SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

Time: 3 Hours

JEE MAIN TOT GT-10

Max. Marks: 300 M

D) $p \lor \sqcup q$

<u>SECTION – I</u> (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.

MATHEMATICS

1. The incentre of the triangle formed by the coordinate axes and 3x+4y=12 is

A)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 B) $(1,1)$ C) $\left(1, \frac{1}{2}\right)$ D) $\left(\frac{1}{2}, 1\right)$

2. If the line $y = x\sqrt{3}$ cuts the curve $x^3 + y^3 + 3xy + 5x^2 + 3y^2 + 4x + 5y - 1 = 0$ at the points A, B and C then OA.OB.OC (where O is (0, 0))

A)
$$\frac{4}{13} (3\sqrt{3} - 1)$$
 B) $3\sqrt{3} + 1$ C) $\frac{1}{\sqrt{3}} (2 + 7\sqrt{3})$ D) $3\sqrt{3} - 1$

3. The length of projection of the segment joining the points (1,-1,0) and (-1,0,1) to the plane 2x + y + 6z = 1 is equal to

A)
$$\sqrt{\frac{255}{61}}$$
 B) $\sqrt{\frac{237}{41}}$ C) $\sqrt{\frac{137}{41}}$ D) $\sqrt{\frac{155}{61}}$

4. The straight lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ will intersect provided A) $k = \{3, -3\}$ B) $k = \{0, -1\}$ C) $k = \{-1, 1\}$ D) $k = \{0, -3\}$

5. The Boolean expression $(p \land \Box q) \lor q \lor (\Box p \land q)$ is equivalent toA) $\sqcup p \land q$ B) $p \land q$ C) $p \lor q$

6. Minimum distance between the curves $y^2 = 4x$ and $x^2 + y^2 - 12x + 31 = 0$ is equal to A) $\sqrt{20}$ B) $\sqrt{26} - \sqrt{5}$ C) $\sqrt{20} - \sqrt{5}$ D) $\sqrt{5} + \sqrt{20}$

7. Tangents drawn from the point (4,4) to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ meets the circle at A and B. The length of the chord AB equals A) $4\sqrt{3}$ B) $2\sqrt{3}$ C) $2\sqrt{6}$ D) $3\sqrt{2}$

A)
$$4\sqrt{3}$$

B) $2\sqrt{3}$
C) $2\sqrt{6}$
8. $\int \frac{dx}{4\sin^2 x + 4\sin x \cos x + 5\cos^2 x} = ATan^{-1}(B\tan x + c)$ then
A) $A = \frac{1}{4}; B = \frac{1}{2}; C = 1$
B) $A = \frac{1}{2}; B = \frac{1}{4}; C = 1$
C) $A = 1; B = \frac{1}{2}; C = \frac{1}{4}$
D) $A = \frac{1}{4}; B = 1; C = \frac{1}{2}$

9. The solution of the differential equation $\frac{x\frac{dy}{dx} - y}{\sqrt{x^2 - y^2}} = 10x^2$ is A) $\sin^{-1}\left(\frac{y}{2}\right) = 5x^2 + c$ B) $\sin^{-1}\left(\frac{y}{2}\right) = 10x^2 + c$

A)
$$\sin\left(\frac{1}{x}\right) = 5x^{2} + c$$

B) $\sin\left(\frac{1}{x}\right) = 10x^{2} + c$
D) $\sin^{2}\left(\frac{y}{x}\right) = 10x^{2} + cx$

- If [x] stands for the greatest integer function, the value of $\int_{5}^{20} \frac{[x^2]dx}{[x^2-50x+625]+[x^2]}$ is A) 0 B) 1/2 C) 2/15 10. A) 0 B) 1/2 C) 2/15 The following information relates to a sample of size 60. $\sum x^2 = 18000$, $\sum x = 960$. The 11. B) 16 C) 22 D) 44 Let $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, (\alpha \in R)$ such that $A^{64} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then a value of α is A) $\frac{\pi}{2}$ variance is 12. C) $\frac{\pi}{128}$ A) $\frac{\pi}{22}$ D) 0 In a group of 65 people, 40 like cricket, 10 like both cricket and tennis no. of people like 13. tennis only A) 23 B) 24 C) 25 D) 26 Inverse of the function $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 3$ is 14. A) $\log\left(\frac{x-2}{4-r}\right)^{\frac{1}{2}}$ B) $\log\left(\frac{x-3}{4-r}\right)^{\frac{1}{2}}$ C) $\log\left(\frac{x-1}{4-r}\right)^{\frac{1}{2}}$ D) $\log\left(\frac{x-4}{4+r}\right)^{\frac{1}{2}}$ If $S = \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right) + \tan^{-1}\left(\frac{1}{n^2 + 3n + 3}\right) + \dots + \tan^{-1}\left(\frac{1}{1 + (n + 18)(n + 19)}\right)$, then $\tan S = 1$ 15. A) $\frac{17}{n^2 + 20n + 1}$ B) $\frac{20}{n^2 + 20n + 1}$ C) $\frac{18}{n^2 + 19n + 1}$ D) $\frac{19}{n^2 + 19n + 1}$ If the vectors $a\overline{i} + \overline{j} + \overline{k}, \overline{i} + b\overline{j} + \overline{k}, \overline{i} + \overline{j} + c\overline{k} (a \neq b \neq c)$ are coplanar, then $\frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ A) 0 B) - 1 C) 1 D) 2 16. The sum of first four terms of AP is 56. The sum of last four terms is 112. If its first term is 11, 17. then the number of terms is A) 10 B) 11 C) 12 D) 13 18. The no. of zeros at the end of 130! is C) 33 D) 34 $\sum_{r=1}^{n} (-1)^{r} {}^{n}c_{r} \left[\frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots + \infty \right]$ 19. B) $\frac{2^n}{2^n-1}$ C) $\frac{2^n}{2^n+1}$ A) $\frac{1}{2^{n}-1}$ D) $\frac{3^n}{2^n+1}$ If |z| = 5, then the points representing the complex number $-i + \frac{15}{2}$ lies on the circle 20. B) whose centre is (0, -1) and radius = 3 A) whose centre is (0, 1) and radius = 3 D) whose centre is (-1, 0) and radius = 15 C) whose centre is (1, 0) and radius = 15 **SECTION-II** (Numerical Value Answer Type) This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers. Marking scheme: +4 for correct answer, 0 in all other cases. 21. Length of common tangent to the curves $x^{2} + y^{2} = 2$ and $x^{2} + 4y^{2} = 4$ is equal to Area between the curves $y = x^3$ and y = x is 22.
- 23. The maximum value of $3\cos\theta + 5\cos\left(\theta \frac{\pi}{3}\right)$ for any real value of θ is
- 24. If a, b, c are in A.P and one root of the equation $ax^2 + bx + c = 0$ is 2 then the other root is

	SRIG/	AYATRI EDUCATIO	NAL INSTITUTIONS	- INDIA						
	$1+\sin^2 x$	$\cos^2 x$ $2\sin 2x$								
25.	If $f(x) = \sin^2 x$	$1 + \cos^2 x$ $2\sin 2x$	then the maximum value	of $f(x)$ is						
	$\sin^2 x$	$\cos^2 x = 1 + 2\sin 2x$								
	I	<u>SEC</u>	TION – I							
		(SINGLE CORR)	ECT ANSWER TYPE	<u>2)</u>						
T	his section contains 2 \sum and (D) for its answer	0 multiple choice quest	ions. Each question has 4	options (A), (B),						
N	(C) and (D) for its answer, out of which ONLY ONLY option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.									
<u>PHYSICS</u>										
26.	In S.I, the dimension	ons of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is								
	A) $A^{-2}T^{-\frac{1}{2}}I^{2}M^{1}$	B) $A^{-3}T^{-3}L^2M^1$	C) $A^2 T^{\frac{1}{2}} L^{-2} M^1$	D) $A^2 T^{\frac{1}{2}} L^2 M^{-1}$						
27.	A ball rolling off th	e top of a staircase of e	each step of height 20cm.	width 60cm, with initial						
	velocity 54 kmph w	vill just hit nth step, the	$en n = \underline{\qquad}? (g = 10 m/se$	\mathbf{c}^2) D) 25						
28.	A) 50 A body of mass 2 k	g makes an elastic colli	ision with a second body :	at rest and continues to						
	move in the origina body.	ll direction but with 1/.	3 rd of original speed. Wha	it is the mass of second						
•0	A) 1 kg	B) 3 kg	C) 5 kg	D) 6 kg						
29.	A force acts on a 4 What is the work d	kg object so that its po	sition is given as a functions of the seconds	on of time as $x = 5t^2 + 6$.						
	A) 4500 J	B) 5000 J	C) 3000 J	D) 5500 J						
30.	40. A simple harmonic motion is represented by $y = 5 \left[\sin 3\pi t + \sqrt{3} \cos 3\pi t \right] cm$. the initial p									
	particle is	_	L							
	$(A) \frac{\pi}{2}$	B) $\frac{\pi}{2}$	$(C) \frac{\pi}{2}$	D) <i>π</i>						
21	2	4	3							
31.	1. The work done to increase radius of the orbit of a satellite of mass m from 3r to 4r									
	A) $\frac{600m}{3r}$	B) $\frac{0.000}{24r}$	C) $\frac{6m}{6r}$	D) $\frac{OHH}{r}$						
32. If '2M' is the mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water that rises in a capillary tube of radius '2r' then mass of water tube of radius '2r' tube of radi										
	which will rise in a	capillary tube of radiu	is 'r' is	D) M/2						
33.	Two rods A and B	of identical dimensions	s are at temperature 40° C	\therefore If A is heated up to 200 ⁰ C						
	and B up to T ⁰ C, T	hen the new lengths ar	e same. If ratio of the coe	fficients of linear						
	expansion of A and A) $160^{\circ}C$	B is 3 : 4. Then the va B) 230° C	lue of T is C) 250° C	D) 200° C						
34.	1 mole of an ideal r	nonoatomic gas is heat	ed at constant pressure of	f 1 atm from 20° C to 80° C.						
	Work done by gas	is close to (Gas constan	R = 8.31 J/mol. k	D) 201 I						
35.	A) 450 J The equivalent can	B) 600 J acity of the infinite net	C) 499 J work shown in figure (ac	D) 291 J ross AB) is (Canacity of						
	each capacitor is 2	μF)								
	ß	· · / · · · · · · · · · · · · · · · ·								
	A) ∞	B) $\left(\sqrt{3}-1\right)\mu F$	C) $\left(\frac{\sqrt{3}-1}{2}\right)\mu F$	D) $\left(\frac{\sqrt{3}+1}{2}\right)\mu F$						

36. In the circuit shown below, the key k is closed at t =0. The current through the battery is

A)
$$\frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}}$$
 at $t = 0$, $\frac{V}{R_2}$ at $t = \infty$
C) $\frac{V}{R_1}$ at $t = 0$, $\frac{V(R_1 + R_2)}{R_1R_2}$ at $t = \infty$

B)
$$\frac{V}{R_1}$$
 at $t = 0$, $\frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}}$ at $t = \infty$
D) $\frac{V}{R_2}$ at $t = 0$, $\frac{V(R_1 + R_2)}{R_1R_2}$ at $t = \infty$

37. Current in the circuit shown is

A) 1.5 A B) 2A C) 0.6 A D) 1 A **38.** Two parallel plane sheets 1 and 2 carry uniform charge densities σ_1 and σ_2 (see figure). The electric field in the region marked II is $(\sigma_1 > \sigma_2)$

39. A rigid square loop of side a and carring current *i*₂ is lying on a horizontal surface near a long current *I*₁ carring wire in the same plane as shown in fig. The net force on the loop due to the wire will be?

comprising of positive or negative decimal numbers.

Marking scheme: +4 for correct answer, 0 in all other cases.

- 46. A magnetic compass needle oscillates 30 times per minute at a place where the dip is 45° , and 40 times per minute where the dip is 30° . If B_1 and B_2 are respectively the total magnetic field due to the earth at the two places, then the ratio B_1 / B_2 is best given by
- 47. The circuit shown below contains two ideal diodes, each with a forward resistance of $50 \Omega_{-}$. If the battery voltage is 6V, the current through the 100 Ω_{-} resistance (in amperes) is

- 48. In a line of sight radio communication, a distance of about 50 km is kept between the transmitting and receiving antennas. If the height of the receiving antenna is 70m, then the minimum height of the transmitting antenna should be in metre is ----- (Radius of the Earth = 6.4×10^6 m)
- 49. A solid metal cube of edge length 2cm is moving in a positive y direction at a constant speed of 6 m/s. There is a uniform magnetic field of 0.1 T in the positive z direction. The potential difference between the two faces of the cube perpendicular to the x axis, is in mV is -----
- 50. A moving coil galvanometer has resistance 50 Ω and it indicates full deflection at 4 mA current. A voltmeter is made using this galvanometer and a 5 k Ω resistance. The maximum voltage, that can be measured using this voltmeter, will be close to in volt is -----

<u>SECTION – I</u>

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.**

CHEMISTRY

SYLLABUS: 51. Given

52.

$$\begin{split} H_{2_{(g)}} &+ \frac{1}{2}O_{2_{(g)}} \to H_2O_{(l)}; \Delta H = -268KJ / mol \\ H_{2_{(g)}} &+ \frac{1}{2}O_{2_{(g)}} \to H_2O_{(g)}; \Delta H = -214KJ / mol \end{split}$$

The molar enthalpy of vapourisation of water will beA) 214KJ/molB) -482KJC) -54KJ/molD) -46KJ/molAt 300K, in one litre vessel N_2O_4 is allowed to attain equilibrium $N_2O_{4_{(g)}}$ D) $2NO_2$. At

equilibrium, the total pressure is 500 mm Hg. When 40% N_2O_4 is dissociated, the Kp value for the reaction is A) 100 B) 280 C) 380 D) 200

- A) 100
 B) 280
 C) 380
 D) 200

 53.
 If the solubility of $Al_2(SO_4)_3$ in water is 'X' mol L⁻¹, then its solubility product in mol⁵L⁻⁵ is

 A) $36X^5$ B) $108X^5$ C) $64X^3$ D) $180X^5$
- 54. A Hydrocarbon 'X' decolourises bromine water. On hydrogenation, 'X' gives 2 methyl propane. On ozonolysis, 'X' gives acetone as one of the products. The hydrocarbon 'X' is

A)
$$CH_{3} - CH = CH_{2}$$

B) $CH_{3} - CH = CH_{2}$
C) $CH_{3} - CH = CH - CH_{3}$
C) $CH_{3} - CH = CH - CH_{3}$
D) $CH_{3} - CH_{3} - CH_{2}$

55. Which of the following carbonium ions is most stable?

A)
$$CH_{3} \overset{+}{C}H_{2}$$

B) $CH_{3} - \overset{+}{C}-CH_{3}$
C) $CH_{3} - \overset{+}{C}H - CH_{3}$
D) $\begin{array}{c} CH_{3} - \overset{+}{C}-CH_{3} \\ CH_{3} - \overset{+}{C}-CH_{2} \\ CH_{3} - \overset{+}{C}-CH_{2} \\ CH_{3} \end{array}$

56. In the presence of anhydrous AlCl₃, benzene reacts with acetyl chloride to give
A) Acetophenone B) Toluene C) Ethyl benzene D) Chloro benzene
57. Which of the following is the example of S_N2 reaction?

A)
$$CH_{3}CHCH_{3} + OH^{-} \rightarrow CH_{3}CHCH_{3} + Br^{-}$$
$$Br \qquad OH$$

B)
$$CH_3Br + OH^- \rightarrow CH_3OH + Br^-$$

C)
$$CH_3CH_2OH \xrightarrow{-H_2O} CH_2 = CH_2$$

D)
$$\begin{array}{c} CH_3 & CH_3 \\ \downarrow \\ CH_3 - C - CH_3 + OH^- \rightarrow CH_3 - C - O - CH_3 + Br^- \\ \downarrow \\ Br & H \end{array}$$

	SKIGATAIKI EL	JUCATIONA		10113 - 1	NDIA		
58.	. The gas bleaches the colour of flowers by reduction, while the other gas by oxidation respectively are						
	A) CO and Cl_2 B) Sl_2	O_2 and Cl_2	C) H_2S and B	r_2	D) NH_3 and SO_2		
59.	The first, second, third and fourth ionization potential values of an elements are 8.3 e.V, 25.1						
	e.V, 37.92 e.V and 259.3 e.V res	pectively, the	element is				
C 0	A) Aluminium B) Si	licon	C) Magnesium	1	D) Sodium		
60.	How many d – electrons in Cu ⁺ (atomic number $Z = 29$) can have the spin quantum						
	number $\left(-\frac{1}{2}\right)$?						
	A) 4 B) 6		C) 9		D) 5		
61.	Match the ores (column A) with the metals (column B)						
	Column A D. Sidorita		Column B				
	I) Suerne II) Kaolinite		a) Zille b) conner				
	III) Malachite		c) Aluminium	l			
	IV) Calamine		d) Iron				
	A) I – b, II – c, III –d, IV –a		B) $I - c$, $II - d$,	III –a, IV	′−b		
	C) $I - a$, $II - b$, $III - c$, $IV - d$		D) $I - d$, $II - c$,	, III –b, IV	∕ −a		
62.	The compound that inhibits the growth of tumors is						
	A) $Cis^{-} \lfloor pdCl_{2} (NH_{3})_{2} \rfloor$		B) $Cis ptCl_2$	$\left(NH_3\right)_2$			
	C) trans $\left[pd(Cl)_2(NH_3)_2 \right]$		D) $trans [ptCl]$	$l_2 \left(NH_3 \right)_2$]		
63.	The increasing order of the P ^{ka} values of the following compounds is						
	он он		ОН	OH			
			\bigcirc	\bigcirc			
			NO ₂	$\langle - \rangle$			
	OMe $(B)^2$		(C)	(D)			
	(A)			-			
	$ A) B < C < D < A \qquad B) D $	< A < C < B	C) C < B < A \cdot	< D	D) A < B < C < D		
04.	Consider the following reduction $Ca^{+2} + 2a^{-} \rightarrow Ca^{-} E^{0} = 2.87W$	$M_{2}^{+2} + 2 e^{-}$	$M_{\alpha} E^0 \rightarrow 2.6V$				
	$Ca^{-} + 2e \rightarrow Ca, E^{-} = -2.8/V$, $Mg^{-} + 2e \rightarrow Mg, E^{-} = -2.36V$						
	$Ni^{-} + 2e \rightarrow Ni, E^{\circ} = -0.25V, Z$	$2n^2 + 2e \rightarrow Zi$	$h, E^{\circ} = -0.76V$				
	The reducing power of the metals increases in the order $D = \frac{1}{2} \frac{1}{2}$						
	$\begin{array}{l} A \end{pmatrix} C u < Z n < M g < N i \\ C \end{pmatrix} C g < M g < Z n < N i \end{array}$		D) T < 2n < N	$\log < Ca$			
65	C) $Ca < Mg < Zn < Ni$	aquation has	D) Zn < Ni < 0	.u < mg			
03.	At high pressure, valuer waar s		UIIICS	a			
	A) PV = RT B) P'	$V = RT + \frac{u}{V}$	C) $PV = RT -$	$\frac{u}{V}$	D) $PV = RT + Pb$		
66.	5. In this curve, the intercept and slope respectively are						
Intercent							
	Intercept						
	$\ln K$ Slope						
			\sim $\frac{1}{T}$				

67. The emulsifier for olive oil in water emulsion is A) Soap B) Mercuric oxide C) egg albumin D) Kerosene **68.** In the chemical reaction $\frac{NaNO_2}{HCL 278K} \land \xrightarrow{HBF_4} B$ The compounds "A" and "B" respectively are A) Nitrobenzene and fluorobenzene B) Phenol and benzene C) Benzene diazonium chloride and flurobenzene D) Nitrobenzene and chlorobenzene Which of the following undergoes cannizaro reaction? **69**. a) HCHO **b**) C_6H_5CHO c) $Cl_3C - CHO$ **d**) $(CH_3)_2 C - CHO$ A) Only a and b B) Only b and c C) Only c and d D) All a, b, c, d 70. Consider the acidity of the carboxylic acids I PhCOOH II $o - NO_2C_6H_4COOH$ **III** $p - NO_2C_6H_4COOH$ **IV** $m - NO_2C_6H_4COOH$ Which of the following order is correct? A) II > III > IV > I B) II > IV > III > I C) II > IV > I > III D) I > II > III > IV

<u>SECTION-II</u> (Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers Marking scheme: +4 for correct answer, 0 in all other cases.

- 71. The number of octahedral voids present per unit cell in a f.c.c arrangement are
- 72. The number of P O P bonds in cyclic metaphosphoric acid is
- 73. The spin magnetic moment of $\left[Ti(H_2O)_6\right]^{+3}$ is \sqrt{x} . What is the value of 'x'.
- 74. How long in hours (approximately) should water be electrolyzed by passing through 100 Ampere current so that the oxygen released can completely burn 27.66 g of diborane? (Atomic weight of boron 10.8)
- 75. The number of alcoholic isomers with the formula $C_4 H_{10} O$ is