FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Wednesday 27 ${ }^{\text {th }}$ July, 2022)
TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. The domain of the function

$$
f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)
$$

where $[\mathrm{t}]$ is the greatest integer function, is :
(A) $\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)$
(B) $\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$
(C) $\left(1, \frac{5-\sqrt{5}}{2}\right)$
(D) $\left[1, \frac{5+\sqrt{5}}{2}\right)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$
$\mathrm{P}_{1}:-1 \leq\left[2 \mathrm{x}^{2}-3\right]<1$
$\Rightarrow-1 \leq 2 x^{2}-3<2$
$\Rightarrow 2<2 \mathrm{x}^{2}<5$
$\Rightarrow 1<\mathrm{x}^{2}<\frac{5}{2}$
$\Rightarrow \mathrm{P}_{1}: \mathrm{x} \in\left(-\sqrt{\frac{5}{2}},-1\right) \cup\left(1, \sqrt{\frac{5}{2}}\right)$
$P_{2}: x^{2}-5 x+5>0$
$\Rightarrow\left(\mathrm{x}-\left(\frac{5-\sqrt{5}}{2}\right)\right)\left(\mathrm{x}-\left(\frac{5+\sqrt{5}}{2}\right)\right)>0$
$P_{3}: \log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)>0$
$\Rightarrow x^{2}-5 x-5<1$
$\Rightarrow \mathrm{x}^{2}-5 \mathrm{x}+4<0$
$\Rightarrow \mathrm{P}_{3}: \mathrm{x} \in(1,4)$
So, $\mathrm{P}_{1} \cap \mathrm{P}_{2} \cap \mathrm{P}_{3}=\left(1, \frac{5-\sqrt{5}}{2}\right)$

TEST PAPER WITH SOLUTION

2. Let S be the set of all $(\alpha, \beta), \pi<\alpha, \beta<2 \pi$, for which the complex number $\frac{1-\mathrm{i} \sin \alpha}{1+2 \mathrm{i} \sin \alpha}$ is purely imaginary and $\frac{1+\mathrm{i} \cos \beta}{1-2 \mathrm{i} \cos \beta}$ is purely real. Let $Z_{\alpha \beta}=\sin 2 \alpha+i \cos 2 \beta,(\alpha, \beta) \in S$.
Then $\sum_{(\alpha, \beta) \in S}\left(i Z_{\alpha \beta}+\frac{1}{i \bar{Z}_{\alpha \beta}}\right)$ is equal to :
(A) 3
(B) 3 i
(C) 1
(D) $2-\mathrm{i}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\pi<\alpha, \beta<2 \pi$
$\frac{1-\mathrm{i} \sin \alpha}{1+\mathrm{i}(2 \sin \alpha)}=$ Purely imaginary
$\Rightarrow \frac{(1-\mathrm{i} \sin \alpha)(1-\mathrm{i}(2 \sin \alpha))}{1+4 \sin ^{2} \alpha}=$ Purely imaginary
$\Rightarrow \frac{1-2 \sin ^{2} \alpha}{1+4 \sin ^{2} \alpha}=0$
$\Rightarrow \sin ^{2} \alpha=\frac{1}{2}$
$\Rightarrow \alpha=\left\{\frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$
\& $\frac{1+i \cos \beta}{1+i(-2 \cos \beta)}=$ Purely real
$\Rightarrow \frac{(1+i \cos \beta)(1+2 \mathrm{i} \cos \beta)}{1+4 \cos ^{2} \beta}=$ Purely real
$\Rightarrow 3 \cos \beta=0$
$\Rightarrow \beta=\frac{3 \pi}{2}$
$\Rightarrow \mathrm{Z}_{\alpha \beta}=\sin \frac{5 \pi}{2}+\mathrm{i} \cos 3 \pi=1-\mathrm{i}$
or
$\mathrm{Z}_{\alpha \beta}=\sin \frac{7 \pi}{2}+\mathrm{i} \cos 3 \pi=-1-\mathrm{i}$
Required value $=\left[\mathrm{i}(1-\mathrm{i})+\frac{1}{\mathrm{i}(1+\mathrm{i})}\right]+\left[\mathrm{i}(-1-\mathrm{i})+\frac{1}{\mathrm{i}(-1+\mathrm{i})}\right]$
$=\mathrm{i}(-2 \mathrm{i})+\frac{1}{\mathrm{i}} \frac{2 \mathrm{i}}{(-2)} \Rightarrow 2-1=1$
3. If α, β are the roots of the equation

$$
x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0
$$

then the equation, whose roots are
$\alpha+\frac{1}{\beta}$ and $\beta+\frac{1}{\alpha}$,
(A) $3 x^{2}-20 x-12=0$
(B) $3 x^{2}-10 x-4=0$
(C) $3 x^{2}-10 x+2=0$
(D) $3 x^{2}-20 x+16=0$

Official Ans. by NTA (Drop)

Allen Ans. (Bonus)

Sol. Bonus because ' x ' is missing the correct will be,

$$
\begin{gathered}
x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right) x+3\left(3^{\left.\left(\log _{3} 5\right)^{\frac{1}{3}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0} \begin{array}{r}
3^{\sqrt{\log _{3} 5}}=3^{\sqrt{\log _{3} 5} \cdot \sqrt{\log _{3} 5} \cdot \sqrt{\log _{5} 3}}=3^{\log _{3} 5 \cdot \sqrt{\log _{5} 3}} \\
=\left(3^{\log _{3} 5}\right)^{\sqrt{\log _{5} 3}}=5^{\sqrt{\log _{5} 3}} \\
3^{\sqrt[3]{\log _{3} 5}}=3^{\log _{3} 5 \cdot \sqrt[3]{\left(\log _{5} 3\right)^{2}}}=\left(3^{\log _{3} 5}\right)^{\left(\log _{5} 3\right)^{2 / 3}} \\
=5^{\left(\log _{5} 3\right)^{2 / 3}}
\end{array}\right.
\end{gathered}
$$

So, equation is $x^{2}-5 x-3=0$ and roots are $\alpha \& \beta$ $\{\alpha+\beta=5 ; \alpha \beta=-3\}$

New roots are $\alpha+\frac{1}{\beta} \& \beta+\frac{1}{\alpha}$
i.e., $\frac{\alpha \beta+1}{\beta} \& \frac{\alpha \beta+1}{\alpha}$ i.e., $\frac{-2}{\beta} \& \frac{-2}{\alpha}$

Let $\frac{-2}{\alpha}=\mathrm{t} \Rightarrow \alpha=\frac{-2}{\mathrm{t}}$
As $\alpha^{2}-5 \alpha-3=0$
$\Rightarrow\left(\frac{-2}{\mathrm{t}}\right)^{2}-5\left(\frac{-2}{\mathrm{t}}\right)-3=0$
$\Rightarrow \frac{4}{\mathrm{t}^{2}}+\frac{10}{\mathrm{t}}-3=0$
$\Rightarrow 4+10 \mathrm{t}-3 \mathrm{t}^{2}=0$
$\Rightarrow 3 \mathrm{t}^{2}-10 \mathrm{t}-4=0$
i.e., $3 x^{2}-10 x-4=0$
4. Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$

If $\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$, then $\operatorname{det}(\mathrm{A})$ is equal to
\qquad .
(A) -18
(B) 18
(C) -50
(D) 50

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. The characteristic equation for A is $|A-\lambda I|=0$
$\Rightarrow\left|\begin{array}{cc}4-\lambda & -2 \\ \alpha & \beta-\lambda\end{array}\right|=0$
$\Rightarrow(4-\lambda)(\beta-\lambda)+2 \alpha=0$
$\Rightarrow \lambda^{2}-(\beta+4) \lambda+4 \beta+2 \alpha=0$
Put $\lambda=\mathrm{A}$
$A^{2}-(\beta+4) A+(4 \beta+2 \alpha) I=0$
On comparison
$-9(\beta+4)=\gamma \& 4 \beta+2 \alpha=18$
and $|\mathrm{A}|=4 \beta+2 \alpha=18$
5. If for $p \neq q \neq 0$, then function
$f(x)=\frac{\sqrt[7]{p(729+x)}-3}{\sqrt[3]{729+q x}-9}$ is continuous at $x=0$, then:
(A) $7 \mathrm{pq} \mathrm{f}(0)-1=0$
(B) $63 q \mathrm{f}(0)-\mathrm{p}^{2}=0$
(C) $21 \mathrm{q} f(0)-\mathrm{p}^{2}=0$
(D) $7 \mathrm{pq} \mathrm{f}(0)-9=0$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $f(0)=\lim _{x \rightarrow 0} f(x)$
Limit should be $\frac{0}{0}$ form
So, $\sqrt[7]{\mathrm{p} .729}-3=0 \Rightarrow \mathrm{p} .3^{6}=3^{7} \Rightarrow \mathrm{p}=3$
Now, $f(0)=\lim _{x \rightarrow 0} \frac{\sqrt[7]{3\left(3^{6}+x\right)}-3}{\sqrt[3]{3^{6}+q x}-9}$
$=\lim _{x \rightarrow 0} \frac{3\left[\left(1+\frac{x}{3^{6}}\right)^{1 / 7}-1\right]}{9\left[\left(1+\frac{q x}{3^{6}}\right)^{1 / 3}-1\right]}=\frac{3}{9} \times \frac{\frac{1}{7.3^{6}}}{\frac{q}{3.3^{6}}}$
$\Rightarrow \mathrm{f}(0)=\frac{1}{3} \times \frac{3}{7 \mathrm{q}}=\frac{1}{7 \mathrm{q}}$
$\Rightarrow 7 \mathrm{qf}(0)-1=0$
$\Rightarrow 7 . \mathrm{p}^{2} \cdot \mathrm{qf}(0)-\mathrm{p}^{2}=0$ (for option)
$\Rightarrow 63 \mathrm{qf}(0)-\mathrm{p}^{2}=0$

CAREER INSTITUTE
6. Let $f(x)=2+|x|-|x-1|+|x+1|, x \in R$. Consider
(S1): $\mathrm{f}^{\prime}\left(-\frac{3}{2}\right)+\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)+\mathrm{f}^{\prime}\left(\frac{1}{2}\right)+\mathrm{f}^{\prime}\left(\frac{3}{2}\right)=2$
(S2) $: \int_{-2}^{2} f(x) d x=12$
Then,
(A) both (S1) and (S2) are correct
(B) both (S1) and (S2) are wrong
(C) only (S1) is correct
(D) only (S2) is correct

Official Ans. by NTA (D)
Allen Ans. (D)
Sol.

(Sl): $\mathrm{f}^{\prime}\left(-\frac{3}{2}\right)+\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)+\mathrm{f}^{\prime}\left(\frac{1}{2}\right)+\mathrm{f}^{\prime}\left(\frac{3}{2}\right)=4$
(S2) : $\int_{-2}^{2} f(x) d x=12$
\therefore (D)
7. Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $\frac{98}{25}$. Then the sum of the first 21 terms of an AP, whose first term is $10 \mathrm{ar}, \mathrm{n}^{\text {th }}$ term is a_{n} and the common difference is $10 \mathrm{ar}^{2}$, is equal to :
(A) $21 \mathrm{a}_{11}$
(B) $22 \mathrm{a}_{11}$
(C) $15 \mathrm{a}_{16}$
(D) $14 \mathrm{a}_{16}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\quad S_{21}=\frac{21}{2}\left[20 \mathrm{ar}+20.10 \mathrm{ar}^{2}\right]$

$$
\begin{aligned}
& =21\left[10 a r+100{\left.a r^{2}\right]}^{=21 \cdot a_{11}}\right.
\end{aligned}
$$

8. The area of the region enclosed by $\mathrm{y} \leq 4 \mathrm{x}^{2}, x^{2} \leq 9 \mathrm{y}$ and $\mathrm{y} \leq 4$, is equal to :
(A) $\frac{40}{3}$
(B) $\frac{56}{3}$
(C) $\frac{112}{3}$
(D) $\frac{80}{3}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol.

$\Delta=2 \cdot \int_{0}^{4}\left(3 \sqrt{\mathrm{y}}-\frac{\sqrt{\mathrm{y}}}{2}\right) \mathrm{dy}$
$=2 \cdot \int_{0}^{4} \frac{5}{2} \sqrt{y} d y=\frac{80}{3}$
9. $\int_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) d x$,
where $[\mathrm{t}]$ is the greatest integer function, is equal to:
(A) $\frac{7}{6}$
(B) $\frac{19}{12}$
(C) $\frac{31}{12}$
(D) $\frac{3}{2}$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $\int_{0}^{2}\left|2 x^{2}-3 x\right| d x$

$$
\begin{aligned}
&=\int_{0}^{\frac{3}{2}}\left(3 x-2 x^{2}\right) d x+\int_{\frac{3}{2}}^{2}\left(2 x^{2}-3 x\right) d x=\frac{19}{12} \\
& \begin{aligned}
\int_{0}^{2}\left[x-\frac{1}{2}\right] d x & =\int_{\frac{-1}{2}}^{\frac{3}{2}}[t] d t
\end{aligned} \\
&=\int_{-\frac{1}{2}}^{0}(-1) d t+\int_{0}^{1} 0 \cdot d t+\int_{1}^{\frac{3}{2}} 1 \cdot d t=0
\end{aligned}
$$

10. Consider a curve $y=y(x)$ in the first quadrant as shown in the figure. Let the area A_{1} is twice the area A_{2}. Then the normal to the curve perpendicular to the line $2 \mathrm{x}-12 \mathrm{y}=15$ does NOT pass through the point.

(1) $(6,21)$
$(2)(8,9)$
(3) $(10,-4)$
(4) $(12,-15)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Given that $\mathrm{A}_{1}=2 \mathrm{~A}_{2}$
from the graph $\mathrm{A}_{1}+\mathrm{A}_{2}=\mathrm{xy}-8$
$\Rightarrow \frac{3}{2} \mathrm{~A}_{1}=\mathrm{xy}-8$
$\Rightarrow \mathrm{A}_{1}=\frac{2}{3} \mathrm{xy}-\frac{16}{3}$
$\Rightarrow \int_{4}^{\mathrm{x}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{2}{3} \mathrm{xy}-\frac{16}{3}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{2}{3}\left(\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}\right)$
$\Rightarrow \frac{2}{3} \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{3}$
$\Rightarrow 2 \int \frac{d y}{y}=\int \frac{d x}{x}$
$\Rightarrow 2 \ell \mathrm{ny}=\ell \mathrm{nx}+\ell \mathrm{nc}$
$\Rightarrow y^{2}=c x$
As $f(4)=2 \Rightarrow c=1$
so $y^{2}=x$
slope of normal $=-6$
$y=-6(x)-\frac{1}{2}(-6)-\frac{1}{4}(-6)^{3}$
$\Rightarrow \mathrm{y}=-6 \mathrm{x}+3+54$
$\Rightarrow y+6 x=57$
Now check options and (C) will not satisfy.
11. The equations of the sides AB, BC and CA of a triangle $A B C$ are $2 x+y=0, x+p y=39$ and $x-y=3$ respectively and $P(2,3)$ is its circumcentre. Then which of the following is NOT true :
(A) $(\mathrm{AC})^{2}=9 \mathrm{p}$
(B) $(\mathrm{AC})^{2}+\mathrm{p}^{2}=136$
(C) $32<\operatorname{area}(\triangle \mathrm{ABC})<36$
(D) $34<$ area $(\triangle \mathrm{ABC})<38$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol.

$\left(\frac{-39}{15}, \frac{78}{15}\right)$
Perpendicular bisector of AB

$$
x+y=5
$$

Take image of A
$\frac{x-1}{1}=\frac{y+2}{1}=\frac{-2(-6)}{2}=6$
$(7,4)$
$7+4 p=39$
$\mathrm{p}=8$
solving $x+8 y=39$ and $y=-2 x$
$x=\frac{-39}{15} \quad y=\frac{78}{15}$
$\mathrm{AC}^{2}=72=9 \mathrm{p}$
$\mathrm{AC}^{2}+\mathrm{p}^{2}=72+64=136$
$\Delta \mathrm{ABC}=\frac{1}{2}\left|\begin{array}{ccc}1 & -2 & 1 \\ 7 & 4 & 1 \\ \frac{-39}{15} & \frac{78}{15} & 1\end{array}\right|$
$=\frac{1}{2}\left[4-\frac{78}{15}+2\left(7+\frac{39}{15}\right)+7\left(\frac{78}{15}\right)+\frac{4 \times 39}{15}\right]$
$=\frac{1}{2}\left[18+18 \times \frac{13}{5}\right]$
$=9\left[\frac{18}{5}\right]=\frac{162}{5}=32.4$
Ans. (D)
12. A circle C_{1} passes through the origin O and has diameter 4 on the positive x-axis. The line $y=2 x$ gives a chord OA of a circle C_{1}. Let C_{2} be the circle with OA as a diameter. If the tangent to C_{2} at the point A meets the x -axis at P and y -axis at Q , then QA : AP is equal to :
(A) $1: 4$
(B) $1: 5$
(C) $2: 5$
(D) $1: 3$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $C_{1}: x^{2}+y^{2}-4 x=0$
$\tan \theta=2$

C_{2} is a circle with OA as diameter.
So, tangent at A on C_{2} is perpendicular to OR
Let $\mathrm{OA}=\ell$
$\therefore \frac{\mathrm{QA}}{\mathrm{AP}}=\frac{\ell \cot \theta}{\ell \tan \theta}$
$=\frac{1}{\tan ^{2} \theta}=\frac{1}{4}$
13. If the length of the
 latus rectum of a parabola, whose focus is (a, a) and the tangent at its vertex is $x+y=a$, is 16 , then $|a|$ is equal to :
(A) $2 \sqrt{2}$
(B) $2 \sqrt{3}$
(C) $4 \sqrt{2}$
(D) 4

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

$|\mathrm{P}|=\left|\frac{\mathrm{a}}{\sqrt{2}}\right|=\frac{16}{4}=4$
$|a|=4 \sqrt{2}$
Ans. (C)
14. If the length of the perpendicular drawn from the point $\mathrm{P}(\mathrm{a}, 4,2), \mathrm{a}>0$ on the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1} \quad$ is $2 \sqrt{6} \quad$ units and $\mathrm{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is the image of the point P in this line, then $a+\sum_{i=1}^{3} \alpha_{i}$ is equal to :
(A) 7
(B) 8
(C) 12
(D) 14

Official Ans. by NTA (B)
Allen Ans. (B)

Sol.

$$
\begin{aligned}
&(2 \lambda-1,3 \lambda+3,-\lambda+1) \\
&(2 \lambda-1-\mathrm{a}) 2+(3 \lambda-1) 3+(-\lambda-1)(-1)=0 \\
& \Rightarrow 4 \lambda-2-2 \mathrm{a}+9 \lambda-3+\lambda+1=0 \\
& \Rightarrow 14 \lambda-4-2 \mathrm{a}=0 \\
& \Rightarrow 7 \lambda-2-\mathrm{a}=0
\end{aligned}
$$

and,
$(2 \lambda-1-a)^{2}+(3 \lambda-1)^{2}+(\lambda+1)^{2}=24$
$\Rightarrow(5 \lambda-1)^{2}+(3 \lambda-1)^{2}+(\lambda+1)^{2}=24$
$\Rightarrow 35 \lambda^{2}-14 \lambda-21=0$
$\Rightarrow(\lambda-1)(35 \lambda+21)=0$
For, $\lambda=1 \quad \Rightarrow \mathrm{a}=5$
Let $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be reflection of point P
$\alpha_{1}+5=2 \quad \alpha_{2}+4=12 \quad \alpha_{3}+2=0$
$\begin{array}{ccc}\alpha_{1}=-3 & \alpha_{2}=8 & \alpha_{3}=-2\end{array}$
$a+\alpha_{1}+\alpha_{2}+\alpha_{3}=8$
15. If the line of intersection of the planes $a x+b y=3$ and $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$, $\mathrm{a}>0$ makes an angle 30° with the plane $y-z+2=0$, then the direction cosines of the line are :
(A) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
(B) $\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0$
(C) $\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}, 0$
(D) $\frac{1}{2},-\frac{\sqrt{3}}{2}, 0$

Official Ans. by NTA (A or B)
Allen Ans. (A or B or both)

Sol. $\quad \overrightarrow{\mathrm{n}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{k} \\ \mathrm{a} & \mathrm{b} & 0 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|$
$=b c \hat{i}-a c \hat{j}$
Direction ratios of line are $\mathbf{b},-\mathbf{a}, \mathbf{0}$
Direction ratios of normal of the plane are $\mathbf{0}, \mathbf{1}, \mathbf{- 1}$
$\cos 60^{\circ}=\left|\frac{-\mathrm{a}}{|\sqrt{2}| \sqrt{\mathrm{b}^{2}+\mathrm{a}^{2}}}\right|=\frac{1}{2}$
$\Rightarrow\left|\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|=\frac{1}{\sqrt{2}}$
$\Rightarrow \mathrm{b}= \pm \mathrm{a}$
So, D.R.'s can be ($\pm \mathrm{a},-\mathrm{a}, 0$)
\therefore D.C.'s can be $\pm\left(\frac{ \pm 1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$
16. Let X have a binomial distribution $B(n, p)$ such that the sum and the product of the mean and variance of X are 24 and 128 respectively. If $\mathrm{P}(\mathrm{X}>\mathrm{n}-3)=\frac{\mathrm{k}}{2^{\mathrm{n}}}$, then k is equal to
(A) 528
(B) 529
(C) 629
(D) 630

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Let $\alpha=$ Mean \& $\beta=$ Variance $(\alpha>\beta)$
So, $\alpha+\beta=24, \quad \alpha \beta=128$
$\Rightarrow \alpha=16 \quad \& \quad \beta=8$
$\Rightarrow \mathrm{np}=16 \quad \mathrm{npq}=8 \Rightarrow \mathrm{q}=\frac{1}{2}$
$\therefore \mathrm{p}=\frac{1}{2}, \mathrm{n}=32$
$\mathrm{p}(\mathrm{x}>\mathrm{n}-3)=\frac{1}{2^{\mathrm{n}}}\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-2}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\right)$
$\therefore \mathrm{k}={ }^{32} \mathrm{C}_{30}+{ }^{32} \mathrm{C}_{31}+{ }^{32} \mathrm{C}_{32}=\frac{32 \times 31}{2}+32+1$

$$
=496+33=529
$$

17. A six faced die is biased such that $3 \times \mathrm{P}$ (a prime number $)=6 \times \mathrm{P}($ a composite number $)=2 \times \mathrm{P}(1)$. Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :
(A) $\frac{3}{11}$
(B) $\frac{5}{11}$
(C) $\frac{7}{11}$
(D) $\frac{8}{11}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Let $\frac{\mathrm{P}(\text { a prime number })}{2}=\frac{\mathrm{P}(\text { a composite })}{1}=\frac{\mathrm{P}(1)}{3}=\mathrm{k}$
So, $\mathrm{P}($ a prime number $)=2 \mathrm{k}$,
$\mathrm{P}(\mathrm{a}$ composite number $)=\mathrm{k}$,
\& $\mathrm{P}(1)=3 \mathrm{k}$
$\& 3 \times 2 \mathrm{k}+2 \times \mathrm{k}+3 \mathrm{k}=1$
$\Rightarrow \mathrm{k}=\frac{1}{11}$
$P($ success $)=P(1$ or 4$)=3 k+k=\frac{4}{11}$
Number of trials, $n=2$
\therefore mean $=\mathrm{np}=2 \times \frac{4}{11}=\frac{8}{11}$
18. The angle of elevation of the top P of a vertical tower PQ of height 10 from a point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, vertically above R, the angle of elevation of P is 60°. If $\angle \mathrm{BAQ}=30^{\circ}, \mathrm{AB}=\mathrm{d}$ and the area of the trapezium PQRB is α, then the ordered pair (d, α) is :
(A) $(10(\sqrt{3}-1), 25)$
(B) $\left(10(\sqrt{3}-1), \frac{25}{2}\right)$
(C) $(10(\sqrt{3}+1), 25)$
(D) $\left(10(\sqrt{3}+1), \frac{25}{2}\right)$

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. $\mathrm{QA}=10$

$$
\mathrm{RA}=\mathrm{d} \cos 30^{\circ}=\frac{\sqrt{3} \mathrm{~d}}{2}
$$

$\mathrm{QR}=10-\frac{\sqrt{3} \mathrm{~d}}{2}$
$\mathrm{BR}=\mathrm{d} \sin 30^{\circ}=\frac{\mathrm{d}}{2}$

$$
\tan 60^{\circ}=\frac{\mathrm{PQ}-\mathrm{BR}}{\mathrm{QR}}=\frac{10-\frac{\mathrm{d}}{2}}{10-\frac{\sqrt{3} \mathrm{~d}}{2}}
$$

$\Rightarrow \sqrt{3}=\frac{20-\mathrm{d}}{20-\sqrt{3} \mathrm{~d}}$
$\Rightarrow 20 \sqrt{3}-3 \mathrm{~d}=20-\mathrm{d}$
$\Rightarrow 2 \mathrm{~d}=20(\sqrt{3}-1)$
$\Rightarrow \mathrm{d}=10(\sqrt{3}-1)$
$\operatorname{ar}(\mathrm{PQRB})=\alpha=\frac{1}{2}(\mathrm{PQ}+\mathrm{BR}) \cdot \mathrm{QR}$

$$
\begin{aligned}
& =\frac{1}{2}\left(10+\frac{\mathrm{d}}{2}\right) \cdot\left(10-\frac{\sqrt{3} \mathrm{~d}}{2}\right) \\
& =\frac{1}{2}(10+5 \sqrt{3}-5)(10-15+5 \sqrt{3}) \\
& =\frac{1}{2}(5 \sqrt{3}+5)(5 \sqrt{3}-5)=\frac{1}{2}(75-25)=25
\end{aligned}
$$

19. Let $\mathrm{S}=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum_{\mathrm{m}=1}^{9} \sec \left(\theta+(\mathrm{m}-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{\mathrm{m} \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$

Then
(A) $\mathrm{S}=\left\{\frac{\pi}{12}\right\}$
(B) $\mathrm{S}=\left\{\frac{2 \pi}{3}\right\}$
(C) $\sum_{\theta \in S} \theta=\frac{\pi}{2}$
(D) $\sum_{\theta \in \mathrm{S}} \theta=\frac{3 \pi}{4}$

Official Ans. by NTA (C)
Allen Ans. (C)

Sol. Let $\alpha=\theta+(m-1) \frac{\pi}{6}$
$\& \beta=\theta+\mathrm{m} \frac{\pi}{6}$
So, $\beta-\alpha=\frac{\pi}{6}$
Here, $\sum_{\mathrm{m}=1}^{9} \sec \alpha \cdot \sec \beta=\sum_{\mathrm{m}=1}^{9} \frac{1}{\cos \alpha \cdot \cos \beta}$
$=2 \sum_{\mathrm{m}=1}^{9} \frac{\sin (\beta-\alpha)}{\cos \alpha \cdot \cos \beta}=2 \sum_{\mathrm{m}=1}^{9}(\tan \beta-\tan \alpha)$
$=2 \sum_{m=1}^{9}\left(\tan \left(\theta+m \frac{\pi}{6}\right)-\tan \left(\theta+(m-1) \frac{\pi}{6}\right)\right)$
$=2\left(\tan \left(\theta+\frac{9 \pi}{6}\right)-\tan \theta\right)=2(-\cot \theta-\tan \theta)=-\frac{8}{\sqrt{3}}$
(Given)
$\therefore \quad \tan \theta+\cot \theta=\frac{4}{\sqrt{3}}$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$ or $\sqrt{3}$
So, $S=\left\{\frac{\pi}{6}, \frac{\pi}{3}\right\}$
$\sum_{\theta \in S} \theta=\frac{\pi}{6}+\frac{\pi}{3}=\frac{\pi}{2}$
20. If the truth value of the statement $(\mathrm{P} \wedge(\sim \mathrm{R})) \rightarrow((\sim \mathrm{R}) \wedge \mathrm{Q})$ is F , then the truth value of which of the following is F ?
(A) $\mathrm{P} \vee \mathrm{Q} \rightarrow \sim \mathrm{R}$
(B) $\mathrm{R} \vee \mathrm{Q} \rightarrow \sim \mathrm{P}$
(C) $\sim(\mathrm{P} \vee \mathrm{Q}) \rightarrow \sim \mathrm{R}$
(D) $\sim(\mathrm{R} \vee \mathrm{Q}) \rightarrow \sim \mathrm{P}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\mathrm{X} \Rightarrow \mathrm{Y}$ is a false
when X is true and Y is false
So, $\mathrm{P} \rightarrow \mathrm{T}, \mathrm{Q} \rightarrow \mathrm{F}, \mathrm{R} \rightarrow \mathrm{F}$
(A) $\mathrm{P} \vee \mathrm{Q} \rightarrow \sim \mathrm{R}$ is T
(B) $\mathrm{R} \vee \mathrm{Q} \rightarrow \sim \mathrm{P}$ is T
(C) $\sim(\mathrm{P} \vee \mathrm{Q}) \rightarrow \sim \mathrm{R}$ is T
(D) $\sim(\mathrm{R} \vee \mathrm{Q}) \rightarrow \sim \mathrm{P}$ is F

SECTION-B

1. Consider a matrix $A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$,
where α, β, γ are three distinct natural numbers.
If $\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))}{(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma-\alpha)^{16}}=2^{32} \times 3^{16}$, then the number of such $3-$ tuples (α, β, γ) is \qquad .

Official Ans. by NTA (42)
Allen Ans. (42)
Sol. $A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{1}$
$\Rightarrow|\mathrm{A}|=|\alpha+\beta+\gamma|\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow|\mathrm{A}|=(\alpha+\beta+\gamma)(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
$\because|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$
$|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|^{(\mathrm{n}-1)^{2}}$
$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))|=|\mathrm{A}|^{(\mathrm{n}-1)^{4}}=|\mathrm{A}|^{2^{4}}=|\mathrm{A}|^{16}$
$\therefore(\alpha+\beta+\gamma)^{16}=2^{32} \cdot 3^{16}$
$\Rightarrow(\alpha+\beta+\gamma)^{16}=\left(2^{2} .3\right)^{16}=(12)^{16}$
$\Rightarrow \alpha+\beta+\gamma=12$
$\because \alpha, \beta, \gamma \in \mathrm{N}$
$(\alpha-1)+(\beta-1)+(\gamma-1)=9$
number all tuples $(\alpha, \beta, \gamma)={ }^{11} \mathrm{C}_{2}=55$
1 case for $\alpha=\beta=\gamma$
\& 12 case when any two of these are equal
So, No. of distinct tuples (α, β, γ)

$$
=55-13=42
$$

2. The number of functions f , from the set $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ to the set $B=\left\{n^{2}: n \in N\right\}$ such that $f(x) \leq(x-3)^{2}+1$, for every $x \in A$, is \qquad .

Official Ans. by NTA (1440)
Allen Ans. (1440)
Sol. $\left(x^{2}-10 x+9\right) \leq 0 \Rightarrow(x-1)(x-9) \leq 0$
$\Rightarrow \mathrm{x} \in[1,9] \Rightarrow \mathrm{A}=\{1,2,3,4,5,6,7,8,9\}$
$\mathrm{f}(\mathrm{x}) \leq(\mathrm{x}-3)^{2}+1$
$\mathrm{x}=1: \mathrm{f}(1) \leq 5 \Rightarrow 1^{2}, 2^{2}$
$\mathrm{x}=2: \mathrm{f}(2) \leq 2 \Rightarrow 1^{2}$
$\mathrm{x}=3: \mathrm{f}(3) \leq 1 \Rightarrow 1^{2}$
$\mathrm{x}=4: \mathrm{f}(4) \leq 2 \Rightarrow 1^{2}$
$x=5: f(5) \leq 5 \Rightarrow 1^{2}, 2^{2}$
$x=6: f(6) \leq 10 \Rightarrow 1^{2}, 2^{2}, 3^{2}$
$\mathrm{x}=7: \mathrm{f}(7) \leq 17 \Rightarrow 1^{2}, 2^{2}, 3^{2}, 4^{2}$
$x=8: f(8) \leq 26 \Rightarrow 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}$
$\mathrm{x}=9: \mathrm{f}(9) \leq 37 \Rightarrow 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}$
Total number of such function

$$
=2(6!)=2(720)=1440
$$

3. Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of n is n_{0}. If k is the ratio of the coefficient of x^{6} to the coefficient of x^{3}, then $\mathrm{k}+\mathrm{n}_{0}$ is equal to:

Official Ans. by NTA (24)
Allen Ans. (24)

Sol. $(3+6 x)^{n}={ }^{n} C_{0} 3^{n}+{ }^{n} C_{1} 3^{n-1}(6 x)^{1}+\ldots$
$\mathrm{T}_{\mathrm{r}+1}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 3^{\mathrm{n}-\mathrm{r}} \cdot(6 \mathrm{x}) \mathrm{r}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 3^{\mathrm{n}-\mathrm{r}} \cdot 6^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}$
$={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 3^{\mathrm{n}-\mathrm{r}} \cdot 3^{\mathrm{r}} \cdot 2^{\mathrm{r}} \cdot\left(\frac{3}{2}\right)^{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 3^{\mathrm{n}} \cdot 3^{\mathrm{r}} \quad\left[\right.$ for $\left.\mathrm{x}=\frac{3}{2}\right]$
T_{9} is greatest of $\mathrm{x}=\frac{3}{2}$
So, $\mathrm{T}_{9}>\mathrm{T}_{10}$ and $\mathrm{T}_{9}>\mathrm{T}_{8}$
(concept of numerically greatest term)
Here, $\frac{\mathrm{T}_{9}}{\mathrm{~T}_{10}}>1$ and $\frac{\mathrm{T}_{9}}{\mathrm{~T}_{8}}>1$
$\Rightarrow \frac{{ }^{\mathrm{n}} \mathrm{C}_{8} 3^{\mathrm{n}} \cdot 3^{8}}{{ }^{\mathrm{n}} \mathrm{C}_{9} 3^{\mathrm{n}} \cdot 3^{9}}>1$ and $\frac{{ }^{\mathrm{n}} \mathrm{C}_{8} 3^{\mathrm{n}} \cdot 3^{8}}{{ }^{\mathrm{n}} \mathrm{C}_{7} 3^{\mathrm{n}} \cdot 3^{7}}>1$
and $\frac{{ }^{\mathrm{n}} \mathrm{C}_{8}}{{ }^{\mathrm{n}} \mathrm{C}_{7}}>\frac{1}{3}$
and $\frac{\mathrm{n}-7}{8}>\frac{1}{3}$
$\Rightarrow \frac{29}{3}<\mathrm{n}<11 \Rightarrow \mathrm{n}=10=\mathrm{n}_{0}$
So, in $(3+6 x)^{n}$ for $n=n_{0}=10$
i.e., in $(3+6 x)^{10}$, here $T_{r+1}={ }^{10} C_{r} 3^{10-r} 6^{r} x^{r}$
$\mathrm{T}_{7}={ }^{10} \mathrm{C}_{6} 3^{4} \cdot 6^{6} \cdot \mathrm{x}^{6}=210.3^{10} .2^{6} \mathrm{x}^{6}$
$\mathrm{T}_{4}={ }^{10} \mathrm{C}_{3} 3^{7} 6^{3} \mathrm{x}^{3}=120.3^{10} \cdot 2^{3} \mathrm{x}^{3}$
Ratio of coefficient of x^{6} and coefficient of $x^{3}=k$
$\therefore \mathrm{k}=\frac{210 \cdot 3 \cdot{ }^{10} 2^{6}}{120 \cdot 3^{10} \cdot 2^{3}}=\frac{7}{4} \times 2^{3}=14$
So, $\mathrm{k}+\mathrm{n}_{0}=14+10=24$
4. $\frac{2^{3}-1^{3}}{1 \times 7}+\frac{4^{3}-3^{3}+2^{3}-1^{3}}{2 \times 11}+$

$$
\begin{array}{r}
\frac{6^{3}-5^{3}+4^{3}-3^{3}+2^{3}-1^{3}}{3 \times 15}+\ldots . .+ \\
\frac{30^{3}-29^{3}+28^{3}-27^{3}+\ldots+2^{3}-1^{3}}{15 \times 63}
\end{array}
$$

is equal to \qquad _.
Official Ans. by NTA (120)
Allen Ans. (120)
Sol. $\mathrm{T}_{\mathrm{n}}=\frac{2 \sum_{\mathrm{r}=1}^{\mathrm{n}}(2 \mathrm{r})^{3}-\left(\sum_{\mathrm{r}=1}^{2 \mathrm{n}} \mathrm{r}^{3}\right)}{\mathrm{n}(4 \mathrm{n}+3)}$
$\Rightarrow \mathrm{T}_{\mathrm{n}}=\mathrm{n}$
So, $\sum_{\mathrm{n}=1}^{15} \mathrm{~T}_{\mathrm{n}}=120$
5. A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semivertical angle is $\tan ^{-1} \frac{3}{4}$. Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is \qquad -.
Official Ans. by NTA (5)
Allen Ans. (5)

$$
\begin{gathered}
\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi \mathrm{~h}^{3} \tan ^{2} \theta=\frac{9 \pi}{48} \mathrm{~h}^{3}=\frac{3 \pi}{16} \mathrm{~h}^{3} \\
\Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{3 \pi}{16} \cdot 3 \mathrm{~h}^{2} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}=6 \Rightarrow\left(\frac{\mathrm{dh}}{\mathrm{dt}}\right)_{\mathrm{h}=4}=\frac{2}{3 \pi} \mathrm{~m} / \mathrm{hr}
\end{gathered}
$$

Now, $S=\pi \mathrm{r} \ell=\frac{15}{16} \pi \mathrm{~h}^{2}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dt}}=\frac{15 \pi}{16} \cdot 2 \mathrm{~h} \frac{\mathrm{dh}}{\mathrm{dt}}$
$\Rightarrow\left(\frac{\mathrm{dS}}{\mathrm{dt}}\right)_{\mathrm{h}=4}=5 \mathrm{~m}^{2} / \mathrm{hr}$
6. For the curve $C:\left(x^{2}+y^{2}-3\right)+\left(x^{2}-y^{2}-1\right)^{5}=0$, the value of $3 y^{\prime}-y^{3} y^{\prime \prime}$, at the point $(\alpha, \alpha), \alpha>0$, on C , is equal to \qquad .

Official Ans. by NTA (16)

Allen Ans. (16)

Sol. (α, α) lies on
$C: x^{2}+y^{2}-3+x^{2}-y^{2}-1^{5}=0$
Put $(\alpha, \alpha), \quad 2 \alpha^{2}-3+-1^{5}=0$
$\Rightarrow \quad \alpha=\sqrt{2}$
Now, differentiate C
$2 x+2 y \cdot y^{\prime}+5\left(x^{2}-y^{2}-1\right)^{4}\left(2 x-2 y y^{\prime}\right)=0$
At $(\sqrt{2}, \sqrt{2})$
$\sqrt{2}+\sqrt{2} y^{\prime}+5(-1)^{4}\left(\sqrt{2}-\sqrt{2} y^{\prime}\right)=0$
$\Rightarrow y^{\prime}=\frac{3}{2}$
Diff. (1) w.r.t. x
Again, Diff. (1) w.r.t. x

$$
\begin{gathered}
1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}+20\left(x^{2}-y^{2}-1\right)^{3}\left(x-y y^{\prime}\right)^{2} .2 \\
+5\left(x^{2}-y^{2}-1\right)^{4}\left(1-\left(y^{\prime}\right)^{2}-y y^{\prime \prime}\right)=0
\end{gathered}
$$

$$
\text { At }(\sqrt{2}, \sqrt{2}) \text { and } y^{\prime}=\frac{3}{2}
$$

We have,

$$
\begin{aligned}
& \begin{aligned}
&\left(1+\frac{9}{4}\right)+\sqrt{2} y^{\prime \prime}-40\left(\sqrt{2}-\sqrt{2} \cdot \frac{3}{2}\right)^{2} \\
&+5(1)\left(1-\frac{9}{4}-\sqrt{2} y^{\prime \prime}\right)=0
\end{aligned} \\
& \Rightarrow 4 \sqrt{2} y^{\prime \prime}= \\
& -23 \\
& \therefore \quad 3 y^{\prime}-y^{3} y^{\prime \prime}=\frac{9}{2}+\frac{23}{2}=16
\end{aligned}
$$

7. $\operatorname{Let} f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$
where $[t]$ denotes the greatest integer $\leq \mathrm{t}$. Then
$\int_{0}^{10} f(x) d x+\int_{0}^{10}(f(x))^{2} d x+\int_{0}^{10}|f(x)| d x$ is equal to \qquad
Official Ans. by NTA (385)
Allen Ans. (385)
Sol. $f(x)=[x]-10$
$\int_{0}^{10} f(x) \cdot d x=-10-9-8-\ldots . .-1$
$=-\frac{10 \cdot 11}{2}=-55$
$\int_{0}^{10}(\mathrm{f}(\mathrm{x}))^{2} \mathrm{dx}=10^{2}+9^{2}+8^{2}+\ldots+1^{2}$
$=\frac{10 \cdot 11 \cdot 21}{6}=385$
$\int_{0}^{10}|\mathrm{f}(\mathrm{x})|=10+9+8+\ldots .+1$
$=\frac{10 \cdot 11}{2}=55$
$=-55+385+55=385$
8. Let f be a differentiable function satisfying $f(x)=\frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2} x}{3}\right) d \lambda, x>0$ and $f(1)=\sqrt{3}$. If $\mathrm{y}=\mathrm{f}(\mathrm{x})$ passes through the point $(\alpha, 6)$, then α is equal to \qquad .
Official Ans. by NTA (12)
Allen Ans. (12)
Sol. Let, $\frac{\lambda^{2} \mathrm{x}}{3}=\mathrm{t}$
$\Rightarrow \frac{2 \lambda \mathrm{x}}{3} \mathrm{~d} \lambda=\mathrm{dt}$
$\Rightarrow \mathrm{d} \lambda=\frac{3}{2} \cdot \frac{1 \sqrt{\mathrm{x}}}{\mathrm{x} \cdot \sqrt{3} \sqrt{\mathrm{t}}} \mathrm{dt}$
$\Rightarrow \mathrm{d} \lambda=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{\mathrm{x}}} \cdot \frac{\mathrm{dt}}{\sqrt{\mathrm{t}}}$
So, $f(x)=\frac{1}{\sqrt{x}} \int_{0}^{x} \frac{f(t)}{\sqrt{t}} d t$
$\Rightarrow \sqrt{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x})+\frac{\mathrm{f}(\mathrm{x})}{2 \sqrt{\mathrm{x}}}=\frac{\mathrm{f}(\mathrm{x})}{\sqrt{\mathrm{x}}}$
$\Rightarrow \sqrt{\mathrm{x}} \cdot \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})}{2 \sqrt{\mathrm{x}}}$
$\Rightarrow \frac{d y}{y}=\frac{d x}{2 x}$
$\Rightarrow \ln \mathrm{y}=\frac{1}{2} \ln \mathrm{x}+\mathrm{c} \Rightarrow \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
$\Rightarrow \mathrm{y}=\sqrt{3 \mathrm{x}} \quad\{$ as $\mathrm{f}(1)=\sqrt{3}\}$
So, $f(x)=\sqrt{3 x}$
Now, $f(\alpha)=6 \Rightarrow 36=3 \alpha$
$\Rightarrow \alpha=12$
9. A common tangent T to the curves $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ does not pass through the fourth quadrant. If T touches C_{1} at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and C_{2} at $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, then $\left|2 \mathrm{x}_{1}+\mathrm{x}_{2}\right|$ is equal to

Official Ans. by NTA (20)
Allen Ans. (20)

Sol. Let common tangents are
$\mathrm{T}_{1}: \mathrm{y}=\mathrm{mx} \pm \sqrt{4 \mathrm{~m}^{2}+9}$
\& $T_{2}: y=m x \pm \sqrt{42 m^{2}-13}$
So, $4 m^{2}+9=42 m^{2}-143$
$\Rightarrow 38 \mathrm{~m}^{2}=152$
$\Rightarrow \mathrm{m}= \pm 2$
$\& c= \pm 5$
For given tangent not pass through $4^{\text {th }}$ quadrant
$T: y=2 x+5$
Now, comparing with $\frac{\mathrm{xx}_{1}}{4}+\frac{\mathrm{yy}}{9} 9$
We get, $\frac{\mathrm{x}_{1}}{8}=-\frac{1}{5} \Rightarrow \mathrm{x}_{1}=-\frac{8}{5}$
$\frac{\mathrm{xx}_{2}}{42}-\frac{\mathrm{yy}_{2}}{143}=1$
$2 \mathrm{x}-\mathrm{y}=-5$ we have
$x_{2}=-\frac{84}{5}$
So, $\left|2 \mathrm{x}_{1}+\mathrm{x}_{2}\right|=\left|\frac{-100}{5}\right|=20$
10. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors such that

$$
\vec{a} \times \vec{b}=4 \vec{c}, \vec{b} \times \vec{c}=9 \vec{a} \text { and } \vec{c} \times \vec{a}=\alpha \vec{b}, \alpha>0
$$ If $|\vec{a}|+|\vec{b}|+|\vec{c}|=\frac{1}{36}$, then α is equal to \qquad .

Official Ans. by NTA (Drop)

Sol. $\vec{a} \times \vec{b}=4 \vec{c} \Rightarrow \vec{a} \cdot \vec{c}=0=\vec{b} \cdot \vec{c}$
$\vec{b} \times \vec{c}=9 \vec{a} \Rightarrow \vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$
$\therefore \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ are mutually \perp set of vectors.
$\Rightarrow|\vec{a}||\vec{b}|=4|\vec{c}|,|\vec{b}||\vec{c}|=9|\vec{a}| \&|\vec{c}||\vec{a}|=\alpha|\vec{b}|$
$\Rightarrow \frac{|\vec{a}|}{|\vec{c}|}=\frac{4}{9} \frac{|\vec{c}|}{|\vec{a}|}$
$\Rightarrow \frac{|\overrightarrow{\mathrm{c}}|}{|\overrightarrow{\mathrm{a}}|}=\frac{3}{2}$
\therefore If $|\mathrm{a}|=\lambda,|\mathrm{c}|=\frac{3 \lambda}{2} \&|\mathrm{~b}|=6$
Now $|\mathrm{a}|+|\mathrm{b}|+|\mathrm{c}|=\frac{1}{36}$
$\Rightarrow \frac{5}{2} \lambda+6=\frac{1}{36}, \lambda=\frac{-43}{18}=|a|$
which gives negative value of λ or $|a|$ which is NOT possible \& hence data seems to be wrong.

But if $|\overrightarrow{\mathbf{a}}|+|\overrightarrow{\mathbf{b}}|+|\overrightarrow{\mathbf{c}}|=36$
$\frac{5}{2} \lambda+6=36$
$\lambda=12$
$\alpha=\frac{|\vec{c}||\vec{a}|}{|\vec{b}|}=\frac{3 \times 12}{2} \times \frac{12}{6}$
$\alpha=36$

Allen Ans. (Bonus)

