FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Tuesday 28 ${ }^{\text {th }}$ June, 2022)
TIME: 3: 00 PM to 6: 00 PM

CHEMISTRY

SECTION-A

1. Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is,

Given : Atomic masses of C, H and N are 12, 1 and 14 amu respectively.

The molar mass of the compound A is $162 \mathrm{~g} \mathrm{~mol}^{-1}$.
(A) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}$
(B) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
(C) $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
(D) $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$

Official Ans. by NTA (D)
Allen Ans. (D)

Sol.

C	74%	$\frac{74}{12}=6.16$	$\frac{6.16}{1.23}=5$
N	17.3%	$\frac{17.3}{14}=1.23$	$\frac{1.23}{1.23}=1$
H	8.7%	$\frac{8.7}{1}=8.7$	$\frac{8.7}{1.23}=7$

Emperical formula $=\mathrm{C}_{5} \mathrm{NH}_{7}$
Emperical weight $=81$
Multiplying factor $=\frac{162}{81}=2$
Molecular formula $=\mathrm{C}_{10} \mathrm{~N}_{2} \mathrm{H}_{14}$
2. Consider the following statements :
(A) The principal quantum number ' n ' is a positive integer with values of ' n ' $=1,2,3, \ldots$.
(B) The azimuthal quantum number ' l ' for a given ' n ' (principal quantum number) can have values as $' l '=0,1,2, \ldots . n$
(C) Magnetic orbital quantum number ' m ' for a particular ' l ' (azimuthal quantum number) has ($2 l$ $+1)$ values.

TEST PAPER WITH SOLUTION

(D) $\pm 1 / 2$ are the two possible orientations of electron spin.
(E) For $l=5$, there will be a total of 9 orbital.

Which of the above statements are correct?
(A) (A), (B) and (C)
(B) (A), (C), (D) and (E)
(C) (A), (C) and (D)
(D) (A), (B), (C) and (D)

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. (A) Number of values of $\mathrm{n}=1,2,3 \ldots \infty$
(B) Number of values of $\ell=0$ to $(\mathrm{n}-1)$
(C.) Number of values of $m=-\ell$ to $+\ell$

Total values $=2 \ell+1$
(D) Values of spin $= \pm \frac{1}{2}$
(E) For $\ell=5$ number of orbitals $=2 \ell+1=11$
3. In the structure of SF_{4}, the lone pair of electrons on S is in.
(A) equatorial position and there are two lone pairbond pair repulsions at 90°
(B) equatorial position and there are three lone pair-bond pair repulsions at 90°
(C) axial position and there are three lone pair bond pair repulsion at 90°.
(D) axial position and there are two lone pair bond pair repulsion at 90°.

Official Ans. by NTA (A)
Allen Ans. (A)
$]^{\circledR}$
CAREER INSTITUTE

Sol.

sp 3 d, See-Saw
4. A student needs to prepare a buffer solution of propanoic acid and its sodium salt with pH 4 . The ratio of $\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$ required to make buffer is \qquad
Given : $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)=1.3 \times 10^{-5}$
(A) 0.03
(B) 0.13
(C) 0.23
(D) 0.33

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$4=5-\log 1.3+\log \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$
$\log \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}=\log 1.3-1=\log \frac{1.3}{10}$
$\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}=0.13$
5. Match List-I with List-II.

List-I		List-II	
(A)	Negatively charged sol	(I)	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
(B)	Macromolecular colloid	(II)	CdS sol
(C)	Positively charged sol	(III)	Starch
(D)	Cheese	(IV)	a gel

Choose the correct answer from the options given below:
(A) (A) - (II), (B) - (III), (C) - (IV), (D) - (I)
(B) (A) - (II), (B) - (I), (C) - (III), (D) - (IV)
(C) (A) - (II), (B) - (III), (C) - (I), (D) - (IV)
(D) (A) - (I), (B) - (III), (C) - (II), (D) - (IV)

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Negative charged sol = CdS (II)
Macromolecular colloid $=$ starch (III)
Positively charged sol $=\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ (I)
Cheese $=$ gel (IV)
6. Match List-I with List-II.

List-I (Oxide)		List-II (Nature)	
(A)	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	(I)	Amphoteric
(B)	$\mathrm{Na}_{2} \mathrm{O}$	(II)	Basic
(C)	$\mathrm{Al}_{2} \mathrm{O}_{3}$	(III)	Neutral
(D)	$\mathrm{N}_{2} \mathrm{O}$	(IV)	Acidic

Choose the correct answer from the options given below :
(A) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)
(B) (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
(C) (A) - (II), (B) - (IV), (C) - (III), (D) - (I)
(D) (A) - (I), (B) - (II), (C) - (IIII), (D) - (IV)

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ Acidic
$\mathrm{Na}_{2} \mathrm{O} \quad$ Basic
$\mathrm{Al}_{2} \mathrm{O}_{3} \quad$ Amphoteric
$\mathrm{N}_{2} \mathrm{O} \quad$ Neutral
7. In the metallurgical extraction of copper, following reaction is used :
$\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$
FeO and FeSiO_{3} respectively are.
(A) gangue and flux
(B) flux and slag
(C) slag and flux
(D) gangue and slag

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\quad \mathrm{FeO}=$ Gangue
$\mathrm{FeSiO}_{3}=$ Slag
8. Hydrogen has three isotopes : protium $\left({ }^{1} \mathrm{H}\right)$, deuterium (${ }^{2} \mathrm{H}$ or D) and tritium (${ }^{3} \mathrm{H}$ or T). They have nearly same chemical properties but different physical properties. They differ in
(A) number of protons
(B) atomic number
(C) electronic configuration
(D) atomic mass

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. They have different neutrons and mass number
9. Among the following basic oxide is :
(A) SO_{3}
(B) SiO_{2}
(C) CaO
(D) $\mathrm{Al}_{2} \mathrm{O}_{3}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\mathrm{SO}_{3}, \mathrm{SiO}_{2}=$ Acidic
$\mathrm{CaO}=$ Basic
$\mathrm{Al}_{2} \mathrm{O}_{3}=$ Amphoteric
10. Among the given oxides of nitrogen; $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}$, $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$, the number of compound/(s) having $\mathrm{N}-\mathrm{N}$ bond is :
(A) 1
(B) 2
(C) 3
(D) 4

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

$$
\mathrm{N}_{2} \mathrm{O}_{5}
$$

11. Which of the following oxoacids of sulphur contains " S " in two different oxidation states?
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(D) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Official Ans. by NTA (A)
Allen Ans. (A)

Sol.

$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

12. Correct statement about photo-chemical smog is :
(A) It occurs in humid climate.
(B) It is a mixture of smoke, fog and SO_{2}
(C) It is reducing smog.
(D) It results from reaction of unsaturated hydrocarbons.

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Photo chemical smog results from the action of sunlight on unsaturated hydro carbons and nitrogen oxide
13. The correct IUPAC name of the following compound is :

(A) 4-methyl-2-nitro-5-oxohept-3-enal
(B) 4-methyl-5-oxo-2-nitrohept-3-enal
(C) 4-methyl-6-nitro-3-oxohept-4-enal
(D) 6-formyl-4-methyl-2-nitrohex-3-enal

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

4-Methyl-6-nitro-3-oxohept-4-enal
14. The major product (P) of the given reaction is (where, Me is $-\mathrm{CH}_{3}$)

(B)

(C)

(D)

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

15. $\mathrm{A} \xrightarrow[\substack{\text { (ii) } \mathrm{CN}^{-} \\ \text {(iii) } \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}]{\text {(i) } \mathrm{Cl}_{2}, \Delta}$ 4-Bromophenyl acetic acid.

In the above reaction ' A ' is
(A)

(B)

(C)

(D)

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

16. Isobutyraldehyde on reaction with formaldehyde and $\mathrm{K}_{2} \mathrm{CO}_{3}$ gives compound ' A '. Compound ' A ' reacts with KCN and yields compound ' B ', which on hydrolysis gives a stable compound ' C '. The compound ' C ' is :
(A)

(B)

(C)

$$
\text { (} 1 \times 1
$$

(D)

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

Stable product
17. With respect to the following reaction, consider the given statements :

(A) o-Nitroaniline and p-nitroaniline are the predominant products
(B) p-Nitroaniline and m-nitroaniline are the predominant products
(C) HNO_{3} acts as an acid
(D) $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as an acid
(A) (A) and (C) are correct statements.
(B) (A) and (D) are correct statements.
(C) (B) and (D) are correct statements.
(D) (B) and (C) are correct statements.

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

$\underset{\text { Base }}{\mathrm{HNO}_{3}}+\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \mathrm{NO}_{2}^{+}$
18. Given below are two statements, one is Assertion (A) and other is Reason (R).

Assertion (A) : Natural rubber is a linear polymer of isoprene called cis-polyisoprene with elastic properties.
Reason (R) : The cis-polyisoprene molecules consist of various chains held together by strong polar interactions with coiled structure.
In the light of the above statements, choose the correct one from the options given below :
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) (A) is true but (R) is false.
(D) (A) is false but (R) is true.

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Natural rubber is linear polymer of isoprene (2-methyl-1,3-butadiene) and is also called cis-1,4polyisoprene. The cis-polyisoprene molecules consists of various chains held together by weak Vander Waal's interactions and has a coiled structure
19. When sugar ' X ' is boiled with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ in alcoholic solution, two isomers ' A ' and ' B ' are formed. 'A' on oxidation with HNO_{3} yields saccharic acid where as ' B ' is laevorotatory. The compound ' X ' is :
(A) Maltose
(B) Sucrose
(C) Lactose
(D) Strach

Official Ans. by NTA (B)

Allen Ans. (B)
Sol. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$[\alpha]=66.6^{\circ}$
D-Glucose D-Fructose
$[\alpha]=+52.7^{\circ} \quad[\alpha]=-92.2^{\circ}$
(A)

Sachharic acid
20. The drug tegamet is:

(B)

(C)

(D)

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Tegamet is the brand name of Cimetidine

SECTION-B

1. $\quad 100 \mathrm{~g}$ of an ideal gas is kept in a cylinder of 416 L volume at $27^{\circ} \mathrm{C}$ under 1.5 bar pressure. The molar mass of the gas is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer) (Given : $\mathrm{R}=0 . \overline{083 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1} \text {) }}$
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $1.5 \times 416=\frac{100}{\mathrm{M}} \times 0.083 \times 300$
$\mathbf{M}=3.99$
Ans. 4
2. For combustion of one mole of magnesium in an open container at 300 K and 1 bar pressure, $\Delta_{\mathrm{C}} \mathrm{H}^{\Theta}$ $=-601.70 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the magnitude of change in internal energy for the reaction is \qquad kJ. (Nearest integer)
(Given : $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (600)
Allen Ans. (600)
Sol. $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$-601.70 \times 10^{3}=\Delta \mathrm{U}-\frac{1}{2} \times 8.3 \times 300$
$-601.70 \mathrm{~kJ}=\Delta \mathrm{U}-1.245 \mathrm{~kJ}$
$\Delta \mathrm{U}=-600.455 \mathrm{~kJ}$
Ans. 600
3. $\quad 2.5 \mathrm{~g}$ of protein containing only glycine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$ is dissolved in water to make 500 mL of solution. The osmotic pressure of this solution at 300 K is found to be 5.03×10^{-3} bar. The total number of glycine units present in the protein is \qquad
(Given : $\mathrm{R}=0.083 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (330)
Allen Ans. (330)
Sol. $\pi=$ CRT
$5.03 \times 10^{-3}=\mathrm{C} \times 0.083 \times 300$
$\mathrm{C}=0.202 \times 10^{-3} \mathrm{M}$
Moles of protein $=0.202 \times 10^{-3} \times 0.5$

$$
=10^{-4} \times 1.01
$$

$$
1.01 \times 10^{-4}=\frac{2.5}{\mathrm{M}}
$$

$\mathrm{M}($ molar mass of protein $)=24752$
\therefore No. of glycine units $=\frac{24752}{75}=330.03$
4. For the given reactions
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}$
$\mathrm{Sn}^{4+}+4 \mathrm{e}^{-} \rightarrow \mathrm{Sn}$
The electrode potentials are; $\mathrm{E}_{\mathrm{Sn}^{2+} / \mathrm{Sn}}^{\mathrm{o}}=-0.140 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}}^{\mathrm{o}}=0.010 \mathrm{~V}$. The magnitude of standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ i.e. $\mathrm{E}_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\mathrm{o}}$ is \qquad $\times 10^{-2} \mathrm{~V}$. (Nearest integer)

Official Ans. by NTA (16)

Allen Ans. (16)
Sol. $\quad \mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn} \quad \Delta \mathrm{G}_{1}^{0}=+2 \times 0.140 \times \mathrm{F}$
$\mathrm{Sn}^{+4}+4 \mathrm{e}^{-} \rightarrow \mathrm{Sn} \quad \Delta \mathrm{G}_{2}^{0}=-4 \times 0.01 \times \mathrm{F}$
$\mathrm{Sn}^{+4}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{+2} \quad \Delta \mathrm{G}_{3}^{0}=-2 \times \mathrm{E}_{\mathrm{Sn}^{+4} / \mathrm{Sn}^{+2}}^{0} \times \mathrm{F}$
$\Delta \mathrm{G}_{3}^{0}=\Delta \mathrm{G}_{2}^{0}-\Delta \mathrm{G}_{1}^{0}$
$-2 \times \mathrm{E}^{0} \times \mathrm{F}=-(0.04+0.28) \times \mathrm{F}$
$\mathrm{E}^{0}=0.16$ volt $=16 \times 10^{-2} \mathrm{~V}$
Ans 16
5. A radioactive element has a half life of 200 days. The percentage of original activity remaining after 83 days is \qquad . (Nearest integer)
(Given : antilog $0.125=1.333$, antilog $0.693=$ 4.93)

Official Ans. by NTA (75)
Allen Ans. (75)
Sol. $t=\frac{t_{1 / 2}}{0.3} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}}$
$83=\frac{200}{0.3} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}}$
$0.125=\log \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}}$
$\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}}=1.333 \cong \frac{4}{3}$
$\therefore \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{A}]_{0}} \times 100=\frac{3}{4} \times 100=75 \%$
Ans. 75
6. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
$\left[\mathrm{Ti}(\mathrm{CN})_{6}\right]^{3-}$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
Among the given complexes, number of paramagnetic complexes is \qquad .

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \quad$ Diamagnetic
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \quad$ Paramagnetic (1 unpaired electron)
$\left[\mathrm{Ti}(\mathrm{CN})_{6}\right]^{3-} \quad$ Paramagnetic (1 unpaired electron)
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad$ Diamagnetic
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ Diamagnetic
Ans. 2
7. (a) $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
(b) $\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}$
(c) $\mathrm{CoCl}_{3}: 6 \mathrm{NH}_{3}$ and
(d) $\mathrm{CoCl}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{NH}_{3}$

Number of complex(es) which will exist in cistrans is/are

Official Ans. by NTA (1)
Allen Ans. (1)
Sol. (a) $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
Can exhibit G.I.
(b) $\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Can't exhibit G.I.
(c) $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

Can't exhibit G.I.
(d) $\mathrm{CoCl}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{NH}_{3}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$

OR

$$
=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}\left(\mathrm{NO}_{3}\right)
$$

Both can't exhibit G.I.
8. The complete combustion of 0.492 g of an organic compound containing ' C ', ' H ' and ' O ' gives 0.793 g of CO_{2} and 0.442 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage of oxygen composition in the organic compound is
\qquad . (nearest integer)

Official Ans. by NTA (46)
Allen Ans. (46)
Sol. Mole of $\mathrm{CO}_{2}=$ Moles of $\mathrm{C}=\frac{0.793}{44}$
Weight of ' C ' $=\frac{0.793}{44} \times 12=0.216 \mathrm{gm}$
Moles of ' H ' $=\frac{0.442}{18} \times 2$
Weight of ' H ' $=\frac{0.442}{18} \times 2 \times 1=0.049 \mathrm{gm}$
\therefore Weight of ' O ' $=0.492-0.216-0.049=0.227 \mathrm{gm}$
$\%$ of ' $\mathrm{O}^{\prime}=\frac{0.227}{0.492} \times 100=46.13 \%$
Ans. 46
9. The major product of the following reaction contains \qquad bromine atom(s).

Official Ans. by NTA (1)
Allen Ans. (1)
Sol.

No. of Br atoms $=1$
10. $\quad 0.01 \mathrm{M} \mathrm{KMnO}_{4}$ solution was added to 20.0 mL of 0.05 M Mohr's salt solution through a burette. The initial reading of 50 mL burette is zero. The volume of KMnO_{4} solution left in the burette after the end point is \qquad mL. (nearest integer)

Official Ans. by NTA (30)
Allen Ans. (30)
Sol. $\quad \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$0.01 \times 5 \times \mathrm{V}_{1}=0.05 \times 1 \times 20$
$\mathrm{V}_{1}=20 \mathrm{ml}$ used
\therefore Volume left $=50-20=30 \mathrm{ml}$

