the y -axis, then 415 $\cos ^{2} \theta$ is equal to \qquad -.

Official Ans. by NTA (125)
Allen Ans. (125)
Sol. $\quad \overrightarrow{\mathrm{n}}_{1}=\ell \hat{\mathrm{i}}-\hat{\mathrm{j}}+3(1-\ell) \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{n}}_{2}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
Direction ratio of line $=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \ell & -1 & 3(1-\ell) \\ 1 & 2 & -1\end{array}\right|$
$=(6 \ell-5) \hat{i}+(3-2 \ell) \hat{\mathrm{j}}+(2 \ell+1) \hat{\mathrm{k}}$
$3 \mathrm{x}-8 \mathrm{y}+7 \mathrm{z}=4$ will contain the line $(6 \ell-5) \hat{\mathrm{i}}+(3-2 \ell) \hat{\mathrm{j}}+(2 \ell+1) \hat{\mathrm{k}}$

Normal of $3 x-8 y+7 z=4$ will be perpendicular to the line
$=3(6 \ell-5)+(3-2 \ell)(-8)+7(2 \ell+1)=0$
$\Rightarrow \ell=\frac{2}{3}$
\therefore direction ratio of line $\left(-1, \frac{5}{3}, \frac{7}{3}\right)$
Angle with y axis
$\cos \theta=\frac{5 / 3}{\sqrt{1+\frac{25}{9}+\frac{49}{9}}}$
$\cos \theta=\frac{5}{\sqrt{83}}$
$\therefore 415 \cos ^{2} \theta=\frac{25}{83} \times 415=125$
8. Suppose $y=y(x)$ be the solution curve to the differential equation $\frac{d y}{d x}-y=2-e^{-x}$ such that
$\lim _{x \rightarrow \infty} y(x)$ is finite. If a and b are respectively the $x-$
and y - intercepts of the tangent to the curve at $x=0$, then the value of $a-4 b$ is equal to \qquad _.

Official Ans. by NTA (3)
Allen Ans. (3)
Sol. $\frac{d y}{d x}-y=2-e^{-x}$
I.F. $=\mathrm{e}^{-\int \mathrm{dx}}=\mathrm{e}^{-\mathrm{x}}$
\therefore solution of D.E
$y \cdot e^{-x}=\int\left(2 e^{-x}-e^{-2 x}\right) d x$
$\Rightarrow \mathrm{y}=-2+\frac{\mathrm{e}^{-\mathrm{x}}}{2}+\mathrm{C} \cdot \mathrm{e}^{\mathrm{x}}$
$\because \lim _{x \rightarrow \infty} y$ is finite
$\therefore \lim _{\mathrm{x} \rightarrow \infty}\left(-2+\frac{\mathrm{e}^{-\mathrm{x}}}{2}+\right.$ C. $\left.\mathrm{e}^{\mathrm{x}}\right) \rightarrow$ finite
This is possible only when $\mathrm{C}=0$
$\therefore \mathrm{y}=\mathrm{y}(\mathrm{x})=-2+\frac{\mathrm{e}^{-\mathrm{x}}}{2}$
$\frac{d y}{d x}=-\frac{1}{2} e^{-x}$
$\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{x}=0}=-\frac{1}{2}=\mathrm{m}, \mathrm{y}(0)=-2+\frac{1}{2}=\frac{-3}{2}$
\therefore equation of tangent
$y+\frac{3}{2}=-\frac{1}{2}(x-0)$
$\Rightarrow x+2 y=-3$
$\mathrm{a}=-3, \mathrm{~b}=\frac{-3}{2}$
$\mathrm{a}-4 \mathrm{~b}=-3+6=3$
9. Different A.P.'s are constructed with the first term 100, the last term 199, And integral common differences. The sum of the common differences of all such, A.P's having at least 3 terms and at most 33 terms is.
Official Ans. by NTA (53)

Allen Ans. (53)
Sol. $\quad 1^{\text {st }}$ term $=100=\mathrm{a}$
Last term $=199=\ell$
If 3 term
a, $a+d, a+2 d$
$\mathrm{a}_{\mathrm{n}}=\ell=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{d}_{\mathrm{i}}=\frac{\ell-\mathrm{a}}{\mathrm{n}-1}$
$\mathrm{n} \rightarrow$ number of terms
$\mathrm{n}=3, \mathrm{~d}_{1}=\frac{199-100}{2}$

$$
=\frac{99}{2} \notin \mathrm{I}
$$

$\mathrm{n}=4, \mathrm{~d}_{2}=\frac{99}{3}=33 \in \mathrm{I}$
$\mathrm{n}=10, \mathrm{~d}_{3}=\frac{99}{9}=11 \in \mathrm{I}$
$\mathrm{n}=12, \mathrm{~d}_{4}=\frac{99}{11}=9 \in \mathrm{I}$
$\therefore \sum \mathrm{d}_{\mathrm{i}}=33+11+9=53$
10. The number of matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}$, such that $A=A^{-1}$, is \qquad .

Official Ans. by NTA (50)

Allen Ans. (50)

Sol. $\quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Given $\mathrm{A}=\mathrm{A}^{-1}$
$\therefore \mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{A}^{-1}=\mathrm{I}$
$\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\mathrm{a}^{2}+\mathrm{bc} & \mathrm{ab}+\mathrm{bd} \\ \mathrm{ac}+\mathrm{cd} & \mathrm{bc}+\mathrm{d}^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\therefore \mathrm{a}^{2}+\mathrm{bc}=1$
$a b+b d=0$
ac $+c d=0$
bc $+\mathrm{d}^{2}=1$
(1) - (4) gives
$\mathrm{a}^{2}-\mathrm{d}^{2}=0$
$\Rightarrow(\mathrm{a}+\mathrm{d})=0$ or $\mathrm{a}-\mathrm{d}=0$
Case - I
$\mathrm{a}+\mathrm{d}=0 \Rightarrow(\mathrm{a}, \mathrm{d})=(-1,1),(0,0),(1,-1)$
(a) $(\mathrm{a}, \mathrm{d})=(-1,1)$
\therefore from equation (1)
$1+b c=1 \Rightarrow b c=0$
$\mathrm{b}=0 \mathrm{C}=12$ possibilities
$\mathrm{c}=0 \mathrm{~b}=12$ possibilities
but $(0,0)$ is repeated
$\therefore 2 \times 12=24$
$24-1$ (repeated) $=23$ pairs
(b) $(\mathrm{a}, \mathrm{d})=(1,-1) \Rightarrow \mathrm{bc}=0 \rightarrow 23$ pairs
(c) $(\mathrm{a}, \mathrm{d})=(0,0) \Rightarrow \mathrm{bc}=1$
$\Rightarrow(\mathrm{b}, \mathrm{c})=(1,1) \&(-1,-1), 2$ pairs

Case - II
$\mathrm{a}=\mathrm{d}$
from (2) and (3)
$\mathrm{a} \neq 0$ then $\mathrm{b}=\mathrm{c}=0$
$a^{2}=1$
$\mathrm{a}= \pm 1=\mathrm{d}$
$(\mathrm{a}, \mathrm{d})=(1,1),(-1,-1) \rightarrow 2$ pairs
\therefore Total $=23+23+2+2$
$=50$ pairs

