25/01/2023
Morning
Aakash

+ Bbyuu's
Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2023 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A car moving on a straight line travels in same direction half of the distance with uniform velocity v_{1} and other half of the distance with uniform velocity v_{2}. Average velocity of the car is equal to
(1) $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
(2) $\frac{v_{1}+v_{2}}{2}$
(3) $v_{1}+v_{2}$
(4) $\sqrt{v_{1} v_{2}}$

Answer (1)
Sol.

$t_{1}=\frac{x}{2 v_{1}}, t_{2}=\frac{x}{2 v_{2}}$
So $v_{\mathrm{av}}=\frac{\text { Total distance }}{\text { Total time }}$

$$
=\frac{x}{t_{1}+t_{2}}
$$

$$
=\frac{x}{\frac{x}{2 v_{1}}+\frac{x}{2 v_{2}}}
$$

$$
=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}
$$

2. A car is moving with a constant speed of $2 \mathrm{~m} / \mathrm{s}$ in circle having radius R. A pendulum is suspended from the ceiling of the car. Find the angle made by the pendulum with the vertical. Take $R=\frac{8}{15} \mathrm{~m}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$
(1) 30°
(2) 53°
(3) 37°
(4) 60°

Answer (3)

Sol.

$T \cos \theta=m g$
$T \sin \theta=\frac{m v^{2}}{R}$
$\Rightarrow \tan \theta=\frac{v^{2}}{R g}$

$$
=\frac{4}{\frac{8}{15} \times 10}=\frac{3}{4}
$$

$\Rightarrow \theta=37^{\circ}$
3. A particle is droped inside tunnel of earth about any diameter. Particle starts oscillating, with time period T. ($R=$ radius of earth, $g=$ acceleration due to gravity on earth's surface). Then find T.
(1) $T=2 \pi \sqrt{\frac{R}{g}}$
(2) $T=\pi \sqrt{\frac{R}{g}}$
(3) $T=2 \pi \sqrt{\frac{2 R}{g}}$
(4) $T=2 \pi \sqrt{\frac{3 R}{g}}$

Answer (1)

Sol.

$F=m g$ (towards centre)
$\frac{m d v}{d t}=-\left(\frac{G M m}{R^{3}}\right) r$
$\frac{d v}{d t}=-\left(\frac{G M}{R^{3}}\right) r$
$g=\frac{G M}{R^{2}}$
$\frac{d v}{d t}=-\left(\frac{g}{R}\right) r$
$\omega^{2}=\left(\frac{g}{R}\right)$
$\omega=\sqrt{\frac{g}{R}}$
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}}$
4. If T is the temperature of a gas then RMS velocity of the gas molecules is proportional to
(1) $T^{1 / 2}$
(2) $T^{-1 / 2}$
(3) T
(4) T^{2}

Answer (1)
Sol. $v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M_{0}}}$
So $v_{\text {rms }} \propto \sqrt{T}$
5. Time period of a pendulum at earth's surface is T. Find the time period of the pendulum at distance (from centre) which is twice the radius of earth.
(1) $\frac{T}{4}$
(2) $4 T$
(3) $\frac{T}{2}$
(4) $2 T$

Answer (4)

Sol. We know that $T=2 \pi \sqrt{\frac{1}{g}}$

$$
\Rightarrow \quad T=2 \pi \sqrt{\frac{1}{\frac{G M}{R^{2}}}} \cdots \text { (i) }
$$

$$
\text { Also, } T^{\prime}=2 \pi \sqrt{\frac{1}{\frac{G M}{(2 R)^{2}}}} \ldots \text { (ii) }
$$

$$
\Rightarrow \frac{T^{\prime}}{T}=\frac{2}{1}
$$

$$
\Rightarrow \quad T^{\prime}=2 T
$$

6. Let $I_{c m}$ be the moment of Inertia of disc passing through center and perpendicular to its plane. $I_{A B}$ be the moment of Inertia about axis $A B$ that is in the plane of disc and $\frac{2 r}{3}$ distance from centre, Find $\frac{I_{c m}}{I_{A B}} ?$
(1) $\frac{1}{4}$
(2) $\frac{18}{25}$
(3) $\frac{9}{17}$
(4) $\frac{1}{2}$

Answer (2)

Sol.

$I_{c m}=\frac{1}{2} M R^{2}$ (Perpendicular to plane)
$I_{c m}($ in plane $)=\frac{1}{4} M R^{2}$
$I_{A B}=\frac{1}{4} M R^{2}+M\left(\frac{2}{3} R\right)^{2}$
$=\frac{1}{4} M R^{2}+\frac{4}{9} M R^{2}$
$=\frac{(9+16) M R^{2}}{36}=\frac{25}{36} M R^{2}$
$\frac{I_{c m}(\text { Perpendiular })}{I_{A B}}=\frac{\frac{1}{2} M R^{2}}{\frac{25}{36} M R^{2}}=\left(\frac{18}{25}\right)$
7. A massless rod is arranged as shown:

Find the tension in the string
(1) 320 N
(2) 640 N
(3) 160 N
(4) 480 N

Answer (1)
Sol. Balancing the torque on the rod about the point of contact with the wall:
$\left(T \sin 30^{\circ}\right) \times 40=(m g) \times(40+40)$
$\Rightarrow T=320 \mathrm{~N}$
8. A carnot engine working between a source and sink at 200 K has efficiency of 50%. Another carnot engine working between the same source and another sink with unknown temperature T has efficiency of 75%. The value of T is equal to
(1) 400 K
(2) 300 K
(3) 200 K
(4) 100 K

Answer (4)
Sol. $\frac{50}{100}=1-\frac{200}{T}$
$\Rightarrow \quad T=400 \mathrm{~K}$
$T^{\prime}=100 \mathrm{~K}$
9. Mark the option correctly matching the following columns with appropriate dimensions

Column-I

(A) Surface tension
(B) Pressure
(C) Viscosity
(D) Impulse
(1) $A(Q), B(P), C(R), D(S)$
(2) $A(Q), B(P), C(S), D(R)$
(3) $A(S), B(Q), C(P), D(R)$
(4) $A(R), B(P), C(Q), D(S)$

Answer (2)
Sol. For surface tension
$F=S L$
$[S]=\frac{[F]}{[L]}=\left[\mathrm{MT}^{-2}\right]$
For pressure
$P=\frac{F}{A}$
$[P]=\frac{[F]}{[A]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
For viscosity coefficient
$F=A\left(\frac{\Delta v}{\Delta z}\right) \eta$
$[\eta]=\frac{[F]}{[A]\left[\frac{\Delta v}{\Delta z}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
For Impulse

$$
\begin{aligned}
& I=\Delta p \\
& {[I]=[\Delta p]=\left[\mathrm{MLT}^{-1}\right]}
\end{aligned}
$$

Column-II

(P) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(Q) $\left[\mathrm{MT}^{-2}\right]$
(R) $\left[\mathrm{MLT}^{-1}\right]$
(S) $\mathrm{ML}-1 \mathrm{~T}^{-1}$
10. Assertion (A): Reverse biased diode is used in photodiode.

Reason (R): Forward biased current is more than reverse bias current.
(1) A \& R are correct and R is correct explanation of A
(2) $\mathrm{A} \& \mathrm{R}$ are correct, R is not correct explanation of A
(3) A is incorrect and R is correct
(4) A is correct and R is incorrect

Answer (??)

Sol. (NCERT) It is easier to observe small changes in current due to intensity, when diode is in reverse bias.
11. Temperature of hot soup in a bowl goes from $98^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. The temperature of surroundings is $22^{\circ} \mathrm{C}$. Find the time taken for the temperature of soup to go from $75^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$. [Assume Newton's law of cooling is valid]
(1) 1 minute
(2) 1.4 minute
(3) 2 minute
(4) 3.2 minute

Answer (2)

Sol. By Newton's law of cooling:
Rate of cooling $(R) \propto$ temperature difference
$\Rightarrow R_{1}=k x\left(92^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}\right)$
and $R_{2}=k x\left(72^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}\right)$
$\Rightarrow \frac{R_{1}}{R_{2}}=\frac{70}{50}=\frac{7}{5}$
$\Rightarrow \Delta t_{2}=1.4$ minute
12. Electric field is applied along $+y$ direction. A charged particle is travelling along $-\hat{k}$, undeflected. Then magnetic field in the region will be along?
(1) \hat{i}
(2) $-\hat{i}$
(3) \hat{j}
(4) $-\hat{k}$

Answer (1)

Sol.

$q(\vec{E}+\vec{V} \times \vec{B})=0$
$\vec{V} \times \vec{B}=-\vec{E}$
$\Rightarrow V_{0}(-\hat{k}) \times \vec{B}=-E_{0} \hat{j}$
\vec{B} should be in \hat{i} direction to balance the electrostatic force on the charge particle.
13. When an electron is accelerated by 20 kV , its deBroglie wavelength is λ_{0}. If the electron is accelerated by 40 kV , find its de-Broglie wavelength.
(1) $2 \lambda_{0}$
(2) $\frac{\lambda_{0}}{2}$
(3) $\sqrt{2} \lambda_{0}$
(4) $\frac{\lambda_{0}}{\sqrt{2}}$

Answer (4)

Sol. We know $\lambda_{0}=\frac{h}{p}$

$$
\begin{aligned}
\Rightarrow \lambda_{0} & =\frac{h}{\sqrt{2 m K}} \\
& =\frac{h}{\sqrt{2 m e V}}
\end{aligned}
$$

Since V doubles

$$
\begin{aligned}
& \Rightarrow \quad \frac{\lambda^{\prime}}{\lambda_{0}}=\sqrt{\frac{V}{2 V}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \quad \lambda^{\prime}=\frac{\lambda_{0}}{\sqrt{2}}
\end{aligned}
$$

14.

Find the equivalent resistance of the shown circuit across the terminals of ideal battery.
(1) $2 R$
(2) $3 R$
(3) $4 R$
(4) $5 R$

Answer (2)

Sol. In $2^{\text {nd }}$ part of diagram a connecting wire is nullifying the resistance of parallel resistance thus their net resistance is zero. So net resistance of circuit is $3 R$.

15. For an AM signal, it is given that
$f_{\text {carrier }}=10 \mathrm{MHz}$
$f_{\text {signal }}=5 \mathrm{kHz}$
Find the bandwidth of the transmitted signal.
(1) 5 kHz
(2) 10 kHz
(3) 2.5 kHz
(4) 20 MHz

Answer (2)

Sol. We know bandwidth $=2 \mathrm{fm}$

$$
\Rightarrow \text { bandwidth }=10 \mathrm{kHz}
$$

16. Let nuclear densities of ${ }_{2}^{4} \mathrm{He}$ and ${ }_{20}^{40} \mathrm{Ca}$ be ρ_{1} and ρ_{2} respectively. Find the ratio $\frac{\rho_{1}}{\rho_{2}}$.
(1) $1: 10$
(2) $10: 1$
(3) $1: 1$
(4) $1: 2$

Answer (3)
Sol. We know radius $R=R_{0} A^{\frac{1}{3}}$

$$
\begin{aligned}
\Rightarrow \text { Density }=\frac{\text { Mass }}{\text { Volume }} & =\frac{A}{\frac{4}{3} \pi\left(R_{0} A^{\frac{1}{3}}\right)^{3}} \\
& =\frac{1}{\frac{4}{3} \pi R_{0}^{3}}
\end{aligned}
$$

\Rightarrow Density is independent of A.
$\Rightarrow \quad \frac{\rho_{1}}{\rho_{2}}=1$
17. A particle is projected with 0.5 eV kinetic energy in an uniform electric field $\vec{E}=-10 N / C \hat{j}$, as shown in the figure. Find the angle made by the particle from the x-axis when it leaves \vec{E}.

(1) $\theta=45^{\circ}$
(2) $\theta=60^{\circ}$
(3) $\theta=30^{\circ}$
(4) $\theta=37^{\circ}$

Answer (1)

Sol.

$v_{x}=v_{0}$
$a_{y}=\left(\frac{e E}{m_{e}}\right)$
$S_{y}=5 \times 10^{-2} \mathrm{~m}$
$v_{y}^{2}=2 a_{y} S_{y}$
$v_{y}=\sqrt{\frac{2 e E}{m_{e}} S_{y}}$
$\tan \theta=\left(\frac{v_{y}}{v_{x}}\right)$
$K_{i}=0.5 \mathrm{eV}=\frac{1}{2} \frac{m_{e} v_{x}^{2}}{e}$
$v_{X}=\sqrt{\frac{0.5 \times 2 e}{m_{e}}}=\sqrt{\frac{e}{m_{e}}}$
$\tan \theta=\frac{\sqrt{\frac{2 e E}{m_{e}} \times S_{y}}}{\sqrt{\frac{e}{m_{e}}}}=\sqrt{2 E S_{y}}=\sqrt{2 \times 10 \times 5 \times 10^{-2}}$
$=\sqrt{1}$
$\tan \theta=1$
$\theta=45^{\circ}$
18. ??
19. ??
20. ??

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. In the series sequence of two engines E_{1} and E_{2} as shown $T_{1}=600 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$. It is given that both the engines working on carnot principle have same efficiency, then temperature T at which exhaust of E_{1} is fed into E_{2} is equal to $300 \sqrt{n} \mathrm{~K}$. Value of n is equal to

Answer (02.00)
Sol. $\eta_{1}=1-\frac{T}{600}$
$\eta_{2}=1-\frac{300}{T}$
As efficiency is same

$$
\begin{gathered}
\eta_{1}=\eta_{2} \\
\frac{T}{600}=\frac{300}{T} \\
\Rightarrow T=\sqrt{180000} \\
=300 \sqrt{2} \mathrm{~K} .
\end{gathered}
$$

So $n=2$
22. A solenoid of length 2 m , has 1200 turns. The magnetic field inside the solenoid when 2 A current is passed through it is $N \pi \times 10^{-5} \mathrm{~T}$. Find the value of N. (Diameter of solenoid is 0.5 m)

Answer (48.00)

Sol.

$B_{\text {inside }}=\mu_{0} \mathrm{ni}$
$N=$ Number of turns per unit length

$$
=\frac{1200}{2}=600
$$

$i=$ current in a turn $=2 \mathrm{~A}$
$B=4 \pi \times 10^{-7} \times 600 \times 2$
$=48 \pi \times 10^{-5} \mathrm{~T}$
23. Consider a network of resistors as shown:

Find the effective resistance (in Ω) across A and B.

Answer (05.00)

Sol. Effectively, the network is:

24. Find the ratio of density of oxygen $\left({ }_{8}^{16} \mathrm{O}\right)$ to the density of Helium $\left({ }_{2}^{4} \mathrm{He}\right)$ at STP.

Answer (08.00)

Sol. $\frac{P}{\rho}=\frac{R T}{M_{0}}$

$$
\Rightarrow \frac{\rho_{1}}{\rho_{2}}=\frac{M_{1}}{M_{2}}
$$

$\frac{\rho_{1}}{\rho_{2}}=\frac{32}{4}=8$
25. Consider the following two LC circuits.

(I)

(II)

Then find $\frac{\omega_{1}}{\omega_{11}}$, where ω_{1} and ω_{11} are resonance frequencies of the Circuit I and Circuit II respectively.
Answer (04.00)

Sol.

$$
\begin{aligned}
& \omega_{1}=\frac{1}{\sqrt{L C}}, \omega_{2}=\frac{1}{\sqrt{(8 L \times 2 C)}}=\frac{1}{4 \sqrt{L C}} \\
& \frac{\omega_{1}}{\omega_{2}}=\frac{4}{1}
\end{aligned}
$$

26. ??
27. ??
28. ??
29. ??
30. ??

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Radius of $2^{\text {nd }}$ orbit of Li^{2+} ion is x, radius of $3^{\text {rd }}$ orbit of Be^{3+} will be
(1) $\frac{27 x}{16}$
(2) $\frac{16 x}{27}$
(3) $\frac{4}{3} x$
(4) $\frac{3}{4} x$

Answer (1)

Sol. $r_{\mathrm{Li}^{2+}}=r_{0} \times \frac{2^{2}}{3}=\frac{4 r_{0}}{3}=x$
$\Rightarrow r_{0}=\frac{3 x}{4}$
$r_{B e^{3+}}=r_{0} \times \frac{3^{2}}{4}=\frac{9 r_{0}}{4}=\frac{9 \times 3 \times x}{4 \times 4}$
$r_{B e^{3+}}=\frac{27 x}{16}$
2. If X-atoms are present at alternate corners and at body centre of a cube and Y -atoms are present at $1 / 3^{\text {rd }}$ of face centres then what will be empirical formula?
(1) $\mathrm{X}_{2} \cdot 5 \mathrm{Y}$
(2) $\mathrm{X}_{5} \mathrm{Y}_{2}$
(3) $\mathrm{X}_{1.5} \mathrm{Y}_{2}$
(4) $X_{3} Y_{2}$

Answer (4)

Sol. Number of X -atoms per unit cell $=1+4 \times \frac{1}{8}$

$$
=\frac{3}{2}
$$

Number of Y-atoms per unit cell $=2 \times \frac{1}{2}=1$
$\therefore \quad$ Empirical formula of the solid is $\mathrm{X}_{3} \mathrm{Y}_{2}$.
3. Thionyl chloride on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B.
(1) $\mathrm{A}-\mathrm{PCl}_{5}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{2}$
(2) $\mathrm{A}-\mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) $\mathrm{A}-\mathrm{POCl}_{3}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{4}$
(4) $\mathrm{A}-\mathrm{PCl}_{3}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{3}$

Answer (4)
Sol. $\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}$
(A)
$\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$

(B)

Correct answer is (4).
4. Which of the following shows least reactivity towards nucleophilic substitution reaction
(1)

(2)

(3)

(4)

Answer (3)
Sol. Aryl halides containing E.W.G at ortho or para position are more reactive than meta isomer towards nucleophilic substitution reaction.
5. The correct decreasing order of positive electron gain enthalpy for the following inert gases
$\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{Xe}$
(1) $\mathrm{He}>\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}$
(2) $\mathrm{He}>\mathrm{Ne}>\mathrm{Xe}>\mathrm{Kr}$
(3) $\mathrm{He}>\mathrm{Xe}>\mathrm{Ne}>\mathrm{Kr}$
(4) $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$

Answer (4)

Sol. Correct order is $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$
6. Which of the following reaction is not involved in the extraction of copper metal?
(1)

$$
\mathrm{CuFeS}_{2} \xrightarrow[\text { roasting }]{\text { partial }} \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeS}+\mathrm{SO}_{2}+\mathrm{Cu}_{2} \mathrm{O}
$$

(2) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(3) $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$
(4) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

Answer (4)

Sol. Option (4) contains the reaction involved in the reduction of hematite ore not in copper extraction.
7. Match the List-I and List-II.

List-I

(A) α-D-Glucopyranose (1)

List-II

(B) β-D-Glucopyranose
(C) α-D-Fructofuranose
(3)

(2)

(D) β-D-Fructofuranose

(1) $\mathrm{A} \rightarrow 4$; $\mathrm{B} \rightarrow 1$; $\mathrm{C} \rightarrow 2$; $\mathrm{D} \rightarrow 3$
(2) $\mathrm{A} \rightarrow 1$; $\mathrm{B} \rightarrow 4$; $\mathrm{C} \rightarrow 3$; $\mathrm{D} \rightarrow 2$
(3) $\mathrm{A} \rightarrow 2 ; \mathrm{B} \rightarrow 3 ; \mathrm{C} \rightarrow 4 ; \mathrm{D} \rightarrow 1$
(4) $\mathrm{A} \rightarrow 1$; $\mathrm{B} \rightarrow 3$; $\mathrm{C} \rightarrow 2 ; \mathrm{D} \rightarrow 4$

Answer (1)

Sol. The correct options is (1).
8. Identify the correct sequence of reagents for the following conversion.
n-Heptane $\rightarrow \rightarrow \rightarrow \rightarrow \mathrm{PhCOOH}+\mathrm{PhCH}_{2} \mathrm{OH}$
(1) $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$

$$
\text { Conc. } \mathrm{NaOH}, \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}
$$

(2) $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$
$\mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$, Conc. NaOH
(3) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$,

Conc. $\mathrm{NaOH}, \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$
(4) $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaOH}$

Conc. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{HNO}_{3}$

Answer (1)

Sol.

9. Which of the following option contains the correct match?

Table-1 (Elements) Table-2 (Flame colour)
(A) K
(P) Violet
(B) Ca
(Q) Brick red
(C) Sr
(R) Apple green
(D) Ba
(S) Crimson red
(1) (A) $\rightarrow P$, (B) $\rightarrow Q$, (C) $\rightarrow S$, (D) $\rightarrow R$
(2) $(A) \rightarrow Q,(B) \rightarrow P,(C) \rightarrow S,(D) \rightarrow R$
(3) (A) $\rightarrow R$, (B) $\rightarrow S$, (C) $\rightarrow P$, (D) $\rightarrow Q$
(4) $(A) \rightarrow S$, (B) $\rightarrow R$, (C) $\rightarrow Q$, (D) $\rightarrow P$

Answer (1)
Sol. K \rightarrow Violet
$\mathrm{Ca} \rightarrow$ Brick red
$\mathrm{Sr} \rightarrow$ Crimson red
$\mathrm{Ba} \rightarrow$ Apple green
10. Consider the following sequence of reaction

Which of the following options contains the correct structure?
(1) A is

(2) B is

(3)

(4)

Answer (2)

Sol.

(C)

(B)
11. Correct order of basic strength for

is
(1) $2>1>3>4$
(2) $3>2>1>4$
(3) $4>2>1>3$
(4) $2>4>3>1$

Answer (1)
Sol. The correct order of basic strength in aqueous medium is

12. Consider the following conversion

Which of the following option contains the correct structure of 'A'?
(1)

(2)

(3)

(4)

Answer (2)
Sol.

13. Consider the following sequence of reactions
$\mathrm{NO}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A+B$
$\mathrm{B}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$
A is?
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) NO
(3) $\mathrm{N}_{2} \mathrm{O}_{3}$
(4) N_{2}

Answer (2)

Sol. $\mathrm{NO}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\substack{\text { (g) } \\ \text { (A) }}}{\mathrm{NO}}+\underset{(\mathrm{g})}{(\mathrm{B})}$

$$
\mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{3}(\mathrm{~g})
$$

14. Which one of the following complexes is paramagnetic in nature?
(1) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(3) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Answer (3)

Sol.
(1)
$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$

$$
\mathrm{Fe}^{2+} \quad 3 d^{8} \quad \begin{array}{|l|l|l|l|}
\hline 1 L & 1 & 1 & 1 \\
\hline
\end{array}
$$

 $d^{2} s p^{3}$ hybridisation

Complex is diamagnetic
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} d s p^{2}$ hybridisation, diamagnetic
(3) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} s p^{3} d^{2}$ hybridisation, paramagnetic
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} d^{2} s p^{3}$ hybridisations, diamagnetic
15. Which of the following options contains the correct graph between $\frac{\pi}{c}$ and c at constant temperature? [where π is osmotic pressure and c is concentration of solute]
(1)

(2)

(3)

(4)

Answer (1)

Sol. $\pi=\mathrm{cRT}$
$\therefore \frac{\pi}{c}=\mathrm{RT}$

\therefore The value of $\frac{\pi}{c}$ is constant at constant temperature.
16. Which of the following is correct about antibiotics.
(1) Antibiotics are the substances that promote the growth of microorganism
(2) Penicillin has bacteriostatic effect
(3) Erythromycin has Bactericidal effect
(4) These are synthesized artificially

Answer (4)
Sol. Antibiotics are synthesized artificially.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. How many of the following complexe(s) is(are) paramagnetic:
$[\mathrm{Fe}(\mathrm{CN}) 6]^{3-},\left[\mathrm{Fe}(\mathrm{CN}) \mathrm{C}^{4-},\left[\mathrm{NiCl}_{4}\right]^{2-},[\mathrm{Ni}(\mathrm{CN}) 4]^{2-}\right.$, $[\mathrm{CuCl} 4]^{2-},[\mathrm{Cu}(\mathrm{CN}) 4]^{3-},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$

Answer (4)

Sol. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \rightarrow d^{5}$ paramagnetic
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow d^{6} \quad$ diamagnetic
$\left[\mathrm{NiCl}_{4}\right]^{2-} \rightarrow d^{8}$ paramagnetic
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \rightarrow d^{8}$ diamagnetic
$\left[\mathrm{CuCl}_{4}\right]^{2-} \rightarrow d^{9}$ paramagnetic
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} \rightarrow d^{10}$ diamagnetic
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \rightarrow d^{9}$ paramagnetic
22. For a first order reaction $A \longrightarrow B, t_{1 / 2}$ is 30 min . Then find the time (in minutes) required for 75%. Completion of reaction

Answer (60.00)

Sol. $A \xrightarrow[50 \%]{\mathrm{t}_{1 / 2}} B$
$A \xrightarrow[75 \%]{2 t_{1 / 2}} B$
$\therefore \quad$ In 75% completion, two $\mathrm{t}_{1 / 2}$ will be required.
$\therefore \quad$ Time required will be 60 minutes.
23. Consider the following cell representation:

$$
\begin{gathered}
\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}^{+}| | \mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+} \\
(1 \text { atm })(1 \mathrm{M})
\end{gathered}
$$

Then find the ratio of concentration of Fe^{2+} to Fe^{3+}
[Given: $\mathrm{E}_{\text {cell }}=0.712$ and $\mathrm{E}_{\text {Cell }}^{\circ}=0.771$]

Answer (10.00)

Sol. $\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \left[\frac{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{Fe}^{3+}\right]}\right]^{2}$
$0.712=0.771-\frac{0.059}{2} \times 2 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
$-0.059=-0.059 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
$\therefore \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=10$
24. How many of the following ions/elements has/have same value of spin magnetic moment?
$\mathrm{V}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}$

Answer (2)

Sol. $\mathrm{V}^{3+}=\mathrm{d}^{2} \rightarrow 2$ unpaired electrons
$\mathrm{Cr}^{3+}=\mathrm{d}^{3} \rightarrow 3$ unpaired electrons
$\mathrm{Fe}^{2+}=\mathrm{d}^{6} \rightarrow 4$ unpaired electrons
$\mathrm{Ni}^{2+}=\mathrm{d}^{8} \rightarrow 2$ unpaired electrons
25. An athlete is given 100 g of glucose energy equivalent to 1560 kJ . He utilizes 50% of this gained energy in an event. Enthalpy of evaporation of $\mathrm{H}_{2} \mathrm{O}$ is $44 \mathrm{~kJ} /$ mole. In order to avoid storage of energy in body, mass of water (in g) he would need to perspire is:

Answer (319)

Sol. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$h=\frac{100}{180}$
$\therefore \quad$ Energy needed to perspire water $=1560 \times \frac{1}{2}$

$$
=780 \mathrm{~kJ}
$$

$\therefore \quad$ Moles of water evaporated $=\frac{780}{44}$ mole
$\therefore \quad$ Weight of water evaporated $=\frac{780}{44} \times 18$

$$
=319 \mathrm{~g}
$$

Assuming water is contained in the body.
26.
27.
28.
29.
30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3}, x \in[-1,1]$.

Sum of all solutions is $\alpha-\frac{4}{\sqrt{3}}$ then α is
(1) 1
(2) 2
(3) -2
(4) $\sqrt{3}$

Answer (2)

Sol. $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3}$
For $x<0$,
$2 \tan ^{-1} x+2 \tan ^{-1} x+\pi=\frac{\pi}{3}$
$\Rightarrow 4 \tan ^{-1} x=-\frac{2 \pi}{3}$
$\Rightarrow \quad x=-\frac{1}{\sqrt{3}}$
For $x>0$,
$4 \tan ^{-1} x=\frac{\pi}{3}$
$\Rightarrow \quad x=\tan \frac{\pi}{12}=2-\sqrt{3}$
Sum $=2-\sqrt{3}-\frac{1}{\sqrt{3}}=2-\frac{4}{\sqrt{3}}$
2. Mean of a data set is 10 and variance is 4 . If one entry of data set changes from 8 to 12 , then new mean becomes 10.2. Then new variance is
(1) 3.92
(2) 3.96
(3) 4.04
(4) 4.08

Answer (2)

Sol. Let number of observations is n
(10.2) $n=10 n-8+12$
$\Rightarrow(10.2) n=10 n+4$
$\Rightarrow \quad n=20$
For earlier observation set
$\frac{\sum x_{i}^{2}}{20}-(10)^{2}=4$
$\sum x_{i}^{2}=(104)(20)=2080$
After change

$$
\begin{aligned}
\left(\sum x_{i}^{2}\right)_{\text {new }} & =2080-8^{2}+12^{2} \\
& =2160
\end{aligned}
$$

New variance $=\frac{2160}{20}-(10.2)^{2}$

$$
\begin{aligned}
& =108-(10.2)^{2} \\
& =3.96
\end{aligned}
$$

3. If $y=(1+x)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)$, then $y^{\prime \prime}-y^{\prime}$ is, when $x=-1$
(1) 496
(2) 946
(3) -496
(4) -946

Answer (3)
Sol. $y=(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)$
Multiplying and dividing by $(x-1)$ we get
$y=\frac{x^{32}-1}{x-1}$
at $x=-1, y=0$
$y(x-1)=x^{32}-1$
Diff. on both side
$y^{\prime}(x-1)+y=32 x^{31}$
at $x=-1$
$y^{\prime}(-1)=16$
Diff. (i) on both side
$y^{\prime \prime}(x-1)+y^{\prime}+y^{\prime}=32 \times 31 x^{30}$
substitute $x=-1$
$y^{\prime \prime}(-1)=-480$
$y^{\prime \prime}(-1)-y^{\prime}(-1)=-480-16$ $=-496$
4. The logical statement $(p \wedge \sim q) \rightarrow(p \rightarrow \sim q)$ is a
(1) Tautology
(2) Fallacy
(3) Equivalent to $p \vee \sim q$
(4) Equivalent to $p \wedge \sim q$

Answer (1)

Sol. $(p \wedge \sim q) \rightarrow(p \rightarrow \sim q)$
$=(p \wedge \sim q) \rightarrow(\sim p \vee \sim q)$
$=\sim(p \wedge \sim q) \vee(\sim p \vee \sim q)$
$=\sim p \vee q \vee(\sim p \vee \sim q)$
$=\sim p \vee T=T$ (Tautology)
5. If a_{r} is the coefficient of x^{10-r} in expansion of $(1+x)^{10}$ then $\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}$ is
(1) 390
(2) 1210
(3) 485
(4) 220

Answer (2)

Sol. $a_{r}={ }^{10} C_{10-r}$

$$
\begin{aligned}
& \sum_{r=1}^{10} r^{3}\left(\frac{{ }^{10} C_{10-r}}{{ }^{10} C_{11-r}}\right)^{2}=\sum_{r=1}^{10} r^{3}\left(\frac{10!}{r!(10-r)!} \cdot \frac{(11-r)!(r-1)!}{10!}\right)^{2} \\
& \quad=\sum_{r=1}^{10} r^{3}\left(\frac{11-r}{r}\right)^{2}=\sum_{r=1}^{10} r(11-r)^{2} \\
& \quad=\sum_{r=1}^{10} r^{2}(11-r) \\
& \quad=11 \sum_{r=1}^{10} r^{2}-\sum_{r=1}^{10} r^{3} \\
& \quad=11\left(\frac{10 \cdot 11 \cdot 21}{6}\right)-\left(\frac{10 \cdot 11}{2}\right)^{2} \\
& \quad=(11)^{2} 35-(11)^{2} \cdot 25 \\
& =(11)^{2} \times 10=1210
\end{aligned}
$$

6. $\lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\ldots .(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}}$ is equal to
(1) $\frac{3}{2}(\sqrt{2}+1)$
(2) $\frac{2}{3}(\sqrt{2}+1)$
(3) $\frac{2}{3 \sqrt{2}}$
(4) $2 \sqrt{2}$

Answer (1)

Sol. $\underset{n \rightarrow \infty}{\text { lt }} \frac{\sum_{r=1}^{n}((3 r-2)+(3 r-1)-3 r)}{\sqrt{2 n^{4}+3 n+1}-\sqrt{n^{4}+n+3}}$
$\operatorname{lt}_{n \rightarrow \infty} \frac{\sum_{r=1}^{n} 3(r-1)}{\sqrt{2 n^{4}+3 n-1}-\sqrt{n^{4}+n+3}}$
$=\operatorname{lt}_{n \rightarrow \infty} \frac{3 \frac{n(n-1)}{2}\left(\sqrt{2 n^{4}+3 n-1}+\sqrt{n^{4}+n+3}\right)}{\left(2 n^{4}+3 n-1\right)-\left(n^{4}+n+3\right)}$
$=\frac{3}{2}(\sqrt{2}+1)$
7. If $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$ when $z_{1}=2+3 i$ and $z_{2}=3+4 i$, then locus of z is
(1) Straight line with slope $-\frac{1}{2}$
(2) Circle with radius $\frac{1}{\sqrt{2}}$
(3) Hyperbola with eccentricity $\sqrt{2}$
(4) Hyperbola with eccentricity $\frac{5}{2}$

Answer (2)

Sol.

So Locus of P is circle whose diameter is $A B$
$A B=\sqrt{2}$
Radius of circle $=\frac{1}{\sqrt{2}}$
8. $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$ if $f(3)=\frac{1}{2}[\ln 5-\ln 6]$, then $f(4)$ is
(1) $\frac{1}{2}[\ln 17-\ln 19]$
(2) $\frac{1}{2}[\ln 19-\ln 17]$
(3) $\ln 19-\ln 17$
(4) $\ln 17-\ln 19$

Answer (1)

Sol. $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$
Let $x^{2}=t$
$2 x d x=d t$
$\int \frac{d t}{(t+1)(t+3)}$
$=\frac{1}{2} \int \frac{(t+3)-(t+1)}{(t+1)(t+3)} d t$
$=\frac{1}{2}[\ln |t+1|-\ln |t+3|]+\frac{C}{2}$
$=\frac{1}{2}\left[\ln \left|x^{2}+1\right|-\ln \left|x^{2}+3\right|\right]+\frac{C}{2}$
$\because f(3)=\frac{1}{2}[\ln 5-\ln 6]$
$\therefore \quad \frac{1}{2}[\ln 5-\ln 6]=\frac{1}{2}[\ln 10-\ln 12]+\frac{C}{2}$
$\Rightarrow C=0$
$\therefore f(x)=\frac{1}{2}\left[\ln \left|x^{2}+1\right|-\ln \left|x^{2}+3\right|\right]$

$$
f(4)=\frac{1}{2}[\ln 17-\ln 19]
$$

9. If $f(x)=\int_{0}^{2} e^{|x-t|} d t$, then the minimum value of $f(x)$ is equal to
(1) $2(e-1)$
(2) $2(e+1)$
(3) $2 e-1$
(4) $2 e+1$

Answer (1)
Sol. For $x>2$
$f(x)=\int_{0}^{2} e^{x-t} d t$
$=\left.e^{x}\left(-e^{-t}\right)\right|_{0} ^{2}$
$=e^{x}\left(1-e^{-2}\right)$
For $x<0$

$$
f(x)=\int_{0}^{2} e^{t-x} d t=\left.e^{-x} e^{t}\right|_{0} ^{2}=e^{-x}\left(e^{2}-1\right)
$$

For $0 \leq x \leq 2$
$f(x)=\int_{0}^{x} e^{x-t} d t+\int_{x}^{2} e^{t-x} d t$

$$
\begin{aligned}
& =-\left.e^{x} e^{-t}\right|_{0} ^{x}+\left.e^{-x} e^{t}\right|_{x} ^{2} \\
& \Rightarrow-e^{x}\left(e^{-x}-1\right)+e^{-x}\left(e^{2}-e^{x}\right) \\
& \Rightarrow-1+e^{x}+e^{2-x}-1 \\
& =e^{2-x}+e^{x}-2
\end{aligned}
$$

$$
f(x)=\left\{\begin{array}{cc}
e^{x}\left(1-e^{-2}\right) ; & x>2 \\
e^{2-x}+e^{x}-2 ; & 0 \leq x \leq 2 \\
e^{-x}\left(e^{2}-1\right) ; & x<0
\end{array}\right.
$$

For $x>2$
$f(x)_{\text {min }}=e^{2}-1$
For $0 \leq x \leq 2$
$f^{\prime}(x)=-e^{2-x}+e^{x}=0 \Rightarrow e^{x}=e^{2-x} \Rightarrow e^{2 x}=e^{2} \Rightarrow x=1$
$f(x)=2 e-2=2(e-1)$
For $x<0$
$f(x)_{\text {min }}=e^{2}-1$
10. If $f(x)=x^{b}+3, g(x)=a x+c$. If $(g(f x))^{-1}=\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$
then $f \circ g(a c)+\operatorname{gof}(b)$ is
(1) 189
(2) 195
(3) 194
(4) 89

Answer (1)
Sol. $g(f x)=a\left(x^{b}+3\right)+c$.

$$
\begin{aligned}
& (g(f(x)))^{-1}=\left[\frac{x-3 a-c}{a}\right]^{\frac{1}{b}}=\left(\frac{x-7}{2}\right)^{\frac{1}{3}} \\
& \Rightarrow \quad a=2 \\
& \quad b=3 \\
& \quad c=1
\end{aligned}
$$

$g(x)=2 x+1$
$f(x)=x^{3}+3$
Now fog(2) $+\operatorname{gof}(3)$

$$
\begin{aligned}
& =128+61 \\
& =189
\end{aligned}
$$

11. Term independent of x in expansion of $\left(2 x+\frac{1}{x^{7}}-7 x^{2}\right)^{5}$ is
(1) 1372
(2) 2744
(3) -13720
(4) 13720

Answer (3)

JEE (Main)-2023 : Phase-1 (25-01-2023)-Morning

Sol. $\frac{1}{x^{35}}\left(2 x^{8}+1-7 x^{9}\right)^{5}=\frac{1}{x^{35}}\left(1+x^{8}(2-7 x)\right)^{5}$
Term independent of $x=$ coefficient of x^{35} in $\left(1+x^{8}\right.$ $(2-7 x))^{5}$
$=$ coefficient of x^{35} in ${ }^{5} C_{4}\left(x^{8}(2-7 x)\right)^{4}$
$={ }^{5} C_{4}$ coefficient of x^{3} in $(2-7 x)^{4}$
$={ }^{5} C_{4} \cdot{ }^{4} C_{3}\left(2^{1}\right)(-7)^{3}$
$=-13720$
12. The value of $A=\left[\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$ then |adj (adj $\left.A^{2}\right)$ is
(1) 6^{4}
(2) 4^{8}
(3) 4^{5}
(4) 2^{8}

Answer (4)

Sol. $A=\left[\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$
$|A|=\frac{1}{\log x \log y \log z}\left|\begin{array}{lll}\log x & \log y & \log z \\ \log x & 2 \log y & \log z \\ \log x & \log y & 3 \log z\end{array}\right|$
$|A|=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3\end{array}\right|$
$|A|=2$
$\left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right|=|A|^{8}$

$$
=2^{8}
$$

13. Sum of two positive integers is 66 and μ is the maximum value of their product

$$
S=\left\{x \in Z, x(66-x) \geq \frac{5 \mu}{9}\right\}, x \neq 0 \text { then probability }
$$

of A when $A=\{x \in S ; x=3 k, x \in N\}$
(1) $\frac{1}{4}$
(2) $\frac{2}{3}$
(3) $\frac{1}{3}$
(4) $\frac{1}{2}$

Answer (3)

Sol. $\mu=33 \times 33=1089$
$x(66-x) \geq 605$
$x^{2}-66 x+605 \leq 0$
$x \in[11,55]$
Favourable set of values of x for event A
$=\{12,15,18, \ldots \ldots . .54\}$
$P(A)=\frac{15}{45}=\frac{1}{3}$
14. Let $L_{1}=\frac{x-3}{1}=\frac{y-2}{2}=\frac{z-1}{3}$ and

$$
L_{2}=\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}
$$

and direction ratios of line L_{3} are $<1,-1,3>$. P and Q are point of intersection of L_{1} and L_{3} and L_{2} and L_{3} respectively. Then distance between P and Q is
(1) $\frac{10}{3} \sqrt{6}$
(2) $\frac{8}{3} \sqrt{11}$
(3) $\frac{4}{3} \sqrt{11}$
(4) $\frac{11}{3} \sqrt{6}$

Answer (3)

Sol.

Let
$P Q=A B$
Let $A(3,2,1)$
Equation of line $A B$:

$$
\begin{aligned}
& \frac{x-3}{1}=\frac{y-2}{-1}=\frac{z-1}{3}=k \quad(k \in R) \\
& \Rightarrow \quad x=k+3, y=-k+2, z=3 k+1
\end{aligned}
$$

Let coordinates of $B(k+3,-k+2,3 k+1)$
B lies on L_{2}
$B(\lambda+1,2 \lambda+2,3 \lambda+3)$
$k+3=\lambda+1 \Rightarrow \lambda-k=2$
$2-k=2 \lambda+2 \Rightarrow 2 \lambda+k=0$
$\Rightarrow k=-2 \lambda$
$\Rightarrow 3 \lambda=2$
$\Rightarrow \lambda=\frac{2}{3}$
$B\left(\frac{5}{3}, \frac{10}{3}, 5\right)$
$A B=\sqrt{\left(\frac{4}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}+16}$

$$
=\frac{4}{3} \sqrt{11}=P Q
$$

15. If $\vec{a}=-\hat{i}+2 \hat{j}+\hat{k}$ is rotated by 90° about origin passing through y-axis. If new vector is \vec{b} then projection of \vec{b} on $\vec{c}=5 \hat{i}+4 \hat{j}+3 \hat{k}$ is equal to
(1) $\frac{6}{5}$
(2) $\frac{3}{5}$
(3) $\frac{6}{5 \sqrt{3}}$
(4) $\frac{6 \sqrt{3}}{5}$

Answer (1)

Sol. $\vec{b}=\lambda \vec{a}+\mu \hat{j}$

$$
\begin{aligned}
& =(\lambda(-\hat{i}+2 \hat{j}+\hat{k})+\mu \hat{j}) \\
& \vec{b} \cdot \vec{a}=0 \\
& (\lambda \vec{a}+\mu \hat{j}) \vec{a}=0 \\
& 6 \lambda+2 \mu=0 \\
& \mu=-3 \lambda \\
& \vec{b}=\lambda(\vec{a}-3 \hat{j})=\lambda(-\hat{i}-\hat{j}+\hat{k}) \\
& \lambda= \pm \sqrt{2}
\end{aligned}
$$

Projection of \vec{b} on $\vec{c}=|\vec{b} \cdot \hat{c}|$

$$
\begin{aligned}
& =\left|\sqrt{2}(-\hat{i}-\hat{j}+\hat{k}) \frac{(5 \hat{i}+4 \hat{j}+3 \hat{k})}{5 \sqrt{2}}\right| \\
& =\frac{6 \sqrt{2}}{5 \sqrt{2}}=\frac{6}{5}
\end{aligned}
$$

16. Given $\frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}(1+\ln x)\right)$. If $y(1)=3$, then the value of $\frac{y^{2}(3)}{9}$ is
(1) $-\frac{1}{43+27 \ln 3}$
(2) $\frac{1}{43+27 \ln 3}$
(3) $\frac{9}{59-162(1+\ln 3)}$
(4) $\frac{1}{27-43 \ln 3}$

Answer (3)

Sol. $\frac{d y}{d x}-\frac{y}{x}=y^{3}(1+\ln x)$
$\frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x} \frac{1}{y^{2}}=(1+\ln x)$
$\frac{1}{y^{2}}=t \Rightarrow \frac{-2}{y^{3}} \frac{d y}{d x}=\frac{d t}{d x}$
$\therefore \quad \frac{-1}{2} \frac{d t}{d x}-\frac{t}{x}=(1+\ln x)$
$\frac{d t}{d x}+\frac{2 t}{x}=-2(1+\ln x)$
IF $e^{\frac{\int^{2}}{x} d x}=x^{2}$
$\therefore t x^{2}=\int-2(1+\ln x) x^{2} d x$
$t x^{2}=-2\left[(1+\ln x) \frac{x^{3}}{3}-\int \frac{x^{2}}{3} d x\right]+c$
$\frac{x^{2}}{y^{2}}=-2\left[\frac{x^{3}}{3}(1+\ln x)-\frac{x^{3}}{9}\right]+c \ldots$ (i)
$y(1)=3 \Rightarrow \frac{1}{9}=-2\left(\frac{1}{3}-\frac{1}{9}\right)+c$
$\therefore \quad c=\frac{5}{9}$
Now putting $x=3, c=\frac{5}{9}$ in (1)
$\frac{9}{y^{2}}=-2(9(1+\ln 3)-3)+\frac{5}{9}$
$=\frac{59}{9}-18(1+\ln 3)$
$\frac{y^{2}}{9}=\frac{9}{59-162(1+\ln 3)}$
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Consider the set $S=\{1,2,3,5,7,10,11\}$. Number of subsets of S having sum of its elements equal to multiple of 3 , is equal to.

Answer (44.00)

Sol. Out of the given numbers one is $3 k$ type and 3 of $3 k$ +1 type and remaining three are $3 k+2$ type.

Number of subsets with 0 elements $=1$
[Considering the sum of elements of empty set equal to zero]
Number of subsets with 1 element $=1$
1 of $3 k$ type
Number of subsets with 2 elements
1 of $(3 k+1)$ type +1 of $(3 k+2)$ type $=9$
Number of subsets with 3 elements
1 of $3 k$ type +1 of $(3 k+1)$ type +1 of $(3 k+2)$
type $=9$
3 of $(3 k+1)$ type $=1$
3 of $(3 k+2)$ type $=1$
Number of subsets with 4 elements
1 of $3 k$ type +3 of $(3 k+1)$ type $=1$
1 of $3 k$ type +3 of $(3 k+2)$ type $=1$
2 of $(3 k+1)$ type +2 of $(3 k+2)=9$
Number of subsets with 5 elements
1 of $3 k$ type +2 of $(3 k+1)$ type +2 of $(3 k+2)$ type $=9$

Number of subsets with 6 elements
3 of $3 k+1$ type +3 of $3 k+2$ type $=1$
The set itself $=1$
Total $=44$.
22. If $a, b \in[1,25], a, b \in N$ such that $a+b$ is multiple of 5 . Find the number of ordered pair (a, b).
Answer (125)

Sol. Type
5k

Numbers

5, 10, 15, 20, 25
$5 k+1$
1, 6, 11, 16, 21
$5 k+2$
2, 7, 12, 17, 22
$5 k+3$
$3,8,13,18,23$
$5 k+4$
(a, b) can be selected as
I 1 of $(5 k+1)$ and 1 of $(5 k+4)=2 \times 25=50$
II 1 of $(5 k+2)$ and 1 of $(5 k+3)=2 \times 25=50$
III both of the type $5 k=25$
\therefore Total $=125$
23. If $\log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(3^{2 \alpha-4} \cdot \frac{5}{2}+1\right)=2$.

Then maximum integral value of β for which equation.
$x^{2}-\left(\left(\sum \alpha\right)^{2} x\right)-\sum(\alpha+1)^{2} \beta$ has real roots is

Answer (06)

Sol. $\log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(3^{2 x-4} \cdot \frac{5}{2}+1\right)=2$
$\therefore \frac{9^{2 \alpha-4}+13}{3^{2 \alpha-4} \cdot \frac{5}{2}+1}=4$
Let $3^{2 \alpha-4}=t$
$t^{2}+13=10 t+4$
$t^{2}-10 t+9=0$
$\therefore t=9,1$
$\Rightarrow \quad \alpha=3,2$
Now equation will become
$x^{2}-25 x+25 \beta=0$
has real roots
$\therefore \quad D \geq 0$
$25^{2}-4.25 \beta \geq 0$
$\Rightarrow \beta \leq \frac{25}{4}$
Max integral value $=6$
24.
25.
26.
27.
28.
29.
30.

