FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Wednesday 29th June, 2022)
TIME: 3:00 PM to 06:00 PM
MATHEMATICS
SECTION-A
(A) 1
(B) α
(C) $1+\alpha$
(D) $1+2 \alpha$

1. Let α be a root of the equation $1+x^{2}+x^{4}=0$.

Then the value of $\alpha^{1011}+\alpha^{2022}-\alpha^{3033}$ is equal to:

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $x^{4}+x^{2}+1=0$
$\Rightarrow\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)=0$
$\Rightarrow \mathrm{x}= \pm \omega, \pm \omega^{2}$ where $\omega=1^{1 / 3}$ and imaginary.
So $\alpha^{1011}+\alpha^{2022}-\alpha^{3033}=1+1-1=1$
2. Let $\arg (\mathrm{z})$ represent the principal argument of the complex number z. The, $|z|=3$ and $\arg (z-1)-$ $\arg (\mathrm{z}+1)=\frac{\pi}{4}$ intersect:
(A) Exactly at one point
(B) Exactly at two points
(C) Nowhere
(D) At infinitely many points.

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

TEST PAPER WITH SOLUTION

3. Let $\mathrm{A}=\left(\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right)$. If $\mathrm{B}=\mathrm{I}-{ }^{5} \mathrm{C}_{1}(\operatorname{adj} \mathrm{~A})+{ }^{5} \mathrm{C}_{2}$ $(\operatorname{adj} \mathrm{A})^{2}-\ldots-{ }^{5} \mathrm{C}_{5}(\operatorname{adj} \mathrm{~A})^{5}$, then the sum of all elements of the matrix B is:
(A) -5
(B) -6
(C) -7
(D) -8

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad B=(I-\operatorname{adj} A)^{5}=\left[\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right]^{5}=\left[\begin{array}{cc}-1 & -5 \\ 0 & -1\end{array}\right]$
Sum of its all elements $=-7$.
4. The sum of the infinite series $1+\frac{5}{6}+\frac{12}{6^{2}}+\frac{22}{6^{3}}+\frac{35}{6^{4}}+\frac{51}{6^{5}}+\frac{70}{6^{6}}+\ldots$. is equal to:
(A) $\frac{425}{216}$
(B) $\frac{429}{216}$
(C) $\frac{288}{125}$
(D) $\frac{280}{125}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\mathrm{S}=1+\frac{5}{6}+\frac{12}{6^{2}}+\frac{22}{6^{3}}+\frac{35}{6^{4}}+\ldots$.
$\frac{S}{6}=\frac{1}{6}+\frac{5}{6^{2}}+\frac{12}{6^{3}}+\frac{22}{6^{4}}+\ldots$.
on subtraction
$\frac{5}{6} S=1+\frac{4}{6}+\frac{7}{6^{2}}+\frac{10}{6^{3}}+\frac{13}{6^{4}}+\ldots$.
$\frac{5}{36} S=1+\frac{4}{6^{2}}+\frac{7}{6^{3}}+\frac{10}{6^{4}}+\frac{13}{6^{5}}+\ldots$
on subtraction

$$
\frac{25}{36} S=1+\frac{3}{6}+\frac{3}{6^{2}}+\frac{3}{6^{3}}+\ldots=\frac{8}{5}
$$

$]^{\circledR}$
$S=\frac{288}{125}$
5. The value of $\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right) \sin ^{2}(\pi x)}{x^{4}-2 x^{3}+2 x-1}$ is equal to:
(A) $\frac{\pi^{2}}{6}$
(B) $\frac{\pi^{2}}{3}$
(C) $\frac{\pi^{2}}{2}$
(D) π^{2}

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right) \sin ^{2} \pi x}{\left(x^{2}-1\right)(x-1)^{2}}=\lim _{x \rightarrow 1}\left(\frac{\sin ((1-x) \pi))}{\pi(1-x)}\right)^{2} \pi^{2}=\pi^{2}$
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(\mathrm{x})=(\mathrm{x}-3)^{\mathrm{n}_{1}}(\mathrm{x}-5)^{\mathrm{n}_{2}}, \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{~N}$. The, which of the following is NOT true?
(A) For $n_{1}=3, n_{2}=4$, there exists $\alpha \in(3,5)$ where f attains local maxima.
(B) For $\mathrm{n}_{1}=4, \mathrm{n}_{2}=3$, there exists $\alpha \in(3,5)$ where f attains local manima.
(C) For $\mathrm{n}_{1}=3, \mathrm{n}_{2}=5$, there exists $\alpha \in(3,5)$ where f attains local maxima.
(D) For $n_{1}=4, n_{2}=6$, there exists $\alpha \in(3,5)$ where f attains local maxima.
Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $f^{\prime}(x)=(x-3)^{n_{1}-1}(x-5)^{n_{2}-1}\left(n_{1}+n_{2}\right)\left(x-\frac{5 n_{1}+3 n_{2}}{n_{1}+n_{2}}\right)$
Option (3) is incorrect since
for $\mathrm{n}_{1}=3, \mathrm{n}_{2}=5$
$f^{\prime}(x)=8(x-3)^{2}(x-5)^{4}\left(x-\frac{30}{8}\right)$
minima at $\mathrm{x}=\frac{30}{8}$
7. Let f be a real valued continuous function on $[0,1]$ and $f(x)=x+\int_{0}^{1}(x-t) f(t) d t$. Then which of the following points (x, y) lies on the curve $\mathrm{y}=f(\mathrm{x})$?
(A) $(2,4)$
(B) $(1,2)$
(C) $(4,17)$
(D) $(6,8)$

Official Ans. by NTA (D)
Allen Ans. (4)
Sol. $f(x)=\left(1+\int_{0}^{1} f(t) d t\right) x-\int_{0}^{1} t f(t) d t$
$f(x)=A x-B$
$A=1+\int_{0}^{1} f(t) d t=1+\int_{0}^{1}(A t-B) d t$
$\Rightarrow \mathrm{A}=2(1-\mathrm{B})$
Also $B=\int_{0}^{1} \mathrm{tf}(\mathrm{t}) \mathrm{dt}=\int_{0}^{1}\left(\mathrm{At}^{2}-\mathrm{Bt}\right) \mathrm{dt}$
$A=\frac{9}{2} B$
From (2), (3)
$\mathrm{A}=\frac{18}{13}, \mathrm{~B}=\frac{4}{13}$
so $f(6)=8$
8. \quad If $\int_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x=$
$\int_{0}^{1}\left(1-\sqrt{1-y^{2}}-\frac{y^{2}}{2}\right) d y+\int_{1}^{2}\left(2-\frac{y^{2}}{2}\right) d y+I$
(A) $\int_{0}^{1}\left(1+\sqrt{1-\mathrm{y}^{2}}\right) \mathrm{dy}$
(B) $\int_{0}^{1}\left(\frac{y^{2}}{2}-\sqrt{1-y^{2}}+1\right) d y$
(C) $\int_{0}^{1}\left(1-\sqrt{1-\mathrm{y}^{2}}\right) \mathrm{dy}$
(D) $\int_{0}^{1}\left(\frac{\mathrm{y}^{2}}{2}+\sqrt{1-\mathrm{y}^{2}}+1\right) d y$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. \quad LHS $=\int_{0}^{2}\left(\sqrt{2 \mathrm{x}}-\sqrt{2 \mathrm{x}-\mathrm{x}^{2}}\right) \mathrm{dx}=\frac{8}{3}-\frac{\pi}{2}$
RHS $=\int_{0}^{1}\left(1-\sqrt{1-y^{2}}-\frac{y^{2}}{2}\right) d y+\int_{1}^{2}\left(2-\frac{y^{2}}{2}\right) d y+I$
$\mathrm{I}+\frac{5}{3}-\frac{\pi}{4}$
So, $\mathrm{I}=1-\frac{\pi}{4}=\int_{0}^{1}\left(1-\sqrt{1-\mathrm{y}^{2}}\right) \mathrm{dy}$
9. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is the solution of the differential equation $\left(1+e^{2 x}\right) \frac{d y}{d x}+2\left(1+y^{2}\right) e^{x}=0$ and $y(0)=0$, then $6\left(y^{\prime}(0)+\left(y\left(\log _{e} \sqrt{3}\right)\right)^{2}\right)$ is equal to:
(A) 2
(B) -2
(C) -4
(D) -1

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\frac{d y}{1+y^{2}}+\frac{2 e^{x}}{1+e^{2 x}} d x=0$
on integration
$\tan ^{-1} y+2 \tan ^{-1} e^{x}=c$
$\because y(0)=0$
so, $C=\frac{\pi}{2} \Rightarrow \tan ^{-1} y+2 \tan ^{-1} e^{x}=\frac{\pi}{4}$
from eq.(i), $\left(\frac{d y}{d x}\right)_{x=0}=-1$
$\arg y(\ln \sqrt{3})=-\frac{1}{\sqrt{3}}$
$6\left[y^{\prime}(0)+\left(y(\ln \sqrt{3})^{2}\right]=6\left[-1+\frac{1}{3}\right]=-4\right.$
10. Let $\mathrm{P}: \mathrm{y}^{2}=4 a \mathrm{x}, a>0$ be a parabola with focus S.Let the tangents to the parabola P make an angle of $\frac{\pi}{4}$ with the line $y=3 x+5$ touch the parabola P at A and B . Then the value of a for which A, B and S are collinear is:
(A) 8 only
(B) 2 only
(C) $\frac{1}{4}$ only
(D) any a >0

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Lines making angle $\frac{\pi}{4}$ with $\mathrm{y}=3 \mathrm{x}+5$
have slope $-2 \& 1 / 2$.
Which are perpendicular to each-other so, A, S, B are collinear for all $\mathrm{a}>0$.

11. Let a triangle $A B C$ be inscribed in the circle $\mathrm{x}^{2}-$ $\sqrt{2}(x+y)+y^{2}=0$ such that $\angle B A C=\frac{\pi}{2}$. If the length of side $A B$ is $\sqrt{2}$, then the area of the $\triangle \mathrm{ABC}$ is equal to:
(A) $(\sqrt{2}+\sqrt{6}) / 3$
(B) $(\sqrt{6}+\sqrt{3}) / 2$
(C) $(3+\sqrt{3}) / 4$
(D) $(\sqrt{6}+2 \sqrt{3}) / 4$

Official Ans. by NTA (Dropped)
Allen Ans. (Dropped)
Sol. Radius of given circle is 1 .
$\mathrm{BC}=$ diameter $=2, \mathrm{AB}=\sqrt{2}$
$\mathrm{AC}=\sqrt{\mathrm{BC}^{2}-\mathrm{AB}^{2}}=\sqrt{2}$
$\Delta \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{AC}=1$

12. Let $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}+1}{-2}=\frac{\mathrm{z}+3}{-1}$ lie on the plane $\mathrm{p} \mathrm{x}-\mathrm{qy}+$ $z=5$, for some $p, q \in \mathbb{R}$. The shortest distance of the plane from the origin is:
(A) $\sqrt{\frac{3}{109}}$
(B) $\sqrt{\frac{5}{142}}$
(C) $\sqrt{\frac{5}{71}}$
(D) $\sqrt{\frac{1}{142}}$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. (2, $-1,-3)$ satisfy the given plane.
So $2 p+q=8$
Also given line is perpendicular to normal plane so $3 p+2 q-1=0$
$\Rightarrow \mathrm{p}=15, \mathrm{q}=-22$
Eq. of plane $15 x-22 y+z-5=0$
its distance from origin $=\frac{6}{\sqrt{710}}=\sqrt{\frac{5}{142}}$
13. The distance of the origin from the centroid of the triangle whose two sides have the equations $\mathrm{x}-2 \mathrm{y}+1=0$ and $2 \mathrm{x}-\mathrm{y}-1=0$ and whose orthocenter is $\left(\frac{7}{3}, \frac{7}{3}\right)$ is:
(A) $\sqrt{2}$
(B) 2
(C) $2 \sqrt{2}$
(D) 4

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\mathrm{AB} \equiv \mathrm{x}-2 \mathrm{y}+1=0$
$A C \equiv 2 x-y-1=0$

So $\mathrm{A}(1,1)$
Altitude from B is $B H=x+2 y-7=0 \Rightarrow B(3,2)$
Altitude from C is $\mathrm{CH}=2 \mathrm{x}+\mathrm{y}-7=0 \Rightarrow \mathrm{C}(2,3)$
Centroid of $\triangle \mathrm{ABC}=\mathrm{E}(2,2) \mathrm{OE}=2 \sqrt{2}$
14. Let Q be the mirror image of the point $\mathrm{P}(1,2,1)$ with respect to the plane $x+2 y+2 z=16$. Let T be a plane passing through the point Q and contains the line $\vec{r}=-\hat{k}+\lambda(\hat{i}+\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$. Then, which of the following points lies on T ?
(A) $(2,1,0)$
(B) $(1,2,1)$
(C) $(1,2,2)$
(D) $(1,3,2)$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Image of $\mathrm{P}(1,2,1)$ in $\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}-16=0$
is given by $\mathrm{Q}(4,8,7)$
Eq. of plane $T=\left|\begin{array}{ccc}x & y & z+1 \\ 4 & 8 & 6 \\ 1 & 1 & 2\end{array}\right|=0$
$\Rightarrow 2 \mathrm{x}-\mathrm{z}=1$ so $\mathrm{B}(1,2,1)$ lies on it.
15. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three points whose position vectors respectively are:
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \alpha \in \mathbb{R}$
$\vec{c}=3 \hat{i}-2 \hat{j}+5 \hat{k}$
If α is the smallest positive integer for which $\vec{a}, \vec{b}, \vec{c}$ are non-collinear, then the length of the median, in $\triangle \mathrm{ABC}$, through A is:
(A) $\frac{\sqrt{82}}{2}$
(B) $\frac{\sqrt{62}}{2}$
(C) $\frac{\sqrt{69}}{2}$
(D) $\frac{\sqrt{66}}{2}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\quad \overrightarrow{\mathrm{AB}} \| \overrightarrow{\mathrm{AC}}$ if $\frac{1}{2}=\frac{\alpha-4}{-6}=\frac{1}{2} \Rightarrow \alpha=1$
$\vec{a}, \vec{b}, \vec{c}$ are non-collinear for $\alpha=2$ (smallest positive integer)

Mid-point of $\mathrm{BC}=\mathrm{M}\left(\frac{5}{2}, 0, \frac{9}{2}\right)$
$\mathrm{AM}=\sqrt{\frac{9}{4}+16+\frac{9}{4}}=\frac{\sqrt{82}}{2}$
16. The probability that a relation R from $\{x, y\}$ to $\{x, y\}$ is both symmetric and transitive, is equal to:
(A) $\frac{5}{16}$
(B) $\frac{9}{16}$
(C) $\frac{11}{16}$
(D) $\frac{13}{16}$

Official Ans. by NTA (A)

Allen Ans. (A)

Sol. Total no. of relations $=2^{2 \times 2}=16$
Fav. relation $=\phi,\{(\mathrm{x}, \mathrm{x})\},\{(\mathrm{y}, \mathrm{y})\},\{(\mathrm{x}, \mathrm{x})(\mathrm{y}, \mathrm{y})\}$

$$
\{(\mathrm{x}, \mathrm{x}),(\mathrm{y}, \mathrm{y}),(\mathrm{x}, \mathrm{y})(\mathrm{y}, \mathrm{x})\}
$$

Prob. $=\frac{5}{16}$
17. The number of values of $a \in \mathbb{N}$ such that the variance of $3,7,12 a, 43-a$ is a natural number is:
(A) 0
(B) 2
(C) 5
(D) infinite

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. Mean $=13$
Variance $=\frac{9+49+144+\mathrm{a}^{2}+(43-\mathrm{a})^{2}}{5}-13^{2} \in \mathrm{~N}$
$\Rightarrow \frac{2 \mathrm{a}^{2}-\mathrm{a}+1}{5} \in \mathrm{~N}$
$\Rightarrow 2 \mathrm{a}^{2}-\mathrm{a}+1-5 \mathrm{n}=0$ must have solution as natural numbers
its $D=40 n-7$ always has 3 at unit place
$\Rightarrow \mathrm{D}$ can't be perfect square
So, a can't be integer.
18. From the base of a pole of height 20 meter, the angle of elevation of the top of a tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is:
(A) $15 \sqrt{3}$
(B) $20 \sqrt{3}$
(C) $20+10 \sqrt{3}$
(D) 30

Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\quad \mathrm{PT}=\frac{\mathrm{h}}{\sqrt{3}}=\mathrm{AB}$
$\frac{\mathrm{AB}}{\mathrm{h}-20}=\sqrt{3}$
$\mathrm{h}=3(\mathrm{~h}-20)$
$\mathrm{h}=30$

19. Negation of the Boolean statement $(\mathrm{p} \vee \mathrm{q}) \Rightarrow((\sim \mathrm{r}) \vee \mathrm{p})$ is equivalent to:
(A) $\mathrm{p} \wedge(\sim \mathrm{q}) \wedge \mathrm{r}$
(B) $(\sim p) \wedge(\sim q) \wedge r$
(C) $(\sim p) \wedge q \wedge r$
(D) $\mathrm{p} \wedge \mathrm{q} \wedge(\sim \mathrm{r})$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad \mathrm{P} \vee \mathrm{q} \Rightarrow(\sim \mathrm{r} \vee \mathrm{p})$
$\equiv \sim(p \vee q) \vee(\sim r \vee p)$
$\equiv(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{p} \vee \sim \mathrm{r})$
$\equiv[\sim \mathrm{p} \vee \mathrm{p}) \wedge(\sim \mathrm{q} \vee \mathrm{p})] \vee \sim \mathrm{r}$
$\equiv[\sim q \vee p) \vee \sim r$
Its negation is $\sim \mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$
20. Let $n \geq 5$ be an integer. If $9^{n}-8 n-1=64 \alpha$ and $6^{n}-5 n-1=25 \beta$, then $\alpha-\beta$ is equal to:
(A) $1+{ }^{n} C_{2}(8-5)+{ }^{n} C_{3}\left(8^{2}-5^{2}\right)+\ldots+{ }^{n} C_{n}\left(8^{n-1}-5^{n-}\right.$ ${ }^{1}$)
(B) $1+{ }^{n} C_{3}(8-5)+{ }^{n} C_{4}\left(8^{2}-5^{2}\right)+\ldots+{ }^{n} C_{n}\left(8^{n-2}-5^{n-}\right.$ ${ }^{2}$)
(C) ${ }^{\mathrm{n}} \mathrm{C}_{3}(8-5)+{ }^{\mathrm{n}} \mathrm{C}_{4}\left(8^{2}-5^{2}\right)+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\left(8^{\mathrm{n}-2}-5^{\mathrm{n}-2}\right)$
(D) ${ }^{\mathrm{n}} \mathrm{C}_{4}(8-5)+{ }^{\mathrm{n}} \mathrm{C}_{5}\left(8^{2}-5^{2}\right)+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\left(8^{\mathrm{n}-3}-5^{\mathrm{n}-3}\right)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad \alpha=\frac{(1+8)^{n}-8 n-1}{64}={ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} 8+{ }^{\mathrm{n}} \mathrm{C}_{4} 8{ }^{2}+\ldots$
$\beta={ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} 5+{ }^{\mathrm{n}} \mathrm{C}_{4} 5^{2}+\ldots$.
option (3) will be the answer.
SECTION-B

1. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}$ be a vector such that $\overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{0}$ and $\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=5$. Then, the value of $3(\vec{c} \cdot \vec{a})$ is equal to \qquad -.

Official Ans. by NTA (DROP)

Allen Ans. (Bonus)
Sol. $\vec{a}+\vec{b} \times \vec{c}=0$
$\vec{a} \times \vec{b}+|\vec{b}|^{2} \vec{c}-5 \vec{b}=0$
It gives $\overrightarrow{\mathbf{c}}=\frac{1}{3}(10 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
so $3 \vec{a} \cdot \vec{c}=10$
But it does not satisfy $\vec{a}+\vec{b} \times \vec{c}=0$.
This question has data error.

Alternate (Explanation) :

According to given $\vec{a} \& \vec{b}$
$\vec{a} \cdot \vec{b}=1-2+3=2 \ldots$. (i)
but given equation
$\vec{a}=-(\vec{b} \times \vec{c})$
$\Rightarrow \vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0$
which contradicts.
2. Let $y=y(x), x>1$, be the solution of the differential equation $(x-1) \frac{d y}{d x}+2 x y=\frac{1}{x-1}$, with $y(2)=\frac{1+e^{4}}{2 e^{4}}$. If $y(3)=\frac{e^{\alpha}+1}{\beta e^{\alpha}}$.then the value of $\alpha+\beta$ is equal to \qquad -

Official Ans. by NTA (14)
Allen Ans. (14)
Sol. $\frac{d y}{d x}+\frac{2 x}{x-1} \cdot y=\frac{1}{(x-1)^{2}}$
$y=\frac{1}{(x-1)^{2}}\left[\frac{e^{2 x}+1}{2 e^{2 x}}\right]$
$y(3)=\frac{e^{6}+1}{8 e^{6}}$
$\alpha+\beta=14$
3. Let $3,6,9,12, \ldots$ upto 78 terms and $5,9,13,17, \ldots$ upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to \qquad -.

Official Ans. by NTA (2223)
Allen Ans. (2223)
Sol. For series of common terms
$\mathrm{a}=9, \mathrm{~d}=12, \mathrm{n}=19$
$S_{19}=\frac{19}{2}[2(9)+18(12)]=2223$
4. The number of solutions of the equation $\sin x=$ $\cos ^{2} \mathrm{x}$ in the interval $(0,10)$ is \qquad -.

Official Ans. by NTA (4)
Allen Ans. (4)

Sol. $\quad \sin ^{2} \mathrm{x}+\sin \mathrm{x}-1=0$
$\sin x=\frac{-1+\sqrt{5}}{2}=+\mathrm{ve}$
Only 4 roots
5. For real numbers $a, \mathrm{~b}(a>\mathrm{b}>0)$, let

Area $\left\{(x, y): x^{2}+y^{2} \leq a^{2}\right.$ and $\left.\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \geq 1\right\}=30 \pi$
and
Area $\left\{(x, y): x^{2}+y^{2} \geq b^{2}\right.$ and $\left.\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}=18 \pi$
Then the value of $(a-b)^{2}$ is equal to \qquad -.

Official Ans. by NTA (12)
Allen Ans. (12)
Sol. given $\pi \mathrm{a}^{2}-\pi \mathrm{ab}=30 \pi$ and $\pi \mathrm{ab}-\pi \mathrm{b}^{2}=18 \pi$ on subtracting, we get $(a-b)^{2}=a^{2}-2 a b+b^{2}=12$
6. Let f and g be twice differentiable even functions on $(-2,2)$ such that $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ and $g\left(\frac{3}{4}\right)=0, g(1)=2$ Then, the minimum number

CAREER INSTITUTE
OTA (RAJASTHAN)
of solutions of $f(\mathrm{x}) \mathrm{g}^{\prime \prime}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})=0$ in $(-2,2)$ is equal to \qquad
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. Let $h(x)=f(x) g^{\prime}(x) \rightarrow 5$ roots
$\because \mathrm{f}(\mathrm{x})$ is even \Rightarrow
$\mathrm{f}\left(\frac{1}{4}\right)=\mathrm{f}\left(\frac{1}{2}\right)=\mathrm{f}\left(-\frac{1}{2}\right)=\mathrm{f}\left(\frac{1}{4}\right)=0$
$g(x)$ is even $\Rightarrow g\left(\frac{3}{4}\right)=g\left(-\frac{3}{4}\right)=0$
$g^{\prime}(x)=0$ has minimum one root
$h^{\prime}(x)$ has at last 4 roots
7. Let the coefficients of x^{-1} and x^{-3} in the expansion
of $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, \mathrm{x}>0$, be m and n respectively. If
r is a positive integer such $m n^{2}={ }^{15} \mathrm{C}_{\mathrm{r}} .2^{\mathrm{r}}$, then the value of r is equal to \qquad
Official Ans. by NTA (5)
Allen Ans. (5)
Sol. $\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}} .{ }^{15} \mathrm{C}_{\mathrm{r}} \cdot 2^{15-\mathrm{r}} \mathrm{x}^{\frac{15-2 \mathrm{r}}{5}}$
$\mathrm{m}={ }^{15} \mathrm{C}_{10} 2^{5}$
$\mathrm{n}=-1$
so $\mathrm{mn}^{2}={ }^{15} \mathrm{C}_{5} 2^{5}$
8. The total number of four digit numbers such that each of the first three digits is divisible by the last digit, is equal to \qquad _.

Official Ans. by NTA (1086)
Allen Ans. (1086)
Sol. Let the number is abcd, where a, b, c are divisible by d.

No. of such numbers

$\mathrm{d}=1$,
$9 \times 10 \times 10=900$
$\mathrm{d}=2$
$4 \times 5 \times 5=100$
$d=3$
$3 \times 4 \times 4=48$
$\mathrm{d}=4$
$2 \times 3 \times 3=18$
$\mathrm{d}=5$
$1 \times 2 \times 2=4$
$d=6,7,8,9$
$4 \times 4=16$
9. Let $\mathrm{M}=\left[\begin{array}{cc}0 & -\alpha \\ \alpha & 0\end{array}\right]$, where α is a non-zero real number an $N=\sum_{k=1}^{49} M^{2 k}$. If $\left(I-M^{2}\right) N=-2 I$, then the positive integral value of α is \qquad -.
Official Ans. by NTA (1)
Allen Ans. (1)
Sol. $\quad \mathbf{M}=\left[\begin{array}{cc}0 & -\alpha \\ \alpha & 0\end{array}\right] ; M^{2}=\left[\begin{array}{cc}-\alpha^{2} & 0 \\ 0 & -\alpha^{2}\end{array}\right]=-\alpha^{2} I$
$N=M^{2}+M^{4}+\ldots \ldots .+M^{98}=\left[-\alpha^{2}+\alpha^{4}-\alpha^{6}+\ldots.\right] I$
$=-\alpha^{2} \frac{\left(1-\left(-\alpha^{2}\right)^{49}\right)}{1+\alpha^{2}} . \mathrm{I}$
$\mathrm{I}-\mathrm{M}^{2}=\left(1+\alpha^{2}\right) \mathrm{I}$
$\left(\mathrm{I}-\mathrm{M}^{2}\right) \mathrm{N}=-\alpha^{2}\left(\alpha^{98}+1\right)=-2$

$$
\alpha=1
$$

10. Let $f(x)$ and $g(x)$ be two real polynomials of degree 2 and 1 respectively. If $f(g(x))=8 x^{2}-2 x$, and $g(f(x))=4 x^{2}+6 x+1$, then the value of $f(2)+g(2)$ is \qquad .

Official Ans. by NTA (18)
Allen Ans. (18)
Sol. $\mathrm{f}\left(\mathrm{g}(\mathrm{x})=8 \mathrm{x}^{2}-2 \mathrm{x}\right.$
$g\left(f(x)=4 x^{2}+6 x+1\right.$
So, $g(x)=2 x-1$ $g(2)=3$
$\& f(x)=2 x^{2}+3 x+1$
$f(2)=8+6+1=15$
Ans. 18

