FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Wednesday 27 ${ }^{\text {th }}$ July, 2022)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. Let R_{1} and R_{2} be two relations defined on \mathbb{R} by $a \mathrm{R}_{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then
(A) R_{1} is an equivalence relation but not R_{2}
(B) R_{2} is an equivalence relation but not R_{1}
(C) both R_{1} and R_{2} are equivalence relations
(D) neither R_{1} nor R_{2} is an equivalence relation

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $R_{1}=\{x y \geq 0, x, y \in R\}$
For reflexive $x \times x \geq 0$ which is true.
For symmetric
If $x y \geq 0 \Rightarrow y x \geq 0$
If $\mathrm{x}=2, \mathrm{y}=0$ and $\mathrm{z}=-2$
Then $x . y \geq 0 \& y . z \geq 0$ but $x . z \geq 0$ is not true
\Rightarrow not transitive relation.
$\Rightarrow R_{1}$ is not equivalence
R_{2} if $a \geq b$ it does not implies $b \geq a$
$\Rightarrow R_{2}$ is not equivalence relation
$\Rightarrow D$
2. Let $f, g: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$ be functions defined by $f(\mathrm{a})=\alpha$, where α is the maximum of the powers of those primes p such that p^{α} divides a, and $g(a)=a+1$, for all $a \in \mathbb{N}-\{1\}$. Then, the function $f+\mathrm{g}$ is
(A) one-one but not onto
(B) onto but not one-one
(C) both one-one and onto
(D) neither one-one nor onto

Official Ans. by NTA (D)
Allen Ans. (D)

TEST PAPER WITH SOLUTION

Sol. $\mathrm{f}: \mathrm{N}-\{1\} \rightarrow \mathrm{N} \quad \mathrm{f}(\mathrm{a})=\alpha$
Where α is max of powers of prime P such that p^{α} divides a. Also $\mathrm{g}(\mathrm{a})=\mathrm{a}+1$
$\therefore \quad \mathrm{f}(2)=1$
$\mathrm{g}(2)=3$
$\mathrm{f}(3)=1$
$\mathrm{g}(3)=4$
$\mathrm{f}(4)=2$
$\mathrm{g}(4)=5$
$\mathrm{f}(5)=1$
$g(5)=6$
$\Rightarrow \quad \mathrm{f}(2)+\mathrm{g}(2)=4$
$(f(3)+g(3))=5$
$\mathrm{f}(4)+\mathrm{g}(4)=7$
$\mathrm{f}(5)+\mathrm{g}(5)=7$
\therefore Many one $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ does not cotain 1
\Rightarrow into function
\therefore Ans. (D) [neither one-one nor onto]
3. Let the minimum value v_{0} of $v=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$, $z \in \mathbb{C}$ is attained at $\mathrm{z}=\mathrm{z}_{0}$. Then $\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$ is equal to
(A) 1000
(B) 1024
(C) 1105
(D) 1196

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\mathrm{z}_{0}=\left(\frac{0+3+0}{3}, \frac{0+6+0}{3}\right)=(1,2)$
$v_{0}=|1+2 i|^{2}+|1+2 i-3|^{2}+|1+2 i-6 i|^{2}=30$
Then $\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$
$=\left|2(1+2 i)^{2}-(1-2 i)^{3}+3\right|^{2}+900$
$=|2(1-4+4 i)-(1-4-4 i)(1-2 i)+3|^{2}+900$
$=|8+6 i|^{2}+900=100+900=1000$
4. Let $A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$. Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^{2}+\beta A=2 I$. Then $\alpha+\beta$ is equal to -
(A) -10
(B) -6
(C) 6
(D) 10

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. Characteristic equation of matric A
$|A-\lambda I|=0$
$\left|\begin{array}{cc}1-\lambda & 2 \\ -2 & -5-\lambda\end{array}\right|=0$
$\Rightarrow \lambda^{2}+4 \lambda=1$
$\Rightarrow A^{2}+4 A=I$
$\Rightarrow 2 \mathrm{~A}^{2}+8 \mathrm{~A}=2 \mathrm{I}$
Given that $\quad \alpha A^{2}+\beta A=2 I$ \qquad
Comparing equation (1) \& (2) we get
$\alpha=2, \quad \beta=8$
$\therefore \alpha+\beta=10$
Ans. (D) (10)
5. The remainder when $(2021)^{2022}+(2022)^{2021}$ is divided by 7 is
(A) 0
(B) 1
(C) 2
(D) 6

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\quad(2021)^{2022}+(2022)^{2021}$

$$
\begin{aligned}
& =(2023-2)^{2022}+(2023-1)^{2021} \\
& =7 n_{1}+2^{2022}+7 n_{2}-1 \\
& =7\left(n_{1}+n_{2}\right)+8^{674}-1 \\
& =7\left(n_{1}+n_{2}\right)+(7-1)^{674}-1
\end{aligned}
$$

$$
=7\left(n_{1}+n_{2}\right)+7 n_{3}+1-1
$$

$=7\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right)$
\therefore Given number is divisible by 7 hence remainder is zero
6. Suppose $a_{1}, a_{2}, \ldots ., a_{\mathrm{n}}, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110<a_{15}<$ 120, then the sum of the first ten terms of the progression is equal to -
(A) 290
(B) 380
(C) 460
(D) 510

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $\quad \frac{\mathrm{S}_{5}}{\mathrm{~S}_{9}}=\frac{5}{17} \Rightarrow \frac{\frac{5}{2}(2 a+4 d)}{\frac{9}{2}(2 a+8 d)}=\frac{5}{17}$
$\Rightarrow \mathrm{d}=4 \mathrm{a}$
$\mathrm{a}_{15}=\mathrm{a}+14 \mathrm{~d}=57 \mathrm{a}$
Now, $110<\mathrm{a}_{15}<120$
$\Rightarrow 110<57 \mathrm{a}<120$
$\Rightarrow \mathrm{a}=2 \therefore \mathrm{~d}=8$
$\mathrm{S}_{10}=\frac{10}{2}(2 \times 2+9 \times 8)=380$
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as
$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$, where $[t]$
is the greatest integer less than or equal to t. If $\lim _{x \rightarrow-1} f(x)$ exists, then the value of $\int_{0}^{4} f(x) d x$ is equal to :
(A) -1
(B) -2
(C) 1
(D) 2

Official Ans. by NTA (B)
$5<\mathrm{f}^{\prime}(\mathrm{x})<4 \sqrt{2}$
Sol. $\lim _{x \rightarrow-1^{+}} \operatorname{asin}\left(\pi \frac{[x]}{2}\right)+[2-x]=-a+2$
$\lim _{x \rightarrow-1^{-}} \operatorname{asin}\left(\pi \frac{[x]}{2}\right)+[2-x]=0+3=3$
$\lim _{x \rightarrow-1} f(x)$ exist when $a=-1$
Now,
$\int_{0}^{4} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{4} f(x) d x$
$=\int_{0}^{1}(0+1) \mathrm{dx}+\int_{1}^{2}(-1+0) \mathrm{dx}+\int_{2}^{3}(0-1) \mathrm{dx}+\int_{3}^{4}(1-2) \mathrm{dx}$
$=1-1-1-1=-2$
8. $\quad I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then
(A) $\frac{\pi}{2}<I<\frac{3 \pi}{4}$
(B) $\frac{\pi}{5}<I<\frac{5 \pi}{12}$
(C) $\frac{5 \pi}{12}<I<\frac{\sqrt{2}}{3} \pi$
(D) $\frac{3 \pi}{4}<I<\pi$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Consider
$\mathrm{f}(\mathrm{x})=8 \sin \mathrm{x}-\sin 2 \mathrm{x}$
$\mathrm{f}^{\prime}(\mathrm{x})=8 \sin \mathrm{x}-2 \cos 2 \mathrm{x}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=-8 \sin \mathrm{x}+4 \sin 2 \mathrm{x}$
$=-8 \sin x(1-\cos x)$
$\therefore \mathrm{f}^{\prime \prime}(\mathrm{x})<0 \mathrm{x} \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})$ is \downarrow function
$\mathrm{f}^{\prime}\left(\frac{\pi}{3}\right)<\mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)$
$5<\mathrm{f}^{\prime}(\mathrm{x})<\frac{8}{\sqrt{2}}$
$5 \mathrm{x}<\mathrm{f}(\mathrm{x})<4 \sqrt{2} \mathrm{x}$
$5<\frac{f(x)}{x}<4 \sqrt{2}$
$\int_{\pi / 4}^{\pi / 3} 5<\int \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}<\int_{\pi / 4}^{\pi / 3} 4 \sqrt{2}$
$\int_{\pi / 4}^{\pi / 3} 5<\int \frac{8 \sin x-\sin 2 x}{x}<\int_{\pi / 4}^{\pi / 3} 4 \sqrt{2}$
$\frac{5 \pi}{12}<\mathrm{I}<\frac{\sqrt{2} \pi}{3}$
9. The area of the smaller region enclosed by the curves $y^{2}=8 x+4$ and $x^{2}+y^{2}+4 \sqrt{3} x-4=0$ is equal to
(A) $\frac{1}{3}(2-12 \sqrt{3}+8 \pi)$
(B) $\frac{1}{3}(2-12 \sqrt{3}+6 \pi)$
(C) $\frac{1}{3}(4-12 \sqrt{3}+8 \pi)$
(D) $\frac{1}{3}(4-12 \sqrt{3}+6 \pi)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

$y^{2}=8 x+4$
Point of intersections are $(0,2) \&(0,-2)$
Both are symmetric about x -axis
Area $=2 \int_{0}^{2}\left(\sqrt{16-y^{2}}-2 \sqrt{3}\right)-\left(\frac{y^{2}-4}{8}\right) d y$
On solving Area $=\frac{1}{3}[8 \pi+4-12 \sqrt{3}]$
10. Let $\mathrm{y}=\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}=\mathrm{y}_{2}(\mathrm{x})$ be two distinct solutions of the differential equation $\frac{d y}{d x}=x+y$, with $\mathrm{y}_{1}(0)=0$ and $\mathrm{y}_{2}(0)=1$ respectively. Then, the number of points of intersection of $y=y_{1}(x)$ and $\mathrm{y}=\mathrm{y}_{2}(\mathrm{x})$ is
(A) 0
(B) 1
(C) 2
(D) 3

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\frac{d y}{d x}=x+y \Rightarrow \frac{d y}{d x}-y=x$
$1 \mathrm{f}=\mathrm{e}^{-\mathrm{x}}$
\therefore solution is $y e^{-x}=\int x e^{-x} d x$
$\Rightarrow y e^{-x}=-x e^{-x}-e^{-x}+c$
$\Rightarrow y=-x-1+c e^{x}$
$y_{1}(0)=0 \Rightarrow c=1$
$\therefore y_{1}=-x-1+e^{x}$
$\mathrm{y}_{2}(0)=1 \Rightarrow \mathrm{c}=2$
$\therefore y_{2}=-x-1+2 e^{x}$
Now $y_{2}-y_{1}=e^{x}>0 \therefore y_{2} \neq y_{1}$
\therefore Number of points of intersection of $\mathrm{y}_{1} \& \mathrm{y}_{2}$ is zero.
11. Let $\mathrm{P}(a, \mathrm{~b})$ be a point on the parabola $\mathrm{y}^{2}=8 \mathrm{x}$ such that the tangent at P passes through the centre of the circle $x^{2}+y^{2}-10 x-14 y+65=0$. Let A be the product of all possible values of a and B be the product of all possible values of b. Then the value of $A+B$ is equal to :
(A) 0
(B) 25
(C) 40
(D) 65

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $P(a, b)$ is point on $y^{2}=8 x$, such that tangent at P pass through centre of $x^{2}+y^{2}-10 x-14 y+65=0$ i.e. $(5,7)$

Tangent at $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}$
$\mathrm{A}=2 \&$ it pass through $(5,7)$
$7 \mathrm{t}=5+2 \mathrm{t}^{2}$
$\Rightarrow t=1, t=\frac{5}{2}$
$\therefore P\left(a t^{2}, 2 a t\right) \Rightarrow(2,4)$ when $\mathrm{t}=1$
$\&\left(\frac{25}{2}, 10\right)$ when $t=\frac{5}{2}$
$\therefore A=2 \times \frac{25}{2}=25$
$B=4 \times 10=40$
$\therefore A+B=65$
12. Let $\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}$ and $\vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$ be two vectors, such that $\vec{a} \times \vec{b}=-\hat{i}+9 \hat{i}+12 k$. Then the projection of $\vec{b}-2 \vec{a}$ on $\vec{b}+\vec{a}$ is equal to
(A) 2
(B) $\frac{39}{5}$
(C) 9
(D) $\frac{46}{5}$

Official Ans. by NTA (Drop)
Allen Ans. (Bonus)
Sol. Let $\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$
$\vec{a} \times \vec{b}=-\hat{i}+9 \hat{j}+12 \hat{k}$
$\Rightarrow\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & 1 & \beta \\ 3 & -5 & 4\end{array}\right|$
$\Rightarrow(4+5 \beta) \hat{i}+(3 \beta-4 \alpha) \hat{j}+(-5 \alpha-3) \hat{k}$
$=-\hat{i}+9 \hat{j}+12 \hat{k}$
$\therefore 4+5 \beta=-1,3 \beta-4 \alpha=9,-5 \alpha-3=12$
$\beta=-1, \quad \alpha=-3$
$\therefore \vec{a}=-3 \hat{i}+\hat{j}-\hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$
$\therefore \vec{a}+\vec{b}=-4 \hat{j}+3 \hat{k}$
$|\vec{a}|^{2}=11,|\vec{b}|^{2}=50$
$\vec{a} \cdot \vec{b}=-9+(-5)-4=-18$
\therefore Projectile of $(\vec{b}-2 \vec{a})$ on $\vec{a}+\vec{b}$ is
$\frac{(\vec{b}-2 \vec{a}) \cdot(\vec{a}+\vec{b})}{|\vec{a}+\vec{b}|}$
$=\frac{|\vec{b}|^{2}-2|\vec{a}|^{2}-(\vec{a} \cdot \vec{b})}{|\vec{a}+\vec{b}|}=\frac{50-22-(-18)}{5}=\frac{46}{5}$
Ans. $\left(\frac{46}{5}\right)$
13. Let $\vec{a}=2 \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k}$. If $((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2}$, then $|\vec{b} \times 2 \hat{j}|$ is equal to
(A) 4
(B) 5
(C) $\sqrt{21}$
(D) $\sqrt{17}$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\vec{a}=2 \hat{i}-\hat{j}+5 \hat{k}, \vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k}$
$((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2}$, then $|\vec{b} \times 2 \hat{j}|$ is
$((\vec{a} \cdot \hat{i}) \vec{b}-(\vec{b} \cdot \hat{i}) \vec{a}) \cdot \hat{k}=\frac{23}{2}$
$(\vec{a} . \hat{i})(\vec{b} \cdot \hat{i})-(\vec{b} . \hat{i})(\vec{a} . \hat{k})=\frac{23}{2}$
$2 \times 2-\alpha \times 5=\frac{23}{2} \Rightarrow 5 \alpha=4-\frac{23}{2} \Rightarrow \alpha=\frac{-3}{2}$
$\vec{b} \times 2 \hat{j}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & \beta & 2 \\ 0 & 2 & 0\end{array}\right|=-4 \hat{i}+2 \alpha \hat{k}$
$\therefore|\vec{b} \times 2 \hat{j}|=\sqrt{16+4 \alpha^{2}}=\sqrt{16+4 \times \frac{9}{4}}=5$
14. Let S be the sample space of all five digit numbers. If p is the probability that a randomly selected number from S , is a multiple of 7 but not divisible by 5 , then $9 p$ is equal to
(A) 1.0146
(B) 1.2085
(C) 1.0285
(D) 1.1521

Official Ans. by NTA (C)

Allen Ans. (C)
Sol. $n(S)=$ all 5 digit nos $=9 \times 10^{4}$
A : no is multiple of 7 but not divisible by 5
Smallest 5 digit divisible by 7 is 10003
Largest 5 digit divisible by 7 is 99995
$\therefore 99995=10003+(n-1) 7 \quad n=12857$
Numbers divisible by 35
$99995=10010+(\mathrm{P}-1) 35 \Rightarrow \mathrm{P}=2572$
\therefore Numbers divisible by 7 but not by 35 are

$$
12857-2572=10285
$$

$\therefore \mathrm{P}=\frac{10285}{90000} \quad \therefore 9 \mathrm{P}=1.0285$
Ans. (C) [1.0285]
15. Let a vertical tower $A B$ of height $2 h$ stands on a horizontal ground. Let from a point P on the ground a man can see upto height h of the tower with an angle of elevation 2α. When from P, he moves a distance d in the direction of $\overrightarrow{A P}$, he can see the top B of the tower with an angle of elevation α. If $d=\sqrt{7} h$, then $\tan \alpha$ is equal to
(A) $\sqrt{5}-2$
(B) $\sqrt{3}-1$
(C) $\sqrt{7}-2$
(D) $\sqrt{7}-\sqrt{3}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

$$
\tan 2 \alpha=\frac{h}{x}
$$

and $\tan \alpha=\frac{2 h}{x+\sqrt{7} h}$
$\tan \alpha=\frac{2 h}{h \cot 2 \alpha+\sqrt{7} h}$
$\tan \alpha=\frac{2}{\frac{\left(1-\tan ^{2} \alpha\right)}{2 \tan \alpha}+\sqrt{7}}$
Put $\tan \alpha=t \&$ simplify
$\Rightarrow \tan \alpha=\sqrt{7}-2$
16. $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when r is
(A) p
(B) $\sim p$
(C) q
(D) $\sim q$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Given $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right) \equiv(\sim p)$
Taking $\mathrm{r}=\mathrm{q}$

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p}^{\wedge} \mathrm{q}$	$\mathrm{P}^{\wedge} \sim \mathrm{q}$	$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	F	T
F	F	T	T	F	F	T

So, clear $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right) \equiv(\sim p)$
17. If the plane P passes through the intersection of two mutually perpendicular planes $2 \mathrm{x}+\mathrm{ky}-5 \mathrm{z}=$ 1 and $3 \mathrm{kx}-\mathrm{ky}+\mathrm{z}=5, \mathrm{k}<3$ and intercepts a unit length on positive x-axis, then the intercept made by the plane P on the y -axis is
(A) $\frac{1}{11}$
(B) $\frac{5}{11}$
(C) 6
(D) 7

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Two given planes mutually perpendicular
$2(3 \mathrm{k})+\mathrm{k}(-\mathrm{k})+(-5) 1=0$
$\mathrm{k}=1,5$
but $\mathrm{k}<3$

$$
\text { So } \mathrm{k}=1
$$

Plane passing through these planes is
$2 x+y-5 z-1+\lambda(3 x-y+z-5)=0$
$\frac{x}{\frac{5 \lambda+1}{2+3 \lambda}}+\frac{y}{\frac{5 \lambda+1}{1-\lambda}}+\frac{z}{\frac{5 \lambda+1}{\lambda-5}}=1$
Given $\frac{5 \lambda+1}{2+3 \lambda}=1 \Rightarrow \lambda=\frac{1}{2}$
So intercept on $\mathrm{y}-$ axis $=\frac{5 \lambda+1}{1-\lambda}=7$
18. Let $\mathrm{A}(1,1), \mathrm{B}(-4,3) \mathrm{C}(-2,-5)$ be vertices of a triangle ABC, P be a point on side BC , and Δ_{1} and Δ_{2} be the areas of triangle APB and ABC . Respectively.
If $\Delta_{1}: \Delta_{2}=4: 7$, then the area enclosed by the lines AP, AC and the x -axis is
(A) $\frac{1}{4}$
(B) $\frac{3}{4}$
(C) $\frac{1}{2}$
(D) 1

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

Given $\Delta_{1}=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 1 & 1 & 1 \\ -4 & 3 & 1\end{array}\right|$
$\& \Delta_{2}=\frac{1}{2}\left|\begin{array}{ccc}1 & 1 & 1 \\ -4 & 3 & 1 \\ -2 & -5 & 1\end{array}\right|$
Given $\frac{\Delta_{1}}{\Delta_{2}}=\frac{4}{7} \Rightarrow \frac{-2 x-5 y+7}{36}=\frac{4}{7}$
$\Rightarrow 14 x+35 y=-95$
Equation of $B C$ is $4 x+y=-13$
Solve equation (1) \& (2)
Point $P\left(\frac{-20}{7}, \frac{-11}{7}\right)$
Here point $Q\left(\frac{-1}{2}, 0\right) \& R\left(\frac{1}{2}, 0\right)$
So Area of triangle $\mathrm{AQR}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
19. If the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{gx}+6 \mathrm{y}-19 \mathrm{c}=0, \mathrm{~g}, c \in \mathbb{R}$ passes through the point $(6,1)$ and its centre lies on the line $x-2 c y=8$, then the length of intercept made by the circle on x -axis is
(A) $\sqrt{11}$
(B) 4
(C) 3
(D) $2 \sqrt{23}$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Given circle $x^{2}+y^{2}-2 g x+6 y-19 c=0$
Passes through $(6,1)$
$12 g+19 \mathrm{c}=43$
Centre ($\mathrm{g},-3$) lies on given line
So, $g+6 c=8$
Solve equation (1) \& (2)
$\mathrm{c}=1 \& \mathrm{~g}=2$
equation of circle $x^{2}+y^{2}-4 x+6 y-19=0$
Length of intercept on x -axis
$=2 \sqrt{g^{2}-c}=2 \sqrt{23}$
20. Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as :
$f(x)= \begin{cases}\int_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x, & x \leq 4\end{cases}$
where $b \in \mathbb{R}$. If f is continuous at $\mathrm{x}=4$, then which of the following statements is NOT true ?
(A) f is not differentiable at $\mathrm{x}=4$
(B) $f^{\prime}(3)+f^{\prime}(5)=\frac{35}{4}$
(C) f is increasing in $\left(-\infty, \frac{1}{8}\right) \cup(8, \infty)$
(D) f has a local minima at $x=\frac{1}{8}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Given $f(x) \begin{cases} \begin{cases}x \\ 0 & \\ 0 & \\ \left.x^{2}+b x-|t-3|\right) d t, & x>4\end{cases} \end{cases}$
$f(x)$ is continuous at $x=4$
So $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=f(4)$
So $16+4 \mathrm{~b}=\int_{0}^{3}(2-t) d t+\int_{3}^{4}(8-t) d t$
$\Rightarrow 16+4 b=15$
So $b=\frac{-1}{4}$

At $\mathrm{x}=4$
LHD $=2 \mathrm{x}+\mathrm{b}=\frac{31}{4}$
RHD $=5-|x-3|=4$
LHD \neq RHD
Option (A) is true
and $\mathrm{f}^{\prime}(3)+\mathrm{f}^{\prime}(5)=\frac{23}{4}+3=\frac{35}{4}$
Option (B) is true
$\because f(x)=x^{2}-\frac{x}{4}$ at $x \leq 4$
$f^{\prime}(x)=2 x-\frac{1}{4}$
This function is not increasing.
In the interval in $x \in\left(-\infty, \frac{1}{8}\right)$
Option (C) is NOT TRUE.
This function $\mathrm{f}(\mathrm{x})$ is also local minima at $x=\frac{1}{8}$

SECTION-B

1. For $k \in \mathbb{R}$, let the solutions of the equation $\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$ be α and β, where the inverse trigonometric functions take only principal values. If the solutions of the equation $x^{2}-b x-5=0$ are $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^{2}}$ is equal to \qquad .

Official Ans. by NTA (12)

Allen Ans. (12)
Sol. $\cos \left(\sin ^{-1} x\right)=\cos \left(\cos ^{-1} \sqrt{1-x^{2}}\right)=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \cot \left(\tan ^{-1} \sqrt{1-x^{2}}\right)=\cot \cot ^{-1}\left(\sqrt{\frac{1}{\sqrt{1-x^{2}}}}\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \Rightarrow \cos \left(\sin ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)\right)=\frac{\sqrt{1-2 x^{2}}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$\Rightarrow \frac{\sqrt{1-2 x^{2}}}{\sqrt{1-x^{2}}}=k$
$\Rightarrow 1-2 x^{2}=k^{2}\left(1-x^{2}\right)$
$\Rightarrow\left(k^{2}-2\right) x^{2}=k^{2}-1$
$x^{2}=\frac{k^{2}-1}{k^{2}-2}$
$\alpha=\sqrt{\frac{k^{2}-1}{k^{2}-2}} \Rightarrow \alpha^{2}=\frac{k^{2}-1}{k^{2}-2}$
$\beta=\sqrt{\frac{k^{2}-1}{k^{2}-2}} \Rightarrow \beta^{2}=\frac{k^{2}-1}{k^{2}-2}$
$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=2\left(\frac{k^{2}-2}{k^{2}-1}\right) \& \frac{\alpha}{\beta}=-1$
Sum of roots $=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{\alpha}{\beta}=b$
$\Rightarrow \frac{2\left(k^{2}-2\right)}{k^{2}-1}-1=b$
Product of roots $=\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\right) \frac{\alpha}{\beta}=-5$
$\Rightarrow \frac{2\left(k^{2}-2\right)}{k^{2}-1}(-1)=-5$
$\Rightarrow 2 k^{2}-4=5 k^{2}-5$
$\Rightarrow 3 k^{2}=1 \Rightarrow k^{2}=\frac{1}{3} \ldots$ Put in (1)
$\Rightarrow b=\frac{2\left(k^{2}-2\right)}{k^{2}-1}-1=5-1=4$
$\frac{b}{k^{2}}=\frac{4}{\frac{1}{3}}=12$
2. The mean and variance of 10 observations were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is \qquad .

Official Ans. by NTA (2)

Allen Ans. (2)
Sol. $\mathrm{n}=10, \bar{x}=\frac{\sum x_{i}}{10}=15$
$6^{2}=\frac{\sum x_{i}^{2}}{10}-(\bar{x})^{2}=15$
$\Rightarrow \sum_{i=1}^{10} x_{i}=150$
$\Rightarrow \sum_{i=1}^{9} x_{i}+25=150$
$\Rightarrow \sum_{i=1}^{9} x_{i}=125$
$\Rightarrow \sum_{i=1}^{9} x_{i}+15=140$
Actual mean $=\frac{140}{10}=14=\bar{x}_{\text {new }}$
$\sum_{i=1}^{9} \frac{x_{i}^{2}+25^{2}-15^{2}}{10}=15$
$\Rightarrow \sum_{i=1}^{9} x_{i}^{2}+625=2400$
$\sum_{i=1}^{9} x_{i}^{2}=1775$
$\sum_{i=1}^{9} x_{i}^{2}+15^{2}=2000=\left(\sum x_{i}^{2}\right)_{\text {actual }}$
$6_{\text {actual }}^{2}=\frac{\left(\sum x_{i}^{2}\right)_{\text {actual }}-\left(\bar{x}_{\text {new }}\right)^{2}}{10}$
$=\frac{2000}{10}-14^{2}$
$=200-196=4$
(S.D) $)_{\text {actual }}=6=2$
3. Let the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$ intersect the plane containing the lines $\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$ and $4 a x-y+5 z-7 a=0=2 \mathrm{x}-5 \mathrm{y}-\mathrm{z}-3, a \in \mathbb{R}$ at
the point $P(\alpha, \beta, \gamma)$. Then the value of $\alpha+\beta+\gamma$ equals \qquad .
Official Ans. by NTA (12)
Allen Ans. (12)
Sol. Equation of plane
$4 a x-y+5 z-7 a+\lambda(2 \mathrm{x}-5 \mathrm{y}-\mathrm{z}-3)=0$
this satisfy $(4,-1,0)$
$16 a+1-7 a+\lambda(8+5-3)=0$
$9 a+1+10 \lambda=0$
Normal vector of the plane A is $(4 a+2 \lambda,-1-5 \lambda, 5-\lambda)$ vector along the line which contained the plane A is
i $-2 \mathrm{j}+\mathrm{k}$
$\therefore 4 a+2 \lambda+2+10 \lambda+5-\lambda=0$
$11 \lambda+4 a+7=0$
Solve (1) and (2) to get $\mathrm{a}=1, \lambda=-1$
Now equation of plane
$x+2 y+3 z-2=0$
Let the point in the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}=t$
is $(7 t+3,-t+2,-4 t+3)$ satisfy the equation of plane A
$7 \mathrm{t}+3-2 \mathrm{t}+4+9-12 \mathrm{t}-2=0$
$\mathrm{t}=2$
So $\alpha+\beta+\gamma=2 t+8=12$
4. An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H . Let the product of the eccentricities
of E and H be $\frac{1}{2}$. If l is the length of the latus rectum of the ellipse E , then the value of $113 l$ is equal to \qquad —.

Official Ans. by NTA (1552)
Allen Ans. (1552)
Sol. Hyp : $\frac{y^{2}}{64}-\frac{x^{2}}{49}=1$
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$.

So $b^{2}=64$
$e_{H}=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{49}{64}}$
Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$e_{E}=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{a^{2}}{64}}$
$b=8, \sqrt{\frac{1-a^{2}}{64}} \times \frac{\sqrt{113}}{8}=\frac{1}{2} \Rightarrow \sqrt{64-a^{2}} \times \sqrt{113}=32$
$\left(64-a^{2}\right)=\frac{32^{2}}{113}$
$\Rightarrow a^{2}=64-\frac{32^{2}}{113}$
$l=\frac{2 a^{2}}{b}=\frac{2}{8}\left(64-\frac{32^{2}}{113}\right)=\frac{1552}{113}$

$$
113 l=1552
$$

5. Let $y=y(x)$ be the solution curve of the differential equation
$\sin \left(2 x^{2}\right) \log _{e}\left(\tan x^{2}\right) d y+\left(4 x y-4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)\right) d x=0$,
$0<x<\sqrt{\frac{\pi}{2}}$, which passes through the point
$\left(\sqrt{\frac{\pi}{6}}, 1\right)$. Then $\left|y\left(\sqrt{\frac{\pi}{3}}\right)\right|$ is equal to \qquad -.

Official Ans. by NTA (1)
Allen Ans. (1)
Sol.
$\sin \left(2 x^{2}\right) \ln \left(\tan x^{2}\right) d y+\left(4 x y-4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)\right) d x=0$
$\ln \left(\tan x^{2}\right) d y+\frac{4 x y d x}{\sin \left(2 x^{2}\right)}-\frac{4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)}{\sin \left(2 x^{2}\right)} d x=0$
$d\left(y \cdot \ln \left(\tan x^{2}\right)\right)-4 \sqrt{2} x \frac{\left(\sin x^{2}-\cos x^{2}\right)}{\sqrt{2}-2 \sin x^{2} \cos x^{2}} d x=0$
$d\left(y \ln \left(\tan x^{2}\right)\right)-\frac{4 x\left(\sin x^{2}-\cos x^{2}\right)}{\left(\sin x^{2}+\cos ^{2}\right)-1} d x=0$
$\Rightarrow \int d\left(y \ln \left(\tan x^{2}\right)\right)+2 \int \frac{d t}{t^{2}-1}=\int 0$
$\Rightarrow y \ln \left(\tan x^{2}\right)+2 \cdot \frac{1}{2} \ln \left|\frac{t-1}{t+1}\right|=c$

$$
y \ln \left(\tan x^{2}\right)+\ln \left(\frac{\sin x^{2}+\cos x^{2}-1}{\sin x^{2}+\cos x^{2}+1}\right)=c
$$

Put $\mathrm{y}=1$ and $x=\sqrt{\frac{\pi}{6}}$
$1 \ln \left(\frac{1}{\sqrt{3}}\right)+\ln \frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}-1\right)}{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}+1\right)}=c$
Now $x=\sqrt{\frac{\pi}{3}} \Rightarrow y(\ln \sqrt{3})+\ln \frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}-1\right)}{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}+1\right)}=\ln \left(\frac{1}{\sqrt{3}}\right)+\ln \left(\frac{\sqrt{3}-1}{\sqrt{3}+3}\right)$
$y(\ln \sqrt{3})=\ln \left(\frac{1}{\sqrt{3}}\right)$
$\Rightarrow y=-1$
$|y|=1$
6. Let M and N be the number of points on the curve $y^{5}-9 x y+2 x=0$, where the tangents to the curve are parallel to x-axis and y-axis, respectively. Then the value of $\mathrm{M}+\mathrm{N}$ equals \qquad .

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\mathrm{y}^{5}-9 \mathrm{xy}+2 \mathrm{x}=0$
$5 y^{4} \frac{d y}{x}-9 x \frac{d y}{d x}-9 y+2=0$
$\frac{d y}{d x}\left(5 y^{4}-9 x\right)=9 y-2$
$\frac{d y}{d x}=\frac{9 y-2}{5 y^{4}-9 x}=0$ (for horizontal tangent)
$y=\frac{2}{9} \Rightarrow$ Which does not satisfy the original equation $\Rightarrow \mathrm{M}=0$.
Now $5 y^{4}-9 x=0$ (for vertical tangent)
$5 y^{4}(9 y-2)-9 y^{5}=0$
$y^{4}[45 y-10-9 y]=0$
$\mathrm{y}=0(\mathrm{Or}) 36 \mathrm{y}=10$
$y=\frac{5}{18}$
$y=0 \Rightarrow x=0 \& y=\frac{5}{18} \Rightarrow x=$
$(0,0) \quad\left(x, \frac{5}{18}\right)$
$\mathrm{N}=2$
$\mathrm{M}+\mathrm{N}=0+2=2$
7. Let $f(x)=2 x^{2}-x-1$
and
$S=\{n \in \mathbb{Z}:|f(n)| \leq 800\}$. Then, the value of $\sum_{n \in S} f(n)$ is equal to \qquad -

Official Ans. by NTA (10620)

Allen Ans. (10620)
Sol. $f(x)=2 x^{2}-x-1$
$|\mathrm{f}(\mathrm{x})| \leq 800$
$2 n^{2}-n-801 \leq 0$
$n^{2}-\frac{1}{2} n-\frac{801}{2} \leq 0$
$\left(n-\frac{1}{4}\right)^{2}-\frac{801}{2}-\frac{1}{16} \leq 0$
$\left(n-\frac{1}{4}\right)^{2}-\frac{6409}{16} \leq 0$
$\left(n-\frac{1}{4}-\frac{\sqrt{6409}}{4}\right)\left(n-\frac{1}{4}+\frac{\sqrt{6409}}{16}\right) \leq 0$
$\frac{1-\sqrt{6409}}{4} \leq n \leq \frac{1+\sqrt{6409}}{4}$
$n=\{-19,-18-17, \ldots \ldots . .0,1,2, \ldots \ldots, 20\}$
$\sum_{n \in S} f(x)=\sum\left(2 x^{2}-x-1\right)$
$=2\left[19^{2}+18^{2}+\ldots . .+1^{2}+1^{2}+2^{2}+\ldots .+19^{2}+20^{2}\right]$
$=4\left[1^{2}+2^{2}+\ldots . .+19^{2}\right]+2\left[20^{2}\right]-20-40$
$=\frac{4 \times 19 \times 20 \times(2 \times 19+1)}{6}+2 \times 400-60$
$=\frac{4 \times 19 \times 20 \times 39}{6}+800-60-9880+800-60$
$=10620$
8. Let S be the set containing all 3×3 matrices with entries from $\{-1,0,1\}$. The total number of matrices $\mathrm{A} \in S$ such that the sum of all the diagonal elements of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is 6 is \qquad .

Official Ans. by NTA (5376)

Allen Ans. (5376)
Sol. $\quad \operatorname{Tr}\left(A A^{T}\right)=6$
$\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
Now given $a^{2}+d^{2}+g^{2}+b^{2}+e^{2}+h^{2}+c^{2}+f^{2}+i^{2}=6$
$={ }^{9} C_{3} \times 2^{6}$
$=5376$
9. If the length of the latus rectum of the ellipse $x^{2}+$ $4 \mathrm{y}^{2}+2 \mathrm{x}+8 \mathrm{y}-\lambda=0$ is 4 , and l is the length of its major axis, then $\lambda+l$ is equal to \qquad _.

Official Ans. by NTA (75)
Allen Ans. (75)
Sol. $\lambda+\ell=75$

$$
\begin{aligned}
& x^{2}+4 y^{2}+2 x+8 y-\lambda=0 \\
& \frac{(x+1)^{2}}{\lambda+5}+\frac{(y+1)^{2}}{\frac{\lambda+5}{4}}=1 \\
& \because \frac{2 b^{2}}{a}=4 \\
& \frac{2(\lambda+5)}{4}=4(\sqrt{\lambda+5}) \\
& \Rightarrow \lambda=59 \\
& \lambda \neq-5 \\
& l=2 a=2 \sqrt{\lambda+5}=2 \sqrt{65}=16 \\
& \Rightarrow \lambda+\ell=59+16=75
\end{aligned}
$$

10. Let $S=\left\{z \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$. Then $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to \qquad .

Official Ans. by NTA (0)

Allen Ans. (0)
Sol. $S=\left\{z \in C: z^{2}+\bar{z}=0\right\}$
Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\mathrm{z}^{2}=\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{ixy}$
$\bar{z}=x-i y$
$z^{2}+\bar{z}=x^{2}-y^{2}+x+i(2 x y-y)=0$
$\Rightarrow x^{2}+x-y^{2}=0 \& 2 x y-y=0$
$y=0$ or $x=\frac{1}{2}$
If $y=0 ; x=0,-1$
If $x=\frac{1}{2} ; y=\frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2}$
$\sum_{z \in S}\left(\operatorname{Re}(z)+\operatorname{Im}(z)=\left(0-1+\frac{1}{2}+\frac{1}{2}\right)+0+0+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)$

