SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

Time: 3 Hours

JEE MAIN TOT GT-2

Max. Marks: 300 M

<u>SECTION – I</u>

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme:** +4 for correct answer, 0 if not attempted and -1 if not correct.

MATHEMATICS

1.	If $ Z-1 + Z+3 \le 18$, then the range of values of $ Z-9 $ is				
	A)[1,19]	B) [1,18]	C) [1,9]	D) [2,5]	
2.	The average weight	of a class of 14 students	is 45 kg the teache	r is included, the average	
	weight increases by 1kg then the weight of teacher is				
	A) 60	B) 48	C) 46	D) 54	
3.	The sum of all real roots of the equation $ x-2 ^2 - 3 x-2 + 2 = 0$ is				
	A) 2	B) 4	C) 6	D) 8	
4.	ABCD is a quadrilateral, 4,5,6 and 7 points are marked respectively on the sides AB, BC,				
	CD and DA then the number of triangles with vertices on different sides is				
	A) 342	B) 458	C) 638	D) 562	
5.	$(1+\sqrt{3})^6 + (1-\sqrt{3})^6 =$				
	A) 348	B) 416	C) 198	D) 296	
6.	If t_n denotes n^{th} term of the series $3+4+7+12+$ then t_{30}				
	A) 841	B) 844	C) 638	D) 756	
7.	Consider the stateme	ents			
	r: If 5 is greater then 7, then 1+5 =6				
	s : If π is irrational , then π + 2 is rational the truth values of r and s are respectively				
	A)T,T	B) T, F	C) F, T	D) F,F	
8.	If $P = \{(x, y) : y = 4^x, x \in R\}$ and $Q = \{(x, y) : y = x, x \in R\}$ then $P \cap Q$				
	A) is a null set		B) is a singleton set		
	C) is an infinite set		D) have two elements in common		
9.	The equation of the	plane contains the line $\frac{1}{2}$	$\frac{x-x}{3} = \frac{y-2}{2} = \frac{z}{1}$ and	d the point $(1,1,1)$ is	
	A) $x + y + z = 3$	B) $x + y - z = 3$	C) $x+y+2z=4$	D) $3x + y + z = 5$	

10.	If $(x_1, y_1), (x_2, y_2)$ are extremities of a focal chord of the parabola $y^2 = 4x$ then				
	$(x_1, y_1), (x_2, y_2)$ are extremites of a focal chord of the parabola $y = 4x$ then $6x_1x_2 + 3y_1y_2 =$				
	A) -2	B) -6	C) 2	D) 6	
11.				+2=0 and $7x-y+3=0$. If the	
	diagonals of the rhombus intersect at $P(1,2)$ and the vertex A(different from the origin) is on the y – axis, then the ordinate of A is :				
	A) 2	B) $\frac{5}{2}$	C) $\frac{7}{2}$	D) $\frac{7}{4}$	
	<i>,</i>	2	2	<i>L</i>) 4	
12.	$\int_{\pi/2}^{\pi} \sqrt{1 + \cos 2x} dx =$				
	$A^{\pi/2} - \sqrt{2}$	B) $\sqrt{2}$	C) O	D) $\sqrt{3}$	
13.	Area bounded by the	e curve $x(y^2 + 4) = 8$ an	d Y axis is		
	A) π	B) $\frac{\pi}{2}$	C) 2π	D) 4π	
	, ,	Z		,	
14.		lifferential equation $f($	· ·		
. –				+ cx D) $y = x + f(x) + c$	
15.	Sum of values P for A) 1	which, $x + y + z = 1, x + 2$ B) 2	2y+4z = p and $xC) 3$	$z+4y+10z = p^2$ have a solution is D) 8	
16.		/	,	/ -	
10.	Let $\overline{a} = 2\overline{i} + \overline{j} - 2\overline{k}$ and $\overline{b} = \overline{i} + \overline{j}$ let \overline{c} be a vector such that $ \overline{c} - \overline{a} = 3$, $ (\overline{a} \times \overline{b}) \times \overline{c} = 3$ and the angle between \overline{c} and $\overline{a} \times \overline{b}$ be 30° then $\overline{a}.\overline{c} =$				
	angla hotwoon a and	$a \times b$ be 20^0 then $a = -$			
		1	_ 25		
	angle between c and A) 2	$a \times b$ be 30° then $a.c =$ B) $\frac{1}{8}$	C) $\frac{25}{8}$	D) 8	
17	A) 2	B) $\frac{1}{8}$	C) $\frac{25}{8}$	D) 8	
17.	A) 2	B) $\frac{1}{8}$	0		
	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52	$B) \frac{1}{8}$ $\frac{98 x^{3}}{B} = B 0.62$	C) $\frac{25}{8}$ C) 0.72	D) 8 C) 0.82	
	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52	$B) \frac{1}{8}$ $\frac{98 x^{3}}{B} = B 0.62$	0		
18.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x^{-1}$ A) 1	B) $\frac{1}{8}$ $\frac{98 x^3}{1} =$ B) 0.62 2 then $\frac{dy}{dx} =$ B) -1	0		
18.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x^{-1}$ A) 1	B) $\frac{1}{8}$ $\frac{98 x^3}{1} =$ B) 0.62 2 then $\frac{dy}{dx} =$ B) -1	C) 0.72	C) 0.82	
18.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \cdot \tan x}, x \in (x + y)$ A) has one minima points	B) $\frac{1}{8}$ $\frac{1}{8} = \frac{1}{100} = \frac{1}$	C) 0.72 C) 0 B) has one may	C) 0.82 D) 2 xima point	
18.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \tan x}, x \in (x + y)$ A) has one minima points of the constant of the co	B) $\frac{1}{8}$ $\frac{1}{8} = \frac{1}{100} = \frac{1}$	C) 0.72 C) 0	C) 0.82 D) 2 xima point	
18.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \cdot \tan x}, x \in (x + y)$ A) has one minima points	B) $\frac{1}{8}$ $\frac{1}{8} = \frac{1}{100} = \frac{1}$	C) 0.72 C) 0 B) has one may	C) 0.82 D) 2 xima point	
18. 19.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \tan x}, x \in (x + y)$ A) has one minima points of the constant of the co	B) $\frac{1}{8}$ $\frac{1}{8} = \frac{1}{100} = \frac{1}$	C) 0.72 C) 0 B) has one may	C) 0.82 D) 2 xima point	
18. 19.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \cdot \tan x}, x \in (x + x)$ A) has one minima points of the constant of the	B) $\frac{1}{8}$ $\frac{1}{8} \frac{1}{8} \frac{1}{8$	 C) 0.72 C) 0 B) has one max D) decreasing C) 2π ION-II 	C) 0.82 D) 2 xima point D) 3π	
18. 19. 20.	A) 2 $\lim_{x \to 0} \frac{(\sin x - x)^2 + (1 - \cos x)^2}{x^5 \sin x}$ A) 0.52 If $\cos(x + y) + e^{x + y} = x$ A) 1 $f(x) = \frac{x}{1 + x \cdot \tan x}, x \in (1 + x)$ A) has one minima points $\sum_{r=0}^{\infty} \cot^{-1}(1 + r + r^2) = x$ A) π	B) $\frac{1}{8}$ $\frac{1}{8} \frac{1}{8} \frac{1}{8$	 C) 0.72 C) 0 B) has one max D) decreasing C) 2π <u>ION-II</u> ue Answer Type) 	C) 0.82 D) 2 xima point D) 3π	

Marking scheme: +4 for correct answer, 0 in all other cases.

- 21. The equation of the locus of the mid points of the chord of the circle $x^2 + y^2 = 4$ that substends a right angle at its centre is a circle of the form $x^2 + y^2 = r^2$, then r =
- 22. The distance between the foci of the ellipse $x = 5\cos\theta$, $y = 13\sin\theta$ is
- 23. $\int \frac{1}{(x^2+4)(x^2+9)} dx = \frac{1}{K} \left[\frac{1}{l} \tan^{-1} \frac{x}{l} \frac{1}{m} \tan^{-1} \frac{x}{m} \right]$ then $\frac{m}{l} =$
- 24. A unbiased die is thrown twice and the sum of the numbers appearing on the upper face is observed to be 6. The probability that the number 4 has appeared at least once is
- 25. If $\overline{a} = -\overline{i} + \overline{j} + \overline{k}$ and $\overline{b} = 2\overline{i} + \overline{k}$ then \overline{c} is a vector coplanar with $\overline{a}, \overline{b}$ and perpendicular to \overline{c} and $\overline{a.c} = 7$ is of the form $x\overline{i} + y\overline{j} + z\overline{k}$, then (x + y + z) =

<u>SECTION – I</u>

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme:** +4 for correct answer, 0 if not attempted and -1 if not correct.

PHYSICS

26. The equation of stationary wave is $y=-4\sin\left(\frac{\pi x}{5}\right)\cos(100\pi t)$. The amplitude of the progressive

wave which produced the stationary wave is

- A) 1m
 B) 2m
 C)4m
 D)8m
 27 A charge Q is placed at each of the opposite corners of a square. A charge q is placed at each of the other two corners. If the net electrical force on Q is zero, then Q/q equals A) -1
 B) 1
 C) -1/√2
 D) -2√2
- 28 The equivalent capacity between the points 'A' and 'B' in the following figure will be

A) 9 µF	B) 1 µf	C) 4.5µF	D) 6µF
When a battery	connected across a	resistor of 16Q, the voltage	e across the resistor

- When a battery connected across a resistor of 16Ω, the voltage across the resistor is 12V. When the same battery is connected across a resistor of 10Ω, voltage across it is 11V. The internal resistance of the battery in ohm is

 A) 10/7
 B) 20/7
 C) 25/7
 D) 30/7
- **30** The resistance of a wire is 5 ohm at 50°*C* and 6 ohm at 100°C. The resistance of the wire at 0°C will be: A) 2 ohm B) 1 ohm C) 4 ohm D) 3 ohm
- A) 2 ohm B) 1 ohm C) 4 ohm D) 3 ohm **31 Magnetic field induction at the center of a circular coil of radius 5cm and carrying a current 0.9A is (in SI units)** (\in_0 =absolute permittivity of air in S.I. unit velocity of light $\mathbf{c} = 3 \times 10^8 m s^{-1}$)

A)
$$\frac{1}{\epsilon_{o} \ 10^{16}}$$
 B) $\frac{10^{16}}{\epsilon_{o}}$ C) $\frac{\epsilon_{o}}{10^{16}}$ D) $10^{16} \epsilon_{o}$

- 32 The time constant of inductance coil is 3milli sec. When a 90 Ω resistance is joined in series, then the time constant becomes 0.5 milli sec. The inductance and the resistance of the coil are
- A) 54 mH, 18Ω B) 14 mH, 42Ω C) 42 mH, 14Ω D) 14mH, 60Ω
 33 The equation of an alternating voltage is E=220 sin(ωt+π/6) and the equation of the current in the circuit is I=10 sin(ωt+π/6). The the impedance of the circuit is A) 10 Ω B) 22 Ω C) 11 Ω D) 17 Ω
- 34 A parallel plate condenser consists of two circular plates each of radius 2cm separated by a distance of 0.1mm. A time varying potential difference of 5×10¹³ V/ms is applied across the plates of the condenser. The displacement current is
- A) 5.50 A B) $5.5\hat{6} \times 10^2$ A C) 55.6×10^3 A D) 2.28×10^4 A 35 An electron is accelerated in an electric field of 40V cm⁻¹. If e/m of electron is 1.76×10^{11} CKg⁻¹,
 - the acceleration isA) $14.0 \ge 10^{14} \text{ ms}^{-2}$ B) $14.0 \ge 10^{10} \text{ ms}^{-2}$ C) $7.0 \ge 10^{10} \text{ ms}^{-2}$ D) $7.04 \ge 10^{14} \text{ ms}^{-2}$
- 36 In system, a particle A of mass m and charge -2q is moving in the nearest orbit around a very heavy particle B having charge +q. Assuming Bohar's model of the atom to be applicable to this system, the orbital angular velocity of the particle A is

A)
$$\frac{2\pi m^2 q^2}{\epsilon_0 h^4}$$
 B) $\frac{3\pi m^2 q^2}{\epsilon_0^3 h^4}$ C) $\frac{2\pi m q^4}{\epsilon_0^2 h^3}$ D) $\frac{5\pi m^2 q^3}{\epsilon_0^3 h^2}$

- 37 If an object is placed 10 cm in front of a convex mirror of focal length 20cm, then distance of the image from the mirror is
- A) 10/3 cm
 B) 20/3 cm
 C) 10 cm
 D) 40/3 cm **38** Through a narrow slit of width 2mm, diffraction pattern is formed on a screen kept at a distance 2m from the slit. The wavelength of the light used is 6330A° and falls normal to the slit and screen. Then the distance between the two minima on either side of the central maximum is

 A) 12.7 mm
 B) 1.27 mm
 C) 2.532 mm

39 Three forces $F_1 = a(i+j+k)F_2 = 2i-3j+4k$ and F_3 =8i-7j+6k act simultaneously on a particle. If the particl is in equilibrium, the value of a is A) 10 B) -10 C) 8 D) 2

40 The velocity time graph of a body is as follows. What is the displacement in 5sec?

- 41 The variation of horizontal and vertical distances with time are given by y=8t-4.9 t², x=6t with MKS units. Then, the velocity of projection is
 A) 8 m/s
 B) 6m/s
 C) 10 m/s
 D) 14 m/s
- 42 A body of mass 2kg slides down with an acceleration of 3 m/s^2 on a rough inclined plane having a slope of 30°. The external force required to take the same body up the plane with the same acceleration will be $(g=10m/s^2)$
- A) 4N
 B) 20N
 C) 14N
 D) 6N
 A pump of 200 W lifts 2 Kg of water per second from a depth of 10 m and pumps out with a velocity of

A)
$$200 \text{ms}^{-1}$$

B)
$$2 \text{ ms}^{-1}$$
 C) 10ms^{-1}

44 Four identical spheres each of mass m and R are arranged touching each other on horizontal surfaces as shown in figure. Find the centre of mass of the system from the centre of any sphere.

D) 5 ms⁻¹

A) 2R B)
$$R/\sqrt{3}$$
 C) R/2 D) $\sqrt{2}R$

45 In materials like aluminium and copper, the correct order of magnitude of various elastic moduli is:

- A) Young's moduli < shear moduli < bulk moduli
- B) Bulk moduli < shear moduli < Young's moduli
- C) Shear moduli < Young's moduli < bulk moduli
- D) Bulk moduli < Young's moduli < shear moduli

SECTION-II

(Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers. Marking scheme: +4 for correct answer, 0 in all other cases.

- 46. The compressibility of water is 4×10^{-5} per unit atmospheric pressure . The decrease in volume of $100 cm^3$ water under a pressure of 100 atm will be cm^3 ?
- 47 At the mouth of the tap, the area of cross-section is 2.0 cm² and the speed of water is 3m/s. The area of cross-section of the water column 80 cm below the tap in cm^2 is
- 48 A particle moves according to the equation $x = a \cos\left(\frac{\pi}{2}t\right)$. The distance covered by it in

terms of amplitude the time interval between t=0 to t=3s is

- 49 A metal wire is suspended vertically from a rigid support . When loaded with a weight in air, it extends by 0.4 mm and when the weight is immersed completely in water , the extension is reduced to 0.2 mm. Then the relative density of the material of the suspended weight is
- 50 The co-efficient of real expansion of a liquid is $7 \times 10^{-4} / {}^{0}C$. The co-efficient of liner expansion of the vessel is $1 \times 10^{-5} / {}^{0}C$. The co-efficient of apparent expansion of the liquid in the order of $10^{-5} / {}^{0}C$

<u>SECTION – I</u> (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.

CHEMISTRY

51.	A stream of electrons from potential difference V estimates the value of h/λ (where	u . If e and m are cha	rge and mass of an elect	ron, respectively, then	
	A) mev	B) 2 mev	C) \sqrt{mev}	D) $\sqrt{2mev}$	
52.	In which of the following	g molecules all bond l	engths are not equal ?		
	A) SF_6	B) PCl_5	C) BCl ₃	D) CCl ₄	
53.	At very high pressures, the compressibility factor of one mole of a gas is given by :				
	A) $1 + \frac{Pb}{RT}$	B) $\frac{Pb}{RT}$	C) $1 - \frac{Pb}{PT}$	D) $1 - \frac{b}{(VRT)}$	
		<u>R1</u>	M	(VKI)	
54.	Which one of the following cannot function as an oxidizing agent ?				
	A) <i>I</i> ⁻	B) <i>S</i> _(s)	C) $NO_{3(aq)}^{-}$	D) $Cr_2O_7^{2-}$	
55.	The numbers of protons	, electrons and neutr	ons in a molecule of hea	vy water are respectively	
	A) 8,10,11	B) 10,10,10	C) 10,11,10	D) 11,10,10	
56.	Which of the following a	toms has the highest	first ionization energy ?		
	A) Rb	B) Na	C) K	D) Sc	
57.	The active mass of water	if density of water is	s 1 g/cc is		
	A) 5.55	B) 55.5	C) 0.55	D) data is sufficient	
58.	Chlorine act as bleaching agent only in presence of				
	A) dry air	B) Moisture	C) Sunlight	D) Pure oxygen	
59.	Which one of the followi	ng is not a state funct	tion ?		
	A) Internal energy	B) Work	C) Entropy	D) Free energy	
60.	How many corners of Si	O_4 units are shared in	n the formation of three	dimensional silicates ?	
	A) 3	B) 2	C) 4	D) 1	

75. What is the P^{H} of $10^{-4}MOH$ solution at 330K, if K_{W} at 330. K is $10^{-13.6}$?