SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

Time: 3 Hours

JEE MAIN TOT GT-9

Max. Marks: 300 M

r

<u>SECTION – I</u>

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (B) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme:** +4 for correct answer, 0 if not attempted and -1 if not correct.

MATHEMATICS

1. The general solution of the equation $2\cot^2 x + 2\sqrt{3}\cot x + 4\cos ecx + 8 = 0$ is

A)
$$n\pi \pm \frac{\pi}{6}$$
 B) $2n\pi - \frac{\pi}{6}$ C) $2n\pi \pm \frac{\pi}{6}$ D) $n\pi + \frac{\pi}{6}$

2. AB is a vertical pole with its end A on level ground. C is mid-point of the pole AB and P is a point on the ground such that AP = 2AB if $|BPC| = \beta$ then $Tan\beta =$ ______

A)
$$\frac{2}{9}$$
 B) $\frac{4}{9}$ C) $\frac{6}{7}$ D) $\frac{1}{4}$

3. The inverse of the proposition $(p \land \Box q) \rightarrow r$ is

A)
$$\sqcup r \rightarrow \sqcup p \lor q$$
 B) $(\Box p \lor q) \rightarrow \Box r$ C) $r \rightarrow p \land \sqcup q$ D) $\sqcup p \land q \rightarrow \sqcup$

4. If |x| < 1 them the sum of the series

$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots \infty \text{ is } \dots \infty$$

A) $\frac{1+x}{1-x}$ B) $\frac{1}{1-x}$ C) 1 D) $\frac{x}{1-x}$

5. A bag contains a large number of white and black marbles in equal proportions. Two samples of 5 marbles are selected (with replacement), at random. The probability that the first sample contains exact by 1 black and second sample contains exact by 3 black marbles is ______

A)
$$\frac{15}{32}$$
 B) $\frac{25}{512}$ C) $\frac{15}{1024}$ D) $\frac{35}{256}$

6. A sequence of matrices is defined as

$$m(1) = \begin{bmatrix} 1 \end{bmatrix}, m(2) = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, m(3) = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}$$
 and so on then trace of $m(17)$ is

A) 27,798 B) 27,987 C) 27,897 D) 27,895 7. For the set of linear equations $\lambda x - 3y + z = 0$, $x + \lambda y + 3z = 1$, and 3x + y + 5z = 2, the values of λ for which the equations does not have unique solution are

A)
$$-1, \frac{-11}{5}$$
 B) $1, \frac{-11}{5}$ C) $-1, \frac{11}{5}$ D) $1, \frac{11}{5}$

8. If $z = (1 + ix)^n$ is a complex number such that its real part in equal to the

imaginary part where $x \in R$ and $n \in Z^+$, Then the possible value of x is _____

A)
$$Tan\frac{\pi}{n}$$
 B) $Tan\frac{\pi}{2n}$ C) $Tan\frac{5\pi}{4n}$ D) $Tan\frac{3\pi}{2n}$

9.	In an equilateral triangle with vertices $A(\overline{a}) B(\overline{b})$ and $C(\overline{c}), P(\overline{p})$ is any interior point of			
	$\triangle ABC$ and D, E, F are the feet of perpendiculars from P to $\overline{BC}, \overline{CA}$ and \overline{AB} respectively.			
	If $\left \overline{d} - \overline{p}\right + \left \overline{e} - \overline{p}\right + \left \overline{f} - \overline{p}\right = \lambda \left \overline{c} - \overline{a}\right $ then $\lambda =$			
		$\overline{3}$ C) $\frac{\sqrt{3}}{2}$		
	4	2	D) $2\sqrt{3}$	
10.	2 2		ines $\overline{r} = \overline{k} + t\overline{i}$ and $\overline{r} = -\overline{k} + s\overline{j}$ is	
	A) $x^{2} - y^{2} - 4z = 0$ C) $x^{2} + y^{2} - 4z = 0$	B) $x^2 - y^2 - D$ D) $x^2 + y^2 - $	+4z = 0 $+4z = 0$	
11.	Let M be set of set of all 3×3 matrices with elements integers. A relation R on M is defined			
		is skew symmetric. Then R		
	A) Reflexive onlyC) Symmetric and transitive		ve and symmetric only ence relation	
12.	· •		-y-z=9 measured parallel to the line	
	$\frac{x-2}{2} = \frac{y+2}{3} = \frac{z-6}{6}$ is			
	$\frac{-2}{2} = \frac{-6}{3} = \frac{-6}{-6}$ is			
	A) 6 B) 7	C) $\frac{7}{2}$	C) $\frac{8}{2}$	
	$\lim_{x \to \infty} \{x, x^2\}$	$x \ge 0$	5	
13.	If $f(x) = \begin{cases} \min \{x, x^2\}, x \ge 0 \\ \min \{2x, x^2 - 1\}, x < 0 \end{cases}$ then the number of points interval $[-2, 2]$ where $f(x)$			
	is not differentiable is			
	A) 1 B) 2	2 C) 4	D) 3	
14.	A tangent to the curve $\frac{x^2}{25} + \frac{y^2}{16} = 1$ meets the coordinate axes in A and B respectively. Then			
	the minimum value of AB	is	D) 720	
	A) 81 B) 9 $t^{2} f(x) - x^{2} f(t)$	C) 243	D) 729	
15.	If $_{t \to x}^{Lt} \frac{t^2 f(x) - x^2 f(t)}{t - x} = 1$ a	nd $f(1) = 1$ then $f\left(\frac{3}{2}\right) = -$		
	A) $\frac{2}{9}$ B) $\frac{2}{12}$		D) $\frac{43}{18}$	
	,	10	10	
16.	$\int_{m \to \infty}^{Lt} \int_{0}^{\infty} \frac{dx}{1 + x^2 + x^4 + \dots + x^2}$	$\underline{m} = \underline{\qquad}$ where $m \in$	$\equiv N$	
	$-\infty$			
	A) 4 B) $\frac{4}{3}$	C) $\frac{3}{4}$	D) 0	
	$(1+\ln x)^2$			
17.	$\int \frac{(1+\ln x)^2}{1+\ln x^{x+1} + (\ln x^{\sqrt{x}})^2} dx = -$			
	A) $\ln(x+\ln x)+c$	B) $\ln(1+x)$	$\ln r$)+c	
	C) $\ln(x - \ln x) + c$	D) $\ln(1-x)$		
	· · · · · · · · · · · · · · · · · · ·	N N	,	
18.	Let $g(x) = 2f\left(\frac{x}{2}\right) + f(2-x)$ and $f^{11}(x) < 0$ for all $x \in (0,2)$ then $g(x)$ is monotonically			
	decreasing in the internal			
	A) $\left(0,\frac{4}{3}\right)$ B) $\left(\frac{4}{3}\right)$	$\left(\frac{4}{2}, 2\right)$ C) $\left(\frac{2}{2}, 2\right)$	D) (1,2)	
	()) (.	5) (3)		

19. If (10,5) is focus of a parabola for which x-axis is tangent and y-axis is normal them the equation of the directrix of the parabola is _____

A)
$$2x+y-25=0$$
 B) $2x-y+25=0$ C) $2x-y-25=0$ D) $2x+y+25=0$

20. The centre of the smallest circle touches the circle $x^2 + y^2 = 4$ and $x + y = 5\sqrt{2}$ is _____

A)
$$\left(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$$
 B) $\left(\frac{7}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ C) $\left(\frac{5}{2\sqrt{2}}, \frac{5}{2\sqrt{2}}\right)$ D) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$

SECTION-II

(Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers Marking scheme: +4 for correct answer, 0 in all other cases.

21. If [.] denotes greatest integer function and $f(x) = \sin^{-1}\left[x^2 + \frac{1}{2}\right] + \cos^{-1}\left[x^2 - \frac{1}{2}\right]$, Then the

value of f(x) is____

22. If 'd' is the distance between the point (-1, -5, 10) and the point of intersection of the line

$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z+2}{12}$$
 with the plane $x-y-z=5$ then $\frac{3d^3}{5}$ is equal to _____

- **23.** If $f(x) = x^3 + x^2 5x 1 = 0$ has roots α, β, γ then $[\alpha] + [\beta] + [\gamma] =$ _____
- 24. A pair of numbers is picked up randomly from the set {1,2,3,5,7,11,12,13,17,19}. The probability that the number 11 was picked given that the sum of numbers was even is nearly equal to ______
- 25. If in a frequency distribution then mean and median are 21 and 22 respectively, then its mode is equal to _____

<u>SECTION – I</u>

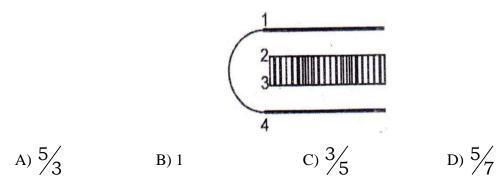
(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme:** +4 for correct answer, 0 if not attempted and -1 if not correct.

PHYSICS

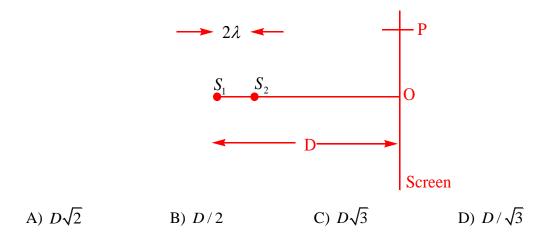
26. The kinetic energy K of a particle moving along a circle of radius R depends upon the distance moved from rest s, as $K = as^2$. The force acting on the particle is (a is a positive constant)

A)
$$2a\frac{s^2}{R}$$
 B) $2as\left[1+\frac{s^2}{R^2}\right]^{1/2}$ C) $2as$ D) $2a$

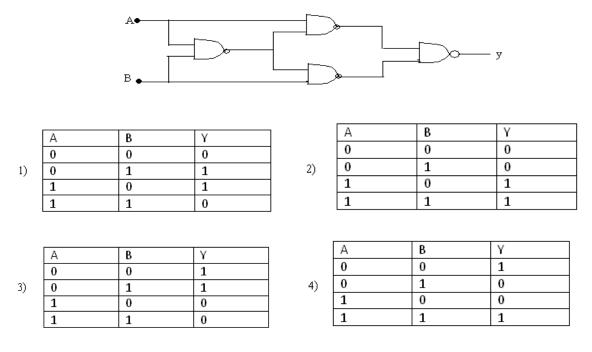

27. A body cools down from $50^{\circ}C$ to $45^{\circ}C$ in 5 min and $45^{\circ}C$ to $40^{\circ}C$ is 8 min. Find the temperature of the surrounding. Assume Newton's law of cooling.

A) 34°C B) 24°C C) 39°C D) 20°C
28. When an ideal diatomic gas is heated at constant pressure the fraction of the heat energy supplied which increases the internal energy of the gas is:

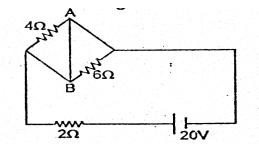
A) (2/5) B) (3/5) C) (7/5) D) (5/7)


- 29. A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upward with a net acceleration of g/2, the fraction of volume immersed in the liquid will become
- A) 1/2 B) 1/4 C) 2/3 D) 3/4 **30.** Found it identical plates 1, 2, 3 and 4 are placed parallel to each other at equal distance as shown in the figure. Plates 1 and 4 are joined together and the space between 2 and 3 is filled with dielectric of dielectric constant k = 2. The capacitance of the system between 1 and 3, 2

and 4 are C₁ and C₂ respectively. The ratio $\frac{C_1}{C_2}$ is:

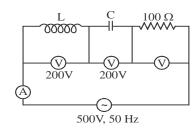

31. An arc of radius *r* carries charge. The linear density of charge is λ and the arc subtends an angle $\frac{\pi}{3}$ at the centre. What is electric potential at the centre?

32. Two sources S_1 and S_2 emitting coherent light waves of wavelength λ in the same phase are situated as shown. The minimum distance OP, so that the light intensity detected at P is equal to that at O is(D>> λ)



SRIGAYATRI EDUCATIONAL INSTITUTIONS - INDIA

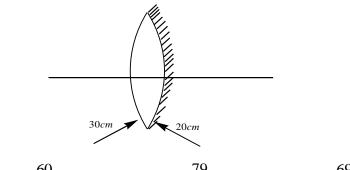
33. Truth table for system of four NAND gates as shown in figure is :


34. In the circuit shown in the figure (neglect the internal resistance of the battery)

- A) power supplied by the battery is 100 watt
- B) current flowing in the circuit through the battery is 5A
- C) potential difference across 4Ω resistance is equal to the potential difference across
- 6Ω resistance
- D) current in wire AB is zero
- 35. A charged particle enters a uniform magnetic field with velocity at an angle of 45° with magnetic field. The pitch of the helical path followed by the particle is *P*. The radius of the helix will be

A)
$$\frac{P}{\sqrt{2}\pi}$$
 B) $\sqrt{2}P$ C) $\frac{P}{2\pi}$ D) $\frac{\sqrt{2}P}{\pi}$

36. Find the reading of A.C voltmeter across the resistance and A.C ammeter in the circuit




```
A) 500V, 5A B) 250V, 5A C) 250V, 10A D) 500V, 2.5A
```

37. Two identical charged spheres are suspended by strings of equal lengths the strings make an angle of 30[°] with each other, when suspended in a liquid of density 0.8 gm/cc the angle remains the same. If density of the material of the sphere is 1.6 gm/cc then dielectric constant of the liquid is

A) 4 B) 3 C) 2 D) 1

- 38. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies below 1250 Hz. The velocity of sound in air is 340 m/s
 - A) 12 B) 8 C) 6 D) 4
- 39. A biconvex lens is made of glass with refractive index 1.5 and radii of curvature 20 cm and 30 cm. if the surface whose radius is 20 cm silvered, the effective focal length of the optical device formed is

A) $-\frac{60}{11}cm$ B) $\frac{60}{11}cm$ C) $-\frac{79}{11}cm$ D) $-\frac{69}{11}cm$ An alternating current I = I₀ sin ωt is flowing in a circuit. The ratio of rms current in the

interval of 0 to T and the average current in the circuit for the time interval from T/8 to 3T/8 (where T is time period) is:

A)
$$\frac{\pi}{2\sqrt{2}}$$
 B) $\frac{\pi}{2}$ C) $\frac{\pi}{4}$ D) $\frac{\sqrt{2}}{4}\pi$

41. A star initially has 10^{40} deuterons. It produces energy via the process $_1H^2 + _1H^2 \rightarrow _1H^3 + _1H^1$

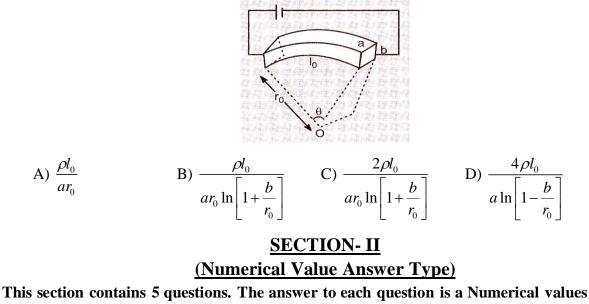
and $_{1}H^{2} + _{1}H^{3} \rightarrow _{2}He^{4} + _{0}n^{1}$ If the average power radiated by the star is 10^{16} W, the deuteron

supply of the star is exhausted in a time of the order of [The mass of the nuclei are as follows

: mass of $_{1}H^{2} = 2.014 amu; mass of _{0}n^{1} = 1.008 amu; mass of _{1}H^{1} = 1.007 amu; mass of _{2}He^{4} = 4.001 amu]$

A) 10^6 s B) 10^8 s C) 10^{12} s D) 10^{13} s

40.

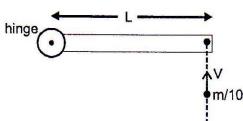

- 42. A carrier wave of peak voltage 12 V is used to transmit a message signal. The peak voltage of modulating signal in order to have a modulation index as 0.75 is A) 12V B) 9V C) 6 V D) 3V
- 43. A block of mass 'm' containing a net negative charge '-q' is placed on a frictionless horizontal table and is connected to wall through an unstretched spring of spring constant 'k'. if the horizontal electric field 'E' parallel to the spring is switched on, then the maximum compression of the spring is

A)
$$\sqrt{\frac{qE}{K}}$$
 B) $\frac{2qE}{K}$ C) $\frac{qE}{K}$ D) 0

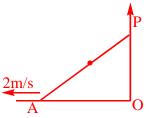
44. A metallic rod of length 'l' rotates with angular velocity 'ω' about an axis passing through one end and perpendicular to the rod. If mass of electron is 'm' and its charge is '-e' then the magnitude of potential difference between its two ends is

A)
$$\frac{m\omega^2 l^2}{2e}$$
 B) $\frac{m\omega^2 l^2}{e}$ C) $\frac{m\omega^2 l}{e}$ D) $\frac{m\omega^2 l}{2e}$

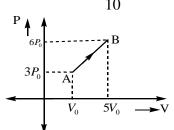
45. A curved rectangular bar forms a resistor. The curved sides are concentric circular arcs. If ρ is the resistivity of the material of bar, l_0 is the length of inner arc of radius r_0 , $(r_0 + b)$ is the radius of the outer arc, and a is the width of the bar. The electric resistance of the bar across its rectangular ends is:


comprising of positive or negative decimal numbers.

Marking scheme: +4 for correct answer, 0 in all other cases.


46. When a belt moves horizontally at a constant speed of 1.5 ms^{-1} , gravel is falling on it at 5

 kgs^{-1} , then, the extra power needed to drive the belt is


47. A thin uniform rod of mass 'm' of length 'L' hinged at one end. This rod is maintained in horizontal position by colliding very tiny balls of each mass m/10 completely elastically 10 times per sec striking on the opposite end as shown in figure. Find the speed of the ball $(g = 10ms^{-2})$

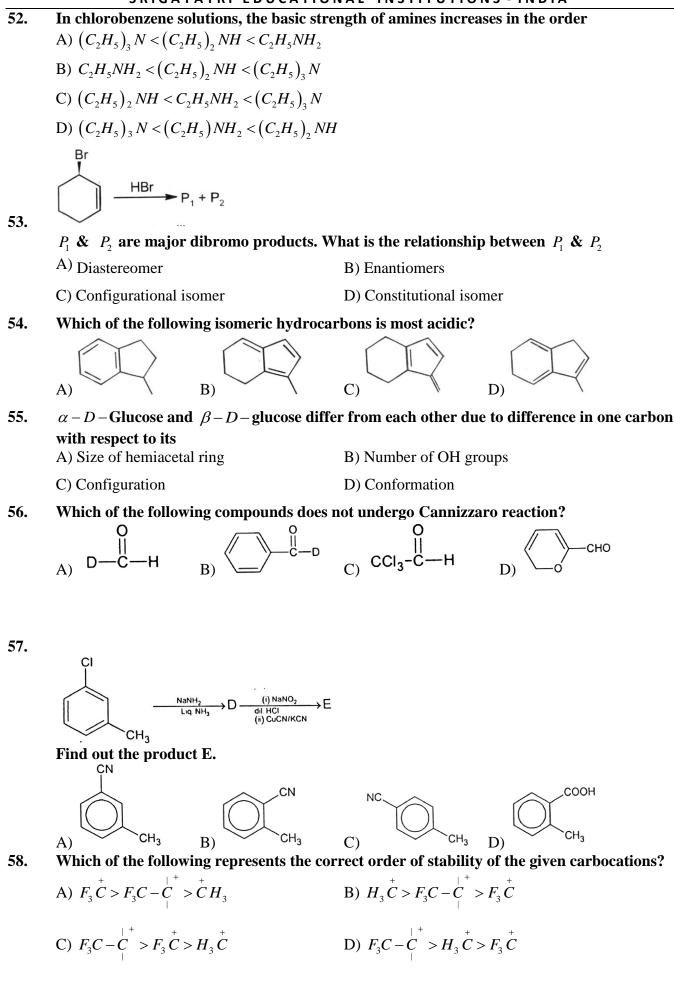
48. A Ladder AP of length 5m inclined to a vertical wall is slipping over a horizontal surface with velocity of 2 m/s, when 'A' is at a distance 3m from 'O', the velocity of centre of mass at this moment is

One mole of a monoatomic ideal gas undergoes the process $A \rightarrow B$ in the given P-V **49**. diagram. The specific heat for this process is $\frac{xR}{10}$ what is the value of x?

A screw gauge gives the following reading when used to measure the diameter of a wire 50. main scale reading 0 mm circular scale reading 52 divisions. Given that 1mm on main scale corresponds to 100 divisions of the circular scale The diameter of wire from the above data in mm is

<u>SECTION – I</u> (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.


51.

OH Br₂/KOH >product (a-hydroxy amide) Product of this Hoffmann bromamide reaction is: A) $Ph - CH - NH_2$

B) Ph-CHO

D) $Ph - CH_2 - NH_2$

C)

	SRIGAYATRI EDUCATIONAL INSTITUTIONS - INDIA				
59.	What fraction of total voids (octahedral and tetrahedral) is occupied by Cr ⁺³ in CrCl ₃ . If Cl				
	ions are in CCP A) 1/3 B) 1/6	C) 1/9	D) 1/12		
60.	The de Broglie wavelength of an electr	/			
	$\begin{bmatrix} K.E. = 13.6 \ eV; 1eV = 1.602 \times 10^{-19} J \end{bmatrix}$				
61.	A) 33.28 nm B) 3.328 nm For the reaction	C) 0.3328 nm	D) 0.0332 nm		
01.					
	$\left[Ag\left(CN\right)_{2}\right]_{(ag)}^{-}$ \Box $Ag_{(ag)}^{-} + 2CN_{(ag)}^{-}$, the equilibrium				
	Constant at 25° C is 4.0×10^{-19} . Calculate the silver ion concentration in a solution which was originally 0.10 M in KCN and 0.03 M in $AgNO_3$.				
	A) $1.5 \times 10^{-18} M$ B) $2.5 \times 10^{-18} M$	C) $7.5 \times 10^{-18} M$	D) $5.5 \times 10^{-18} M$		
62.	n-factor for HCl in reaction $K_2Cr_2O_7 + HCl \rightarrow KCl + CrCl_3 + Cl_2$				
	A) $\frac{5}{7}$ B) $\frac{3}{7}$	C) $\frac{7}{3}$	D) $\frac{7}{5}$		
63.	The EMF for the cell Ag(s) AgCl(s) KCl(0.2M) KBr (0.001M) AgBr(s) Ag(s) at 25 ⁰ C is				
	$(K_{sp} (AgCl) = 2.0 \times 10^{-10}; K_{sp} (AgBr) = 4.0 \times 10^{-13}, 2.303 \text{ RT/F} = 0.06, \log 2 = 0.C)$				
	A) 0.024V B) -0.024V	C) -0.24V	D) -0.012V		
64.	For a first order homogeneous gaseous reaction $A \rightarrow 2B + C$ then initial pressure was P_i while total pressure after time <i>t</i> was P_t . Then expression for rate constants K in terms P_i , <i>A</i> and <i>t</i> is				
	A) $K = \frac{2.303}{t} \log \left(\frac{2P_i}{3P_i - P_t} \right)$	B) $K = \frac{2.303}{t} \log t$	$\left(\frac{2P_i}{2P_i-P_i}\right)$		
	C) $K = \frac{2.303}{t} \log\left(\frac{P_i}{P_i - P_t}\right)$	D) None of these			
65.	Among $LiCl$, $BeCl_2$, and $RbCl$ the compound with greatest and least ionic character,				
	respectively are				
	A) LiCl and RbCl	B) <i>RbCl</i> and <i>BeC</i>	\mathcal{I}_2		
	C) $RbCl$ and $MgCl_2$	D) $MgCl_2$ and Be	Cl_2		
66.	Which of the following traids have approximately equal size?				
	A) Na^{\oplus} , Mg^{2+} , Al^{3+} (isoelectronic)	B) F^{-}, Ne, O^{2-} (iso	pelectronic)		
	C) Fe,Co,Ni	D) Mn^{2+}, Fe^{2+}, Cr	(isoelectronic)		
67.	In the extraction of copper, metal is formed in the Bessemer converter due to reaction				
	A) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$	B) $Cu_2 S \rightarrow 2Cu +$			
	C) $Fe + Cu_2O \rightarrow 2Cu + FeO$	D) $2Cu_2O \rightarrow 4Cu_2$	$a + O_2$		
68.	Optical isomerism is not shown by complex. 7^{3}		+ .		
	A) $\left[Cr(OX_3)\right]^{3-}$	$\mathbf{B})\left\lfloor Co\left(en\right)_{2}Cl_{2}\right\rfloor$	(Cis - form)		
	C) $\left[Co(en)_2 Cl_2\right]^+ (Trans - form)$	$\mathbf{D})\left[Cr(en)_{3}\right]^{3+}$			
69.	Sodium peroxide on treatment with cold dil. H_2SO_4 gives				
	A) $H_2O + Na_2SO_4O_2$	B) $H_2O + Na_2SO_4$			
	C) $H_2O_2 + Na_2SO_4$	D) $H_2O + Na_2SO_3$			

70.	Among NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-}	, and BO_3^{3-} ions, the non-planar species are
	A) AsO_3^{3-}, SO_3^{2-} and ClO_3^{-}	B) NO_3^-, SO_3^{2-} and ClO_3^-
	C) CO_3^{2-} , As O_3^{3-} and SO_3^{2-}	D) NO_{3}^{-}, CO_{3}^{2-} and ClO_{3}^{-}

<u>SECTION-II</u> (Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers. Marking scheme: +4 for correct answer, 0 in all other cases.

- 71. 0.2595 g of an organic substance in a quantitative analysis yielded 0.35 g of the barium sulphate. The percentage of Sulphur in the substance is
- 72. If 2-chloro-3-methyl pentane is treated with ethanolic KOH solution, how many different alkenes would be formed *via* E_2 elimination reaction?
- 73. The standard heat of formation of U_3O_8 is -853.5 kcal/mol and the standard heat of the reaction

 $3UO_2 + O_2 \rightarrow U_3O_8$ is -76.01 kcal

The standard heat of formation of UO_2 is

- 74. Vapour pressure of solution containing 6g of a non-volatile solute in 180g water is 20 torr. Of 1 mole water is further added, then vapour pressure increases by 0.02 torr. The molar mass of the non-volatile solute is
- 75. Half litre each of three samples of H_2O_2 labelled 10vol, 15vol, 20vol are mixed and then diluted with 1700ml of water. Calculate relative strength of resultant H_2O_2 solution.