Unleashing Potential

PHYSICS

1. Ratio of density of Oxygen nucleus and Helium nucleus.
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (1)
Sol. Density of any nucleus is constant.
2. Root mean square velocity is related to temperature in proportional to:
(1) \sqrt{T}
(2) $\frac{1}{\sqrt{T}}$
(3) T^{2}
(4) T

Ans. (1)
Sol. $\quad \mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$
3. A car covers x distance with speed V_{1} and same distance x with speed V_{2} in same direction. What is the average speed of car.
(1) $\frac{4 V_{1} V_{2}}{V_{1}+V_{2}}$
(2) $\frac{2 \mathrm{~V}_{1} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
(3) $\frac{V_{1} V_{2}}{V_{1}+V_{2}}$
(4) $\frac{\mathrm{V}_{1} \mathrm{~V}_{2}}{2 \mathrm{~V}_{1}+\mathrm{V}_{2}}$

Ans. (2)
Sol. $\mathrm{t}_{1}=\frac{\mathrm{x}}{\mathrm{V}_{1}} \quad\langle\mathrm{~V}\rangle=\frac{2 \mathrm{x}}{\frac{\mathrm{x}}{\mathrm{V}_{1}}+\frac{\mathrm{x}}{\mathrm{V}_{2}}}=\left(\frac{2 \mathrm{~V}_{1} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}\right)$
$\mathrm{t}_{2}=\frac{\mathrm{x}}{\mathrm{V}_{2}}$
4. A car is moving in horizontal circular track of radians 40 m with speed $20 \mathrm{~m} / \mathrm{s}$. An angle is made by pendulum having from ceiling with vertical is
(1) 45°
(2) 60°
(3) 30°
(4) 37°

Sol.

$\mathrm{T} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$
$\mathrm{T} \sin \theta=\mathrm{mg}$
$\mathrm{T} \sin \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\frac{400}{40 \times 10}=1$
$\theta=45^{\circ}$

Unleashing Potential
5. A solenoid of 20 cm length in which 2 A current is flowing and total number of turns are 40 . Find magnetic field inside the solenoid.
(1) $60 \pi \times 10^{-5} \mathrm{~T}$
(2) $16 \pi \times 10^{-5} \mathrm{~T}$
(3) $20 \pi \times 10^{-5} \mathrm{~T}$
(4) $\pi \times 10^{-5} \mathrm{~T}$

Ans. (2)
Sol. $\quad B=\mu_{0} n i$
$=4 \pi \times 10^{-7} \times \frac{40}{0.2} \times 2=16 \pi \times 10^{-5} \mathrm{~T}$
6. In Amplitude modulation frequency of modulating wave is 5 Khz and carrier 2 MHz find out band width
(1) 4 MHz
(2) 5 KHz
(3) 10 KHz
(4) 2 MHz

Ans. (3)
Sol. \quad B. $W=2 \mathrm{f}_{\mathrm{m}}=2 \times 5 \mathrm{KHz}=10 \mathrm{KHz}$
7. Find the value of equivalent resistance between points $\mathrm{A} \& \mathrm{~B}$ in the circuit shown below :-

(1) 10Ω
(2) 15Ω
(3) 20Ω
(4) 5Ω

Ans. (1)
Sol. $\mathrm{R}_{\text {eq. }}=10 \Omega$
8. In hydrogen like spectrum if wavelength of transition from $3^{\text {rd }}$ to $2^{\text {nd }}$ orbit is λ_{0}, then wavelength for transition from $4^{\text {th }}$ to $3^{\text {rd }}$ bohr's orbit is λ^{\prime}. If $\frac{\lambda^{\prime}}{\lambda_{0}}=\frac{20}{\mathrm{x}}$. Find x ?
(1) 5
(2) 6
(3) 7
(4) 8

Ans. (3)

Unleashing Potential
Sol. $\frac{1}{\lambda_{0}}=R\left(\frac{1}{4}-\frac{1}{9}\right)$
$\frac{1}{\lambda_{0}}=\mathrm{R}\left(\frac{5}{36}\right)$
$\frac{1}{\lambda^{\prime}}=\mathrm{R}\left(\frac{1}{9}-\frac{1}{16}\right)$
$\frac{1}{\lambda^{\prime}}=\mathrm{R}\left(\frac{7}{9 \times 16}\right)$
$\frac{\lambda^{\prime}}{\lambda_{0}}=\frac{\mathrm{R} \frac{5}{36}}{\mathrm{R} \cdot \frac{7}{9 \times 16}}$
$\frac{\lambda^{\prime}}{\lambda_{0}}=\frac{5 \times 9 \times 16}{36 \times 7}$
$\frac{\lambda^{\prime}}{\lambda_{0}}=\frac{20}{7}$
$\frac{\lambda^{\prime}}{\lambda_{0}}=\frac{20}{x}$
9. Rod of length 1 m shown is figure is in equilibrium and string is attached 60 cm from hinge point. Choose the correct value of tension is string A.

(1) 300 N
(2) 240 N
(3) 30 N
(4) 90 N

Ans. (1)

Sol.

Unleashing Potential
Net τ about O is zero $\vec{\tau}_{0}=0$
$80(100)+20(50)$
$=\mathrm{T} \sin 30^{\circ} \times 60$
$\mathrm{T}=300 \mathrm{~N}$
10. Efficiency of Carnot engine is 50%. When sink temperature is 600 K . Find out temperature of sink for which efficiency will become 70% ?
(1) 360 K
(2) 460 K
(3) 500 K
(4) 350 K

Ans. (1)
Sol.

$\mathrm{n}=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}$	$\frac{7}{10}=1-\frac{\mathrm{T}_{\mathrm{C}}}{1200}$
$\frac{1}{2}=1-\frac{600}{\mathrm{~T}_{\mathrm{H}}}$	$\frac{\mathrm{T}_{\mathrm{C}}}{1200}=1-\frac{7}{10}$
$\frac{600}{\mathrm{~T}_{\mathrm{H}}}=\frac{1}{2}$	$\frac{\mathrm{~T}_{\mathrm{C}}}{1200}=\frac{3}{10}$
$\mathrm{~T}_{\mathrm{H}}=1200 \mathrm{~K}$	$\mathrm{~T}_{\mathrm{C}}=360 \mathrm{~K}$

11. A light is incident from air on glass slab at its critical angle. If thickness of slab is $\sqrt{3} \mathrm{~m}$ and refractive index $\sqrt{2}$ then lateral displacement of light is (in m) [Given $\sin 15^{\circ}=0.259$]

Ans. 0.518
Sol. $\quad L=t \frac{\sin (i-r)}{\cos r} \quad \sin i=\frac{1}{v}=\frac{1}{\sqrt{2}}$

$$
\mathrm{i}=45^{\circ}
$$

$\sin \mathrm{i}=\mu \sin \mathrm{r}$
$\mathrm{r}=30^{\circ}$
$\Rightarrow \mathrm{L}=\frac{\sqrt{3} \sin (45-30)}{\sin 30^{\circ}}$
$=2 \sin 15^{\circ}$
$=0.518$

Unleashing Potential
12. Assertion : Photodiodes are generally used for measuring light intensity

Reason : Forward biased current is more than reverse biased current in PN junction diode.
(1) A and R both are correct and R is correct explanation.
(2) A and R both are correct and R is not correct explanation.
(3) A is correct R is incorrect.
(4) A is incorrect, R is correct.

Ans. (2)
13. A body cools from $96^{\circ} \mathrm{C}$ to $84^{\circ} \mathrm{C}$ in 2 min . Find out time required for body to cool from $74^{\circ} \mathrm{C}$ to $68^{\circ} \mathrm{C}$. Take surrounding temp. as $22^{\circ} \mathrm{C}$.
(1) 1 min
(2) 2 min
(3) 1.4 min
(4) 2.4 min

Ans. (3)
Sol. $\frac{T_{2}-T_{1}}{\Delta t}=k\left(\frac{T_{1}+T_{2}}{2}-T\right)$
$\frac{12}{2}=\mathrm{k}\left(\frac{84+96}{2}-22\right)$
$6=\mathrm{K}(68)$
$K=\frac{6}{68}$
$\frac{6}{\Delta \mathrm{t}}=\frac{6}{68}\left(\frac{74+68}{2}-22\right)$
$\frac{1}{\Delta \mathrm{t}}=\frac{1}{68}(71-22)$
$\Delta \mathrm{t}=\frac{68}{49}$
$\Delta t=1.4 \mathrm{~min}$.

Unleashing Potential
14.

Moment of inertia of disc mass m and radius R about centre of mass and perpendicular to plane is $I_{c m}$ and moment of inertia of disc about P and perpendicular to plane is $I_{A B}$, then $\frac{I_{A B}}{I_{c m}}$ is

Ans. $\frac{9}{17}$
Sol. $\quad \mathrm{I}_{\mathrm{cm}}=\frac{\mathrm{mR}^{2}}{2}$
$\mathrm{I}_{\mathrm{cm}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{md}^{2}$
$\mathrm{I}_{\mathrm{cm}}=\frac{\mathrm{mR}^{2}}{2}+\mathrm{m}\left(\frac{2 \mathrm{R}}{3}\right)^{2}$
$\mathrm{I}_{\mathrm{cm}}=\frac{\mathrm{mR}^{2}}{2}+\frac{\mathrm{m} 4 \mathrm{R}^{2}}{9}=\frac{17 \mathrm{mR}^{2}}{18}$
$\mathrm{R}=\frac{\mathrm{I}_{\mathrm{cm}}}{\mathrm{I}_{\mathrm{AB}}}=\frac{18}{2 \times 17}=\frac{9}{17}$
15. Column-I
(A) Surface tension
(P) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(B) Pressure
(Q) MT^{-2}
(C) Viscosity
(R) MLT^{-1}
(D) Impulse
(S) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$

Match the quantities in column-I with it's correct dimensions mentioned in column-II.
(1) (A) $\rightarrow \mathrm{Q}$; (B) $\rightarrow \mathrm{P}$; (C) $\rightarrow \mathrm{S}$; (D) $\rightarrow \mathrm{R}$
(2) (A) $\rightarrow \mathrm{R}$; (B) $\rightarrow \mathrm{P}$; (C) $\rightarrow \mathrm{Q}$; (D) $\rightarrow \mathrm{R}$
(3) (A) \rightarrow Q; (B) \rightarrow Q; (C) $\rightarrow \mathrm{P} ;$ (D) $\rightarrow \mathrm{R}$
(4) (A) \rightarrow S; (B) \rightarrow P; (C) $\rightarrow \mathrm{R}$; (D) $\rightarrow \mathrm{R}$

Ans. (1)

Unleashing Potential
Sol. Surface tension $(\mathrm{T})=\frac{\mathrm{F}}{\mathrm{L}}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}=\mathrm{MT}^{-2}$
$\operatorname{Pressure}(\mathrm{P})=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Viscosity $=\frac{F}{A \frac{d v}{d h}}=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
Impulse $=$ MLT $^{-1}$
16. A straight line graph passing from origin at angle 45° is drawn between extension and stress applied if young's modulus is $\mathrm{x} \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. Find the value of x . If length of wire is 62.8 cm diameter of cross section is 4 mm .
(1) 5
(2) 10
(3) 15
(4) 20

Ans. (1)
Sol. $\underbrace{\Delta \mathrm{L}}_{\text {Load }}$
$\frac{\mathrm{F}}{\mathrm{A}}=\gamma \frac{\Delta \mathrm{L}}{\mathrm{L}}$
$\frac{\mathrm{L}}{\mathrm{A}}=\gamma \frac{\Delta \mathrm{L}}{\mathrm{F}}$
$\frac{\mathrm{L}}{\mathrm{A}}=\gamma(1)$
$=\frac{62.8 \times 10^{-2}}{\pi \times\left(2 \times 10^{-3}\right)^{2}}=5 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{x}=5$
17. Two points separated by 6 cm on string has phase difference of 60°. If frequency of oscillation is 500 Hz . Find velocity (in m/sec) of wave?
(1) 200
(2) 180
(3) 100
(4) 80

Ans. (2)

Unleashing Potential
Sol. $\Delta \phi=\Delta \mathrm{x} \frac{2 \pi}{\lambda}$

$$
\begin{aligned}
& \frac{\pi}{3}=(6 \mathrm{~cm}) \frac{2 \pi}{\lambda} \\
& \lambda=36 \mathrm{~cm} \\
& v=f \lambda \\
& v=500 \times \frac{36}{100} \\
& v=180 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

18. A tunnel is dig inside the earth along its diameter. A particle is released from rest and performing SHM. Find time period.
(1) 1 hr 24 min
(2) 30 min
(3) 40 min
(4) 2 hrs 48 min

Ans. (1)
Sol. $\quad \mathrm{F}=\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{mr}}{\mathrm{R}_{\mathrm{e}}^{3}}=\frac{\mathrm{mgr}}{\mathrm{R}_{\mathrm{e}}}=\mathrm{m} \omega^{2} \mathrm{r}$
$\omega=\sqrt{\frac{\mathrm{g}}{\mathrm{R}_{\mathrm{e}}}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{g}}}=2 \pi \sqrt{\frac{6400 \times 10^{3}}{10}}=2 \pi \times 800 \mathrm{sec} \approx 1 \mathrm{hr} 24 \mathrm{~min}$
19. In a YDSE distance between slit \& screen is 1 m . A mono chromatic wave of wavelength 600 nm incident on slit. Distance between central maxima and $5^{\text {th }}$ maxima is 5 cm . Find separation between slits is.
(1) $30 \mu \mathrm{~m}$
(2) $60 \mu \mathrm{~m}$
(3) $15 \mu \mathrm{~m}$
(4) $20 \mu \mathrm{~m}$

Ans. (2)
Sol. $\mathrm{y}=\frac{\mathrm{nD} \lambda}{\mathrm{d}}$
$\mathrm{d}=\frac{\mathrm{nD} \lambda}{\mathrm{y}}=\frac{5 \times 1 \times 600 \times 10^{-9}}{5 \times 10^{-2}}=6 \times 10^{-5} \mathrm{~m}=60 \mu \mathrm{~m}$
20. For LCR circuit resonance frequency is 20 Hz , if inductance is made 8 times and capacitance is doubled ratio of new resonance frequency is :
(1) $1: 1$
(2) $4: 1$
(3) $1: 4$
(4) $2: 1$

Ans. (3)

Unleashing Potential
Sol. $\quad f_{r}=\frac{1}{2 \pi \sqrt{\text { LC }}}$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{r}}^{\prime}=\frac{1}{2 \pi \sqrt{(8 \mathrm{~L})(2 \mathrm{C})}} \\
& \mathrm{f}_{\mathrm{r}}^{\prime}=\frac{1}{4} \mathrm{f}_{\mathrm{r}} \\
& \frac{\mathrm{f}_{\mathrm{r}}^{\prime}}{\mathrm{f}_{\mathrm{r}}}=\frac{1}{4}
\end{aligned}
$$

21. An EMW is propagating in negative t axis $(-\hat{\mathrm{k}})$ and electric field field is vibrating in +y -axis $(\hat{\mathrm{j}})$, for this wave magnetic field is vibrating in
(1) $-\hat{\mathrm{i}}$
(2) \hat{i}
(3) $\hat{\mathrm{k}}$
(4) $-\hat{j}$

Ans. (2)

Sol.

$\hat{E} \times \hat{B}=\hat{v}$
$\hat{\mathrm{j}} \times \hat{\mathrm{B}}=-\hat{\mathrm{k}}$
$\Rightarrow \hat{B}=\hat{\mathrm{i}}$
22. Kinetic energy at any instant is $\frac{\mathrm{n} \sin \theta}{\mathrm{k}}$, find n ?

Ans. (2)

Unleashing Potential

Sol.

$\mathrm{F}=2 \cos \theta$
$\mathbf{a}=\frac{2}{\mathrm{~m}} \cos (\mathrm{kx})$
$\int_{0}^{v} v d v=\int_{0}^{x} \frac{2}{m} \cos (k x) d x$
$\frac{\mathrm{v}^{2}}{2}=\frac{2}{\mathrm{~m}} \frac{\sin (\mathrm{kx})}{\mathrm{k}}$
$\frac{m v^{2}}{2}=$ K.E. $(\mathrm{x})=2 \frac{\sin (k x)}{\mathrm{k}}$
the value of $n=2$
23. Half-life of a radioactive substance is 30 min . Time after which 75% of the radioactive sample decayed is (min)
(1) 60 min
(2) 40 min
(3) 80 min
(4) 100 min

Ans.
Sol. $\quad \mathrm{T}_{1 / 2}=\frac{\ell \mathrm{n} 2}{\lambda}$
$\mathrm{T}_{75 \%}=$?
$\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$\frac{\mathrm{N}_{0}}{4}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{T}_{75 \%}}$
$\frac{1}{4}=\mathrm{e}^{-\lambda \mathrm{T}_{55 \%}}$
$\frac{\ell \mathrm{n} 4}{\lambda}=\mathrm{T}_{75 \%}$
$\mathrm{t}_{1 / 2}=\mathrm{T}_{75 \%}=2 \times 30 \mathrm{~min}=60 \mathrm{~min}$

Unleashing Potential
24. Magnetic field at centre in column-I match with column-II.

Column-I
(A)

(B)

(C)

Q $\quad \frac{\mu_{0} I}{4 r}$

R $\quad \frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{r}}(\pi+2)$

S $\quad \frac{\mu_{0} \mathrm{I}}{2 \mathrm{r}}\left[1-\frac{1}{\pi}\right]$
(1) $\mathrm{A} \rightarrow \mathrm{R}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{Q}$
(2) $\mathrm{A} \rightarrow \mathrm{R}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{Q}$
(3) $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{Q}, \mathrm{D} \rightarrow \mathrm{R}$
(4) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{R}$

Ans. (1)
Sol. $\quad B_{A}=\frac{\mu_{0} I}{4 \mathrm{r}}+\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{r}} \times 2=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{r}}(\pi+2)$
$\mathrm{B}_{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \mathrm{r}}\left[1-\frac{1}{\pi}\right]$
$B_{C}=\frac{\mu_{0} I}{4 r}+\frac{\mu_{0} I}{4 \pi r}=\frac{\mu_{0} I}{4 \pi r}(\pi+1)$
$B_{D}=\frac{\mu_{0} I}{4 \mathrm{r}}$
25. A parallel plate capacitor of plate separation 2 mm and plate area $40 \mathrm{~cm}^{2}$ is filled with a dielectric whose area is same as plates of capacitor. Thickness is $1 \mathrm{~mm} \&$ dielectric constant is 5 . New capacitance is:-
(1) $\frac{3}{10} \varepsilon_{0} \mathrm{~F}$
(2) $\frac{10}{3} \varepsilon_{0} \mathrm{~F}$
(3) $\frac{20}{3} \varepsilon_{0} \mathrm{~F}$
(4) $\frac{3}{20} \varepsilon_{0} \mathrm{~F}$

Ans. (2)

Unleashing Potential
26. Time period of simple pendulum on earth's surface is T. Time period at height R (radius of earth) from earth's surface is $x T$. Find x ?
(1) 2
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) 4

Ans. (1)
27. A wire carrying current of 2 A when potential difference of 3.4 V is applied across it. If mass of wire is $8.92 \times 10^{-3} \mathrm{~kg}$ resistivity is $\rho=1.7 \times 10^{-8}$ and density is $8.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{2}$. Find length of wire.

Ans. 10
Sol. $\rho \frac{\ell}{\mathrm{A}}=\mathrm{r}$

$$
\begin{array}{ll}
\frac{1.7 \times 10^{-8} \ell^{2}}{\mathrm{v}}=\frac{3.4}{2} \\
\frac{1.7 \times 10^{-8} \ell^{2}}{\mathrm{~m} / \text { dencity }}=\frac{3.4}{2} & \left(\frac{\mathrm{~m}}{\mathrm{v}}=\text { density }\right)
\end{array}
$$

$\ell^{2}=\frac{3.4}{2\left(17 \times 10^{-8}\right)} \frac{8.92 \times 10^{-3}}{8.92 \times 10^{3}}$
$\ell^{2}=100$
28. A e^{-}is accelerated by 20 V potential difference and for this de-Broglie wavelength is λ_{0}. If this e^{-}is now accelerated by 40 V , new de-Broglie wavelength will be (λ)
(1) $\sqrt{2} \lambda$
(2) $\frac{\lambda_{0}}{\sqrt{2}}$
(3) λ
(4) $\frac{\lambda}{2}$

Ans. (2)
29.

An e^{+}is projected between the plates of capacitor as shown in the figure. Initial velocity of e^{+}was in x-direction \& initial kinetic energy was 0.5 eV . If the electric field between the plates is $10 \mathrm{~N} / \mathrm{C}$ \& separation between the plates is 10 cm . Value of angle of deviation of the path of e^{+}as it comes out of the field

Ans. 45
Sol. $\quad K . E y=q \Delta v=e(10 \times 0.05)=0.5 \mathrm{eV}$
$\tan \theta=\frac{\mathrm{Vy}}{\mathrm{Vx}}=\sqrt{\frac{\mathrm{K} \cdot \mathrm{Ey}}{\mathrm{K} \cdot \mathrm{Ex}}}=\sqrt{\frac{0.5}{0.5}}=1 \quad \Rightarrow \theta=45^{\circ}$

