JEE MAIN TOT GT-7

Max. Marks: 300 M

MATHEMATICS

1. Let S denote the set of all values of λ for which the system of equations

$$
\begin{aligned}
& \lambda x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+\lambda x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+\lambda x_{3}=1
\end{aligned}
$$

is in-consistent.
Then $n(S)$ and $\sum_{\lambda \in S}|\lambda|$ respectively are
A) 1,1
B) 2,1
C) 1,2
D) 3,1
2. The roots of the equation
$(x-2018)(x-2019)+(x-2019)(x-2020)+(x-2020)(x-2018)=0$ are
A) imaginary
B) real and distinct
C) real and equal
D) rational and equal
3. The vector $\bar{a}=\alpha \bar{i}+2 \bar{j}+\beta \bar{k}$ lies in the plane of the vector $\bar{b}=\bar{i}+\bar{j}$ and $\bar{c}=\bar{j}+\bar{k}$ and bisects the angle between \bar{b} and \bar{c} then which of the following gives possible values of α and β.
A) $\alpha=2, \quad \beta=2$
B) $\alpha=1, \beta=2$
C) $\alpha=2, \quad \beta=1$
D) $\alpha=1, \beta=1$
4. The point represented by the complex number $2-i$ is rotated about $(1,0)$ through an angle of $\frac{\pi}{2}$ in anti-clockwise direction. Then the new position of the point is
A) $1+2 i$
B) $-1+2 i$
C) $2+i$
D) $-1-2 i$
5. A data consists of \mathbf{n} observations $x_{1}, x_{2}, \ldots . x_{n}$. If $\sum_{i=1}^{n}\left(x_{i}+1\right)^{2}=9 n$ and $\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}=5 n$, Then the standard derivation of this data is
A) $\sqrt{5}$
B) $\sqrt{7}$
C) 2
D) 5
6. Let α be a root of $x^{2}+x+1=0$ and suppose that a fair die is thrown 3 times. If a,b,c are the numbers shown on the die, then the probability that $\alpha^{a}+\alpha^{b}+\alpha^{c}=0$ is
A) $\frac{2}{36}$
B) $\frac{1}{27}$
C) $\frac{1}{72}$
D) $\frac{2}{9}$
7. The number of rational terms in the expansion of $\left(5^{\frac{1}{6}}+2^{\frac{1}{8}}\right)^{100}$ is
A) 4
B) 5
C) 6
D) 7
8. If α and β are the roots of the quadratic equation $3 x^{2}-16 x+5=0$, then $\operatorname{Tan}^{-1} \alpha+\operatorname{Tan}^{-1} \beta-\tan ^{-1}\left(\frac{\alpha+\beta}{1-\alpha \beta}\right)=$
A) 0
B) π
C) $\frac{\pi}{2}$
D) $-\pi$
9. If $p \rightarrow(q V r)$ is false, then the truth values of $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are respectively
A) $\mathrm{T}, \mathrm{T}, \mathrm{T}$
B) F,T,T
C) F,F,F
D) T,F,F
10. The void relation in a set A is
A) Refletive
B) Reflexive and symmetric
C) Reflexive and transtive
D) Trivially symmetric and transtive
11. $\underset{x \rightarrow 0}{\operatorname{Lt} \frac{\int_{0}^{x} \sin ^{3} t \cdot \cos t d t}{x^{4}}}$
A) 0.25
B) 2.5
C) 5.2
D) 0.52
12. If $\mathbf{y}=\operatorname{Tan}^{-1}\left(\frac{1}{1+x+x^{2}}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{x^{2}+3 x+3}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{x^{2}+5 x+7}\right)$ then $y^{1}(0)=$
A) $\frac{-3}{10}$
B) $\frac{-5}{10}$
B) $-\frac{9}{10}$
C) $-\frac{7}{10}$
13. $\int \frac{(1-\cos \theta)^{\frac{2}{7}}}{(1+\cos \theta)^{\frac{9}{7}}} \mathbf{d} \theta=$
A) $\frac{7}{11}\left(\sin \frac{\theta}{2}\right)^{11 / 7}+c$
B) $\frac{2}{11}\left(\cos \frac{\theta}{2}\right)^{11 / 7}+c$
C) $\frac{7}{11}\left(\operatorname{Tan} \frac{\theta}{2}\right)^{11 / 7}+c$
D) $\frac{11}{7}\left(\operatorname{Tan} \frac{\theta}{2}\right)^{11 / 7}+c$
14. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{2-\operatorname{Sin} \theta}{2+\operatorname{Sin} \theta}\right) d \theta=$
A) 0
B) 1
C) 2
D) -1
15. The differential equation having the general solution $y=c(x-c)^{2}$ where \mathbf{c} is an arbitrary constant.
A) $\left(y^{1}\right)^{2}=4 y^{2}\left(x y^{1}-2 y\right)$
B) $\left(y^{1}\right)^{3}=4 y\left(x y^{1}-2 y\right)$
C) $\left(y^{1}\right)^{3}=y\left(x^{2} y^{1}-y\right)$
D) $\left(y^{1}\right)^{3}=2 y\left(x y^{1}-2 y\right)$
16. The locus of the point represented by $x=t^{2}+t+1, y=t^{2}-t+1$ is
A) $x^{2}-2 x y+y^{2}-2 x-2 y+4=0$
B) $x^{2}+2 x y+y^{2}-2 x-2 y+4=0$
C) $x^{2}-2 x y+y^{2}+2 x+2 y+4=0$
D) $x^{2}-2 x y-y^{2}+2 x+2 y-4=0$
17. If the lines $x=a y+b, z=c y+d$ and $x=a^{1} z+b^{1}, y=c^{1} z+d^{1}$ are perpendicular.
A) $a b^{1}+b c^{1}+1=0$
B) $b b^{1}+c c^{1}+1=0$
C) $c c^{1}+a+a^{1}=0$
D) $a a^{1}+c+c^{1}=0$
18. If $A\left(2, \frac{1}{2}\right), B\left(3, \frac{1}{3}\right), C\left(4, \frac{1}{4}\right), D\left(K, \frac{1}{K}\right)$ are Concyclic the $\mathrm{K}=$
A) $\frac{1}{4}$
B) $\frac{1}{14}$
C) $\frac{1}{24}$
D) $\frac{1}{5}$
19. The length of the perpendicular from the focus \mathbf{S} of the parabola $y^{2}=4 a x$ on the tangent at \mathbf{p} is
A) $\sqrt{O S . S P}$
B) $O S . S P$
C) $O S+O P$
D) None
20. If the equation $(10 x-5)^{2}+(10 y-4)^{2}=\lambda^{2}(3 x+4 y-1)^{2}$ represents a hyperbola then
A) $-2<\lambda<2$
B) $\lambda>2$
C) $\lambda<-2, \lambda>2$
D) $0<\lambda<2$

SECTION-II

(Numerical Value Answer Type)
This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers.
Marking scheme: +4 for correct answer, 0 in all other cases.
21. Let $f(x)=\frac{1}{1+2^{1-2 x}}$ Then the value of $f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+\ldots \ldots \ldots .+f\left(\frac{2019}{2020}\right)$ is
22. The number of different words which can be formed by taking 3 letters at a time out of the letters of the word 'POISSION' is
23. The sum of $\mathbf{1 0 1}$ terms of an A.P. is $\mathbf{1 2 1 2}$.The middle term is
24. The number of values of ' a ' for which the pair of lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are at right angles to each other is
25. The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide then the value of b^{2} is

SECTION - I

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B),
(C) and (D) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: $\mathbf{+ 4}$ for correct answer, 0 if not attempted and $\mathbf{- 1}$ if not correct.

PHYSICS

26. A car approaching a crossing at a speed of $20 \mathrm{~m} / \mathrm{s}$ sounds a horn of frequency 628 Hz . When 80 m from the crossing the apparent frequency heard by an observer 60 m from the crossing on the straight road which crosses the road at right angles is (velocity of sound $=330 \mathrm{~m} / \mathrm{sec}$)
A) 660 Hz
B) 680 Hz
C) 640 Hz
D) 690 Hz
27. A diatomic molecule is made of two masses m_{1} and m_{2} which are separated by a distance r. If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by (n is an integer)
A) $\frac{\left(m_{1}+m_{2}\right)^{2} n^{2} h^{2}}{2 m_{1}{ }^{2} m_{2}{ }^{2} r^{2}}$
B) $\frac{n^{2} h^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}$
C) $\frac{2 n^{2} h^{2}}{\left(m_{1}+m_{2}\right) r^{2}}$
D) $\frac{\left(m_{1}+m_{2}\right) n^{2} h^{2}}{2 m_{1} m_{2} r^{2}}$
28. The value of the resistor R_{S} needed in the dc voltage regulator circuit shown here equals

A) $\frac{\left(V_{i}-V_{L}\right)}{n I_{L}}$
B) $\frac{\left(V_{i}+V_{L}\right)}{n I_{L}}$
C) $\frac{\left(V_{i}-V_{L}\right)}{(n+1) I_{L}}$
D) $\frac{\left(V_{i}+V_{L}\right)}{(n+1) I_{L}}$
29. The variation of electric field between the two charges q_{1} and q_{2} along the line joining the charges is plotted against distance from q_{1} (taking rightward direction of electric field as positive) as shown in the figure. Then the correct statement is.

A) q_{1} and q_{2} are positive and $q_{1}<q_{2}$
B) q_{1} and q_{2} are positive and $q_{1}>q_{2}$
C) q_{1} and positive and q_{2} is negative and $q_{1}<q_{2}$
D) q_{1} and q_{2} are negative and $q_{1}<q_{2}$
30. Half lives of two radioactive elements A and B are 20 minutes and 40 minutes, respectively. Initially the samples have equal number of nuclei. After 80 minutes the ratio of decayed number of A and B nuclei will be
A) $1: 16$
B) $4: 1$
C) $1: 4$
D) $5: 4$
31. The box of a pin hole camera of length L, has a hole of radius a. It is assumed that when the hole is illuminated by a parallel beam of light of wavelength λ the spread of the spot (Obtained on the opposite wall of the camera) is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size(say $b_{\text {min }}$) when :
A) $a=\frac{\lambda}{L}$ and $b_{\min }=\frac{2 \lambda^{2}}{L}$
B) $a=\sqrt{\lambda L}$ and $b_{\min }=\frac{2 \lambda^{2}}{L}$
C) $a=\sqrt{\lambda L}$ and $b_{\min }=\sqrt{4 \lambda L}$
D) $a=\frac{\lambda^{2}}{L}$ and $b_{\min }=\sqrt{4 \lambda L}$
32. Two concentric coils each of radius equal to $2 \pi \mathrm{~cm}$ are placed at right angles to each other.3A and 4 A are the currents flowing in each coil respectively. The magnetic induction in $\mathbf{~ w b} / \mathrm{m}^{\mathbf{2}}$ at the Centre of the coils will be
A) 12×10^{-5}
B) 10^{-5}
C) 5×10^{-5}
D) 7×10^{-5}
33. The potential at a point x (measured in μm) due to same charges situated on the \mathbf{X}-axis is. Given by $v(x)=\frac{20}{x^{2}-4}$ volt. The electric field \mathbf{E} at $\mathbf{x}=\mathbf{4} \mu m$ is given by
A) $\frac{5}{3} v / \mu m$ and in the -ve x -direction
B) $\frac{5}{3} v / \mu m$ and in the +ve x - direction
C) $\frac{10}{9} v / \mu m$ and in the-ve x-direction
D) $\frac{10}{9} v / \mu m$ and in the + ve x-direction
34. The wavelength of the carrier waves in a modern optical fiber communication network is close to
A) 900 nm
B) 600 nm
C) 1500 nm
D) 2400 nm
35. Two bodies of mass 2 kg and 5 kg are attached to the ends of a spring of force constant $2128 \mathrm{~N} / \mathrm{m}$. These bodies are given velocities of $2 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ in mutually opposite directions. The maximum extension produced in the spring is.

A) 0.01 m
B) 0.10 m
C) 0.50 m
D) 0.25 m
36. A fish looking up through the water sees the outside world, contained in a circular horizon. If the refractive index of water is $4 / 3$ and the fish is 12 cm below the water surface, the radius of this circle (in cm) is
A) $36 \sqrt{7}$
B) $\frac{36}{\sqrt{7}}$
C) $36 \sqrt{5}$
D) $4 \sqrt{5}$
37. A satellite of mass ' m ' revolves around the earth of radius ' R ' at a height ' x ' from its surface. If ' g ' is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is
A) $g x$
B) $\frac{g R}{R-x}$
C) $\frac{g R^{2}}{R+x}$
D) $\sqrt{\frac{g R^{2}}{R+x}}$
38. The actual value of resistance R, shown in the figure is 30Ω. This is measured in an experiment as shown using the standard formula $R=\frac{V}{I}$. Where V and I are the readings of the voltmeter and ammeter, respectively. If the measured value of \mathbf{R} is 5% less, then the internal resistance of the voltmeter is.

A) 35Ω
B) 600Ω
C) 570Ω
D) 350Ω
39. A small metal plate of work function ϕ is kept at a distance d from a singly ionized fixed ion. A monochromatic light beam is incident on the metal plate and photo electrons are emitted .The maximum wavelength of the light beam so that some of the electrons may go around the ion along circle is
A) $\frac{4 \pi \varepsilon_{0} h c d}{e^{2}+8 \pi \varepsilon_{0} \phi d}$
B) $\frac{8 \pi \varepsilon_{0} h c d}{e^{2}+8 \pi \varepsilon_{0} \phi d}$
C) $\frac{h c}{8 \pi \varepsilon_{0} \phi}$
D) $\frac{h c}{4 \pi \varepsilon_{0} \phi}$
40. In the given $P-V$ diagram the path(2) from A to B is Zigzag path, but (1) is simple path then

A) $w_{1}=w_{2}$
B) $\Delta u_{1}=\Delta u_{2}$
C) $w_{1}>w_{2}$
D) both 2 and 3
41. In the figure shown, a circuit contains two identical resistors with resistance $R=5 \Omega$ and an inductance with $L=2 \mathrm{mH}$. An ideal battery of 15 V is connected in the circuit. What will the current through the battery along after the switch is closed?

A) 6 A
B) 7.5 A
C) 5.5 A
D) 3 A
42. The pressure that has to be applied to the ends of a steel wire of length 10 cm keep its length constant when its temperature is raised by $100^{\circ} c$ (for steel Young's modulus is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and coefficient of thermal expansion is $1.1 \times 10^{-5} \mathrm{~K}^{-1}$
A) $2.2 \times 10^{8} p a$
B) $2.2 \times 10^{9} \mathrm{pa}$
C) $2.2 \times 10^{7} \mathrm{pa}$
D) $2.2 \times 10^{6} \mathrm{pa}$
43. A point P moves in counter clockwise direction on a circular path as shown in the figure. The movement of \mathbf{P} is such that it sweeps out a length $s=t^{3}+5$ where \boldsymbol{s} is in metre and \mathbf{t} is in second .The radius of the path is 20 m . The acceleration of p when $t=25$ is nearly.

A) $13 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $7.2 \mathrm{~m} / \mathrm{s}$
D) $14 \mathrm{~m} / \mathrm{s}$
44. A block slides down a rough inclined plane of slope angle θ with a constant velocity. It is then projected up the same plane with an initial velocity v. The distance travelled by the block up the plane before coming to rest is
A) $\frac{v^{2}}{4 g \sin \theta}$
B) $\frac{v^{2}}{2 g \sin \theta}$
C) $\frac{v^{2}}{g \sin \theta}$
D) $\frac{4 g v^{2}}{\sin \theta}$
45. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A}+\vec{B})$ is \mathbf{n} times the magnitude of $(\vec{A}-\vec{B})$. The angle between \bar{A} and \bar{B} is
A) $\sin ^{-1}\left(\frac{n-1}{n+1}\right)$
B) $\cos ^{-1}\left(\frac{n^{2}-1}{n^{2}+1}\right)$
C) $\sin ^{-1}\left(\frac{n^{2}-1}{n^{2}+1}\right)$
D) $\cos ^{-1}\left(\frac{n-1}{n+1}\right)$

SECTION- II

(Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers.
Marking scheme: $+\mathbf{4}$ for correct answer, 0 in all other cases.
46. The mean kinetic energy of monoatomic gas molecules under standard conditions is \mathbf{E}_{1}. If the gas is compressed adiabatically 8times to its initial volume, the mean kinetic energy of gas molecules changes to E_{2}. The ratio of E_{2} / E_{1} is.
47. The current voltage relation of diode is given by $I=\left(e^{1000 v / T}-1\right) m A$, where the applied voltage \mathbf{V} is in volt and the temperature \mathbf{T} is kelvin. If a student makes an error measuring $\pm 0.01 \mathrm{~V}$ while measuring the current of 5 mA at 300 k , what will be the error in the value of current in $m A$?
48. A coil of inductance 300 mH and resistance 2Ω is connected to a source of voltage 2 V . The current reaches half of its steady state value in (sec)
49. On a temperature scale Y, water freezes at $-160^{\circ} Y$ and Boils at $-50^{\circ} Y$ on this Y scale, a temperature of 340 k is \qquad ${ }^{0} \mathrm{Y}$.
50. A vehicle is travelling at uniform speed 56 kmph along a fly over bridge and a person of mass 50 kg in the vehicle experience a normal reaction 390 N as the vehicle crosses the highest point. The radius of curvature of the fly over bridge is \qquad m.

SECTION - I
 (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: $\mathbf{+ 4}$ for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ if not correct.

CHEMISTRY

51. Which of the following is the energy of a possible excited state of Hydrogen?
A) +13.6 eV
B) -6.8 eV
C) -3.4 eV
D) +6.8 eV
52. Which is wrong with respect to our responsibility as a human being to protect our environment?
A) Restricting the use of vehicles
B) using plastic bags
C) Setting up compost tin in gardens
D) Avoiding the use of floodlighted facilities
53. From the graph, which is the best reducing agent to reduce $\mathrm{Cu}_{2} \mathrm{O}$ at high temperature

A) Coke
B) CO
C) CO_{2}
D) $1 \& 2$
54. Complete removal of both axial ligands (along the \mathbf{z}-axis) from an octahedral complex leads to which of the following splitting patterns? (relative orbital energies not on scale)
А) $E \xlongequal{\text { - }} \begin{gathered}d_{x^{2}-y^{2}} \\ d_{x y} \\ = \\ d_{x z} \\ z^{z^{2}} \\ d_{y z}\end{gathered}$
B)

C)

D)

55. Identify the atoms or groups from the following that exhibit $-R$ effect and $+R$ effect when present on benzene ring:

$$
-\mathrm{OR},-\mathrm{NHCOR},-\mathrm{CN},-\mathrm{X},-\mathrm{NO}_{2},-\mathrm{NH}_{2},>\mathrm{C}=\mathrm{O}
$$

A) $-R$ effect: -NHCOR, $-\mathrm{NO}_{2},>\mathbf{C}=\mathbf{O}$

+ R effect: -CN, -OR, , -X , $-\mathrm{NH}_{2}$
B) $-R$ effect : -OR, -CN, $-\mathrm{NO}_{2},>\mathbf{C}=\mathbf{O}$
+ R effect: -NHCOR, $-\mathbf{X},-\mathrm{NH}_{2}$
C) $-R$ effect:, $-\mathbf{C N}-\mathrm{NO}_{2,}, \mathbf{N H}_{2}$
+ Reffect: -OR, -NHCOR, -X,$>\mathrm{C}=\mathbf{O}$
D) $-R$ effect:, $-\mathrm{CN},-\mathrm{NO}_{2},>\mathrm{C}=\mathbf{O}$
+R effect: OR, -NHCOR, -X ,-NH2

56. $\quad \mathrm{SiF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow A \xrightarrow{1000^{\circ} \mathrm{C}} B \xrightarrow{\mathrm{Na}_{2} \mathrm{CO}_{3}} c$. Identify B and C ?
A) $\mathrm{H}_{4} \mathrm{SiO}_{4}, \mathrm{Na}_{2} \mathrm{SiO}_{3}$
B) $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{~S}$
C) $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
D) $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{SiO}_{3}$
57. Ferric chloride on rubbing to a bleeding wound causes
A) Coagulation
B) Peptisation
C) emulsification
D) de- emulsification
58. The pair that contains two $\mathrm{P}-\mathrm{H}$ bonds in each of the oxoacid is:
A) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$
B) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
C) $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
D) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
59. A crystal madeup of particles X, Y and Z, X forms fcc packing. Y occupies all octahedral voids of X and Z occupies an tetrahedral voids of X. If all the particles along one body diagonal are removed, then the formula of the crystal would be
A) $X Y Z_{2}$
B) $X_{2} Y Z_{2}$
C) $X_{8} Y_{4} Z_{5}$
D) $X_{5} Y_{4} Z_{8}$
60. The general formula of a α-amino acid is

A) $-\mathrm{CH}_{2} \mathrm{SH}$
B) $-\mathrm{CH}_{2} \mathrm{OH}$
C)

61.

The IUPAC name of

A) 7- ethyl-2,4,5,6 - tetra methyldeca - 1,8-diene
B) 7- ethyl-2-methyl4,5,6- tetra methyldeca -1,7-diene
C) 7-(1-propenyl) 2,3,4,5-tetra methyl-nonene
D) 4- ethyl-5,6,7,9-tetramethyl deca-2,9-diene
62. The freezing point of benzene decreases by $0.45^{\circ} \mathrm{C}$ when 0.2 g of acetic acid is added to 20 g of benzene. If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be: (k_{f} for benzene $=5.12 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$)
A) 94.52%
B) 64.6%
C) 80.4%
D) 74.52%
63. SN^{2} reaction involving inversion of configuration takes place with an optically active compound Z. The compound Z is
A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}$
B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}$
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{X}$
D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}$
64. The correct match between item-I and Item-II is

Item-I
Item-II
(a) High density polythene
(I) $\operatorname{Iron}(0)$
(b) polyacrylonitrile
(II) Condensation at high temperature and pressure
(III) Ziegler - Natta catalyst
(c) Novolac
(IV) Acidor base catalysed
A) $(a) \rightarrow(I V),(b) \rightarrow(I I),(c) \rightarrow(I),(d) \rightarrow(I I I)$
B) $(a) \rightarrow(I I),(b) \rightarrow(I V),(c) \rightarrow(I),(d) \rightarrow(I I I)$
C) $(a) \rightarrow($ III $),(b) \rightarrow(I),(c) \rightarrow(I V),(d) \rightarrow(I I)$
D) $(a) \rightarrow($ III $),(b) \rightarrow(I),(c) \rightarrow(I I),(d) \rightarrow(I V)$
65. Hinsberg's reagent is:
A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$
B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
C) SOCl_{2}
D) COCl_{2}
66. p- Hydroxy benzophenone upon reaction with bromine in carbontetrachloride gives
A)

B) OH

C) OH
D)

67. Which among the following is the strongest acid?
A) CHBr_{3}
B) CHCl_{3}
C) CHI_{3}
D) $\mathrm{CH}(\mathrm{CN})_{3}$
68. The decreasing order of bond angles in $\mathrm{BF}_{3}, \mathrm{NH}_{\mathbf{3}}, \mathrm{PF}_{3}$ and I_{3}^{-}is
A) $I_{3}^{-}>B F_{3}>N H_{3}>P F_{3}$
B) $\mathrm{BF}_{3}>\mathrm{I}_{3}^{-}>P F_{3}>\mathrm{NH}_{3}$
C) $\mathrm{BF}_{3}>\mathrm{NH}_{3}>P F_{3}>I_{3}^{-}$
D) $I_{3}^{-}>N H_{3}>P F_{3}>B F_{3}$
69. The concentration of the same solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in different methods are given below

LIST-1

A) Molarity
B) Normality
C) $\% \frac{w}{V}$
D) Volume strength

The correct match is
A B C D
A) $\begin{array}{llll}\text { B } & 3 & 1 & 2\end{array}$
B) $431 \quad 2$
C) $\begin{array}{llll} & 4 & 1 & 2\end{array}$
D) $\begin{array}{llll}1 & 2 & 3\end{array}$
70)

Find out the compound E
A)

B)

C)

D)

SECTION-II

(Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers.
Marking scheme: +4 for correct answer, 0 in all other cases.
71. What is the approximate standard free energy change per mole of $\mathrm{Zn}\left(\right.$ in $\left.\mathrm{KJ} \mathrm{mol}^{-1}\right)$ for

A Daniel cell at 298 k?(e.m.f =1.1 V)
72. The time taken for 10% completion of a first order reaction in 20 minutes. The time required for the completion of 19% of the same reaction in minutes is
73. The number of $\mathrm{S}-\mathrm{S}$ bonds in $\mathrm{S}_{2} \mathrm{O}_{6}^{-2}$ are
74. Assuming ideal gas behavior, the ratio of density of ammonia to that of hydrogen chloride at same temperature and pressure is:
75. At 320 K , a gas A_{2} is 20% dissociated to $A(g)$. The standard free energy change at 320 k and 1atm in Jmol^{-1} is approximately.

$$
\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \log (0.2)=-0.6990\right) \text { (answer in two decimal accuracy) }
$$

