

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Tuesday 28th June, 2022)

TEST PAPER WITH SOLUTION

TIME: 9:00 AM to 12:00 PM

CHEMISTRY

SECTION-A

- **1.** The incorrect statement about the imperfections in solids is:
 - (A) Schottky defect decreases the density of the substance
 - (B) Interstitial defect increases the density of the substance.
 - (C) Frenkel defect does not alter the density of the substance.
 - (D) Vacancy defect increases the density of the substance.

Official Ans. by NTA (D)

Allen Ans. (D)

- **Sol.** Due to vacancy defect density of the substance will decrease.
- 2. The Zeta potential is related to which property of colloids"
 - (A) Colour
 - (B) Tyndall effect
 - (C) Charge on the surface of colloidal particles
 - (D) Brownian movement

Official Ans. by NTA (C)

Allen Ans. (C)

- **Sol.** The potential difference between the fixed and diffused layer of charges in a colloidal particle is called zeta potential
- 3. Element "E" belongs to the period 4 and group 16 of the periodic table. The valence shell electron configuration of the element, which is just above 'E' in the group is
 - (A) $3s^2$. $3p^4$
- (B) $3d^{10}$. $4s^2$, $4p^4$
- (C) $4d^{10}$. $5s^2$, $5p^4$
- (D) $2s^2$, p4

Official Ans. by NTA (A)

Allen Ans. (A)

Sol. $E \Rightarrow [Ar] 3d^{10} 4s^2 4p^4$

Element above $E \Rightarrow [Ne] 3s^2 3p^4$

4. Given are two statements one is labelled as Assertion A and other is labelled as Reason R. Assertion A :Magnesium can reduce Al₂O₃ at a temperature below 1350°C, while above 1350°C aluminium can reduce MgO.

Reason R: The melting and boiling points of magnesium are lower than those of aluminium. In light of the above statements, choose most appropriate answer from the options given below:

- (A) Both A and R are correct. and R is correct explanation of A.
- (B) Both A and R are correct. but R is NOT the correct explanation of A.
- (C) A is correct R is not correct.
- (D) A is not correct. R is correct.

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. From Ellingham diagram given in NCERT, it can be seen that Mg, MgO line crosses Al, Al₂O₃ line after 1350°C hence assertion is true.

Yes, Mg have lower MP and BP than aluminium but it does not explain the above fact.

- 5. Dihydrogen reacts with CuO to give
 - (A) CuH₂
 - (B) Cu
 - (C) Cu_2O
 - (D) $Cu(OH)_2$

Official Ans. by NTA (B)

Allen Ans. (B)

- **Sol.** CuO + $H_2 \rightarrow Cu + H_2O$ (under hot conditions)
- 6. Nitrogen gas is obtained by thermal decomposition of
 - (A) $Ba(NO_3)_2$
- (B) Ba(N_3)₂
- (C) NaNO₂
- (D) NaNO₃

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Ba(N₃)₂ \rightarrow Ba + 3N₂

7. Given below are two statements:

Statement -I :The pentavalent oxide of group- 15 element. E_2O_5 . is less acidic than trivalent oxide. E_2O_3 . of the same element.

Statement -II : The acidic character of trivalent oxide of group 15 elements. E_2O_3 . decreases down the group.

In light of the above statements, choose most appropriate answer from the options given below:

- (A) Both Statement I and Statement II are true.
- (B) Both Statement I and Statement II are false.
- (C) Statement I true. but statement II is false.
- (D) Statement I is false but statement II is true.

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. As +ve oxidation state increases, EN of element increases hence acidic character increases. Down the group, non-metallic character decreases, acidic character decreases.

Acidic character : $E_2O_5 > E_2O_3$

Down the group, acidic character of E₂O₃ decreases

- 8. Which one of the lanthanoids given below is the most stable in divalent form?
 - (A) Ce (Atomic Number 58)
 - (B) Sm (Atomic Number 62)
 - (C) Eu (Atomic Number 63)
 - (D) Yb (Atomic Number 70)

Official Ans. by NTA (C)

Allen Ans. (C)

Sol.
$$E_{M^{3+}/M^{2+}}^{o} \Rightarrow \begin{bmatrix} Eu & Yb \\ -0.35 & -1.05 \end{bmatrix}$$

Hence, due to more reduction potential in Eu as compared to Yb, it can concluded that Eu^{2+} is more stable than Yb^{2+} .

9. Given below are two statements:

Statement I : $[Ni(CN)4]^{2-}$ is square planar and diamagnetic complex. with dsp^2 hybridization for Ni but $[Ni(CO)_4]$ is tetrahedral. paramagnetic and with sp^3 -hybridication for Ni.

Statement II: [NiCl₄] ²⁻ and [Ni(CO)₄] both have same d-electron configuration have same geometry and are paramagnetic.

In light the above statements, choose the correct answer form the options given below:

- (A) Both Statement I and Statement II are true.
- (B) Both Statement I and Statement II are false.
- (C) Statement I is correct but statement II is false.
- (D) Statement I is incorrect but statement II is true.

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $[Ni(CN)_4]^{2-}$: d^8 configuration, SFL, sq. planar splitting (dsp^2) , diamagnetic.

[Ni(CO)₄]: d¹⁰ config (after excitation), SFL, tetrahedral splitting (sp³), diamagnetic.

[NiCl₄]²⁻: d⁸ config, WFL, tetrahedral splitting (sp³), paramagnetic(2 unpaired e⁻).

- 10. Which amongst the following is not a pesticide?
 (A) DDT
 - (B) Organophosphates
 - (C) Dieldrin
 - (D) Sodium arsenite

Official Ans. by NTA (D)

Allen Ans. (D)

- 11. Which one of the following techniques is not used to spot components of a mixture separated on thin layer chromatographic plate?
 - (A) I₂ (Solid)
 - (B) U.V. Light
 - (C) Visualisation agent as a component of mobile phase
 - (D) Spraying of an appropriate reagent

Official Ans. by NTA (C)

Allen Ans. (C)

12. Which of the following structures are aromatic in nature?

- (A) A,B,C and D
- (B) Only A and B
- (C) Only A and C
- (D) Only B, C and D

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. A, B aromatic

C,D is nonaromatic

13. The major product (P) in the reaction

$$Ph \xrightarrow{Br} HBr \rightarrow ?(P)$$

[Ph is
$$-C_6H_5$$
] is

$$(A) \xrightarrow{Ph} \xrightarrow{Br} Br$$

$$(C)$$
 Ph
 Br

$$(D) \xrightarrow{Ph} \xrightarrow{Br}$$

Official Ans. by NTA (C)

Allen Ans. (C)

Sol.

$$\operatorname{Ph}$$
 Br
 HBr
 Ph
 Br
 Br
 Br

14. The correct structure of product 'A' formed in the following reaction.

PhCHO + Ph · CHO
$$\xrightarrow{\text{NaOD}}$$
 $A + \text{Ph} - \text{C} - \text{O}^-$

$$(\text{Ph is} - \text{C}_6 \text{H}_5)$$

$$(A) \overset{OD}{Ph} \overset{H}{H}$$

$$(B) \overset{OH}{\underset{H}{\bigvee}}$$

$$(C)$$
 Ph D

Official Ans. by NTA (A)

Sol. PhCH = O + PhCH = O
$$\xrightarrow{\text{OD/D}_2\text{O}} \text{PhCH}_2\text{OD+PhCO}_2^-$$

15. Which one of the following compounds is inactive towards S_N1 reaction?

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. Sol. The carbocation fromed is very unstable.

So it is inactive towards $S_{\rm N}1$

16. Identify the major product formed in the following sequence of reactions :

Sol.

A primary aliphatic amine on reaction with nitrous 17. acid in cold (273 K) and there after raising temperature of reaction mixture to room temperature (298 K). Gives a/an (A) nitrile

(B) alcohol

(C) diazonium salt

(D) secondary amine

Official Ans. by NTA (B)

Allen Ans. (B)

Sol.
$$R-NH_2 \xrightarrow{NaNO_2} R-N_2^+ \to R^+ \xrightarrow{H_2O} R-OH$$

18. Which one of the following is **NOT** a copolymer?

- (A) Buna-S
- (B) Neoprene
- (C) PHBV
- (D) Butadiene-styrene

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Buna-S, PHBr and Butadiene-styrene copolymer. Only neoprene is namopolymer.

Stability of α - Helix structure of proteins depends 19. upon

- (A) dipolar interaction
- (B) H-bonding interaction
- (C) van der Waals forces
- (D) π -stacking interaction

Official Ans. by NTA (B)

Allen Ans. (B)

The formula of the purple colour formed in 20. Laissaigne's test for sulphur using sodium nitroprusside is

(A) $NaFe[Fe(CN)_6]$

(B) $Na[Cr(NH_3)_2(NCS)_4]$

(C) $Na_2[Fe(CN)_5(NO)]$ (D) $Na_4[Fe(CN)_5(NOS)]$

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. $Na_2S + Na_2[Fe(CN)_5NO] \rightarrow Na_4[Fe(CN)_5NO_5]$

SECTION-B

A 2.0 g sample containing MnO₂ is treated with 1. HCl liberating Cl₂. The Cl₂ gas is passed into a solution of KI and 60.0 mL of 0.1 M Na₂S₂O₃ is required to titrate the liberated iodine. The percentage of MnO₂ in the sample is _____. (Nearest integer)

> [Atomic masses (in u) Mn = 55; Cl = 35.5; O = 16, I = 127, Na = 23, K = 39, S = 32

Official Ans. by NTA (13)

Allen Ans. (13)

 $MnO_2 + HCl \longrightarrow Cl_2 + Mn^{+2}$ 6 meg Sol. $=3 \,\mathrm{m}\,\mathrm{mol}$

 $Cl_2 + KI \longrightarrow Cl^- + I_2$ 6 meq 6 meq

 $I_2 + Na_2S_2O_3 \longrightarrow I^- + Na_2S_4O_6$

6 meq 6 m mol

 $=6 \,\mathrm{meg}$

 $%MnO_2 = \frac{3 \times 10^{-3} \times 87}{2} \times 100$

= 13.05%

Ans. 13

If the work function of a metal is 6.63×10^{-19} J, the 2. maximum wavelength of the photon required to remove a photoelectron from the metal is _____ nm. (Nearest integer)

[Given: $h = 6.63 \times 10^{-34} \text{ J s}$, and $c = 3 \times 10^8 \text{ m s}^{-1}$]

Official Ans. by NTA (300)

Allen Ans. (300)

Final JEE-Main Exam June 2022/28-06-2022/Morning Session

Sol.
$$\phi = 6.63 \times 10^{-19} \text{J} = \frac{\text{hc}}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{\lambda}$$

 $\Rightarrow \lambda = 3 \times 10^{-7} \text{m} = 300 \text{ nm}$

3. The hybridization of P exhibited in PF_5 is sp^xd^y . The value of y is _____.

Official Ans. by NTA (1)

Allen Ans. (1)

- **Sol.** $PF_5 \Rightarrow sp^3d$ hybridisation (5 sigma bonds, zero lone pair on central atom) Value of y = 1
- 4. 4.0 L of an ideal gas is allowed to expand isothermally into vacuum until the total volume is 20 L. The amount of heat absorbed in this expansion is ______ L atm.

Official Ans. by NTA (0)

Allen Ans. (0)

Sol. For free expansion:
$$\begin{aligned} P_{\text{ext}} = 0 \text{ , } w = 0 \\ q = 0 \text{ , } \Delta U = 0 \end{aligned}$$

Ans. 0

5. The vapour pressures of two volatile liquids A and B at 25°C are 50 Torr and 100 Torr, respectively. If the liquid mixture contains 0.3 mole fraction of A, then the mole fraction of liquid B in the vapour phase is $\frac{x}{17}$. The value of x is _____.

Official Ans. by NTA (14)

Allen Ans. (14)

Sol.
$$\frac{y_B}{1 - y_B} = \frac{P_B^o}{P_A^o} \left[\frac{X_B}{1 - X_B} \right]$$
$$\Rightarrow \frac{y_B}{1 - y_B} = \frac{100}{50} \left[\frac{0.7}{0.3} \right] = \frac{14}{3}$$
$$\Rightarrow y_B = \frac{14}{17}$$

Ans. 14

6. The solubility product of a sparingly soluble salt A_2X_3 is 1.1×10^{-23} . If specific conductance of the solution is 3×10^{-5} S m⁻¹, the limiting molar conductivity of the solution is $x\times 10^{-3}$ S m² mol⁻¹. The value of x is _____.

Official Ans. by NTA (3)

Allen Ans. (3)

$$\begin{split} A_2 X_{3(s)} & = 2A_{(aq)}^{+3} + 3X_{(aq)}^{-2} \\ \text{so lub ility} = sM & 2s & 3s \\ & (2s)^2 (3s)^3 = 1.1 \times 10^{-23} \\ & 108 \text{ s}^5 = 1.1 \times 10^{-23} \\ & s \approx 10^{-5} \text{M} = 10^{-5} \frac{\text{mol}}{\text{L}} = 0.01 \frac{\text{mol}}{\text{m}^3} \\ & \text{Now } \wedge_m \approx \wedge_m^\infty = \frac{k}{m} = \frac{k}{s} \\ & \Rightarrow \wedge_m^\infty = \frac{3 \times 10^{-5}}{0.01} = 3 \times 10^{-3} \text{ S-m}^2/\text{mol} \end{split}$$

Ans. 3

7. The quantity of electricity in Faraday needed to reduce 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} is .

Official Ans. by NTA (6)

Allen Ans. (6)

8. For a first order reaction $A \rightarrow B$, the rate constant, $k = 5.5 \times 10^{-14} \, \text{s}^{-1}$. The time required for 67% completion of reaction is $x \times 10^{-1}$ times the half life of reaction. The value of x is _____ (Nearest integer)

(Given : $\log 3 = 0.4771$)

Official Ans. by NTA (16)

Allen Ans. (16)

Sol.
$$t_{67\%} = \frac{1}{k} \ln \left(\frac{1}{1 - 0.67} \right) = \frac{t_{1/2}}{\ln 2} \times \ln \left[\frac{1}{1 - \frac{2}{3}} \right]$$
$$t_{67\%} = \frac{t_{1/2}}{\log 2} \times \log 3 = \frac{t_{1/2} \times 0.4771}{0.301}$$
$$\Rightarrow t_{67\%} = 1.585 \times t_{1/2}$$
$$X \times 10^{-1} = 1.585$$
$$\Rightarrow X = 15.85$$
Ans.16

- 9. Number of complexes which will exhibit synergic bonding amongst, $[Cr(CO)_6]$, $[Mn(CO)_5]$ and $[Mn_2(CO)_{10}]$ is _____.
 - Official Ans. by NTA (3)
 - Allen Ans. (3)
- **Sol.** Carbonyl complex compounds have tendency to show synergic bonding.
- 10. In the estimation of bromine, 0.5 g of an organic compound gave 0.40 g of silver bromide. The percentage of bromine in the given compound is _____% (nearest integer)

(Relative atomic masses of Ag and Br are 108u and 80u, respectively).

Official Ans. by NTA (34)

Allen Ans. (34)

Sol $O.C \longrightarrow AgBr$ $0.5g \quad 0.4g$

mol of Br = mol of AgBr = $\frac{0.4}{188}$

% Br = %Br =
$$\frac{0.4}{188} \times 80$$

0.5

= 34.04%