

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers & Solutions

Time : 3 hrs.

for

M.M.: 300

JEE (Main)-2023 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

60°

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

A force F = -40x acts on a mass of 1 kg. x is the 1. position of the mass. If maximum speed of the mass is 4 m/s, find the amplitude. All parameters are in SI units.

(1)
$$\frac{1}{\sqrt{10}}$$
 m (2) $\frac{2}{\sqrt{10}}$ m
(3) $\frac{3}{\sqrt{10}}$ m (4) $\frac{4}{\sqrt{10}}$ m

Answer (2)

- **Sol.** $V_{\text{max}} = A\omega = A\sqrt{\frac{k}{m}}$ $\Rightarrow 4 = A \sqrt{\frac{40}{1}}$ $\Rightarrow A = \frac{2}{\sqrt{10}} m$
- Consider 2 inclined plane of same height. 1st has a 2. smooth surface and angle of inclination is 45°, other has a rough surface and angle of inclination is 60°. If ratio of time taken to slide on then its 'n'. Find coefficient of friction of rough inclined plane.

A particle undergoing uniform circular motion about 3. origin. At certain instant x = 2 m and $v = -4\hat{j}$ m/s, find velocity and acceleration of particle when at x = -2 m.

(1)
$$\vec{v} = -4\hat{j}$$
 m/s
 $\vec{a} = 8\hat{i}$ m/s²
(2) $\vec{v} = 4\hat{j}$ m/s
 $\vec{a} = 8\hat{i}$ m/s²
 $\vec{v} = -4\hat{i}$ m/s

$$\vec{a} = -8\hat{i} \text{ m/s}^2$$

(4)
$$\vec{a} = -8\hat{i} \text{ m/s}^2$$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

 $\vec{a} = 8 \text{ m/s}^2(\hat{i})$

4. A man pulls a block as shown:

Consider the following statements:

- (a) Work done by gravity on block is +ve
- (b) Work done by gravity on block is -ve
- (c) If man pulls block with constant speed, then tension in string equals weight of block.

m

(d) None of the above

Which of the statement(s) is/are correct?

- (1) (b) & (c) only (2) (d) only
- (3) (a) & (c) only (4) (a) only

Answer (1)

Sol. Weight acts down and displacement is up \Rightarrow statement (b) is correct.

T - mg = ma

$$\Rightarrow$$
 If $a = 0, T = mg$

 $X_1 = \overline{A}$

 $X_3 = B \cdot \overline{A}$

 $X_{A} = (A\overline{B})$

 $X_2 = \overline{B}$

$$Y = X_3 + X_4$$

$$= A\overline{B} + B\overline{A}$$

 In a communication system, maximum voltage is 14 mV and minimum voltage is 6 mV. Find out the modulation index.

(1)	0.2	(2)	0.6
(3)	0.4	(4)	0.3

Answer (3)

Sol. Index =
$$\frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} = \frac{14 - 6}{14 + 6} = 0.4$$

8. The gravitational potential due to a solid uniform sphere of mass *M* and radius *R* at a point at radial distance r (r > R) from its centre is equal to

(1)
$$-\frac{GM}{r}$$
 (2) $-\frac{GM}{2r}$
(3) $-\frac{GMR}{r^2}$ (4) $-\frac{GM(R+r)}{r^2}$

Answer (1)

Sol.
$$E_{(r)} = \frac{GM}{r^2}$$
 $(r > R)$
 $dV = -\vec{E} \cdot d\vec{r}$
 $\int_{V}^{0} dV = -\int_{r}^{\infty} \frac{GM}{r^2} dr$
 $V = -\frac{GM}{r}$

- 9. Resolving power of compound microscope will increase with
 - (1) Decrease in wavelength of light and increase in numerical aperture
 - (2) Increase in wavelength of light and decrease in numerical aperture
 - (3) Increase in both wavelength and numerical aperture
 - (4) Decrease in both wavelength and numerical aperture

Answer (1)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol. Resolving power of microscope
$$\infty \left(\frac{2n\sin^2 n}{2}\right)$$

n = Refractive index of the medium separating object and aperture.

 $n\sin\theta$ = Numerical aperture

 λ = wavelength of light used.

10. It is given that $x^2 + y^2 = a^2$, where *a* : radius. Also,

it is given that $(x - \alpha t)^2 + \left(y - \frac{t}{\beta}\right)^2 = a^2$, where t =

time. Then dimensions of α and β are

- (1) [M⁰LT⁻¹] and [M⁰L⁻¹T]
- (2) [M⁰LT] and [M⁰L⁻¹T⁻¹]
- (3) [M⁰LT] and [M⁰LT⁻¹]
- (4) [M⁰L⁻¹T] and [M⁰LT]

Answer (1)

Sol.
$$x \equiv \alpha t = \frac{t}{\beta}$$

 $\Rightarrow L' \equiv \alpha T' \equiv \frac{T'}{\beta}$
 $\Rightarrow \alpha \equiv LT^{-1} \text{ and } \beta = L^{-1}T$

11. **Assertion (A):** EM waves are not deflected by electric field and magnetic field.

Reason (R): EM waves don't carry any charge so they are not deflected by electric field and magnetic field.

- (1) Both (A) and (R) are true and (R) is correct explanation of (A)
- (2) Both (A) and (R) are true, but (R) is not correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Answer (1)

- **Sol.** EM wave does not have charge therefore they are not deflected by electric or magnetic field.
- 12. de-Broglie wavelength of a body of mass *m* and kinetic energy *E* is given by

(1)
$$\lambda = \frac{h}{mE}$$
 (2) $\lambda = \frac{\sqrt{2mE}}{h}$
(3) $\lambda = \frac{h}{\sqrt{2Em}}$ (4) $\lambda = \sqrt{\frac{h}{2mE}}$

Answer (3)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol.
$$E = \left(\frac{P^2}{2m}\right)$$

where P is linear momentum, E = kinetic energy, m = mass of particle.

$$P = \sqrt{2Em}$$

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2Em}}$$

13. In a region with electric field $30\hat{i}$ V/m a charge particle of charge $q = 2 \times 10^{-4}$ C is displaced slowly from (1, 2) to origin. The work done by the external agent is equal to

(1)	1 mJ	(2)	6 mJ
(3)	2 mJ	(4)	3 mJ

Answer (2)

Sol. $F = qE = 2 \times 10^{-4} \times 30$ N

Work done = $6 \times 10^{-3} \times (1) \text{ J} = 6 \text{ mJ}$

 Consider the following potentiometer circuit : When switch *S* is open, length *AJ* is 300 cm. When switch *S* is closed, length *AJ* is 200 cm. If *R* 5 Ω, find internal resistance *r* of the cell.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. At 300 K, RMS speed of an ideal gas molecules is $\sqrt{\frac{\alpha+5}{\alpha}}$ times the average speed of gas molecules,

then value of
$$\alpha$$
 is equal to $\left(\text{take } \pi = \frac{22}{7} \right)$

Answer (28.00)

Sol

1.
$$v_{\rm rms} = \sqrt{\frac{3RT}{M_0}}$$

 $v_{\rm av} = \sqrt{\frac{8RT}{\pi M_0}}$
 $\frac{v_{\rm rms}}{v_{\rm av}} = \sqrt{\frac{3\pi}{8}}$
 $= \sqrt{\frac{3\times 22}{8\times 7}}$
 $= \sqrt{\frac{33}{28}} = \sqrt{\frac{28+5}{28}}$
 $\Rightarrow \alpha = 28$

22. An α-particle and a proton are accelerated through same potential difference. The ratio of de-Broglie wavelength of alpha particle to proton is equal to

$$\frac{1}{\sqrt{x}}$$
. Value of x is (take $m_{\alpha} = 4m_{\text{proton}}$)

Answer (08.00)

Sol.
$$\lambda = \frac{h}{p}$$

 $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$
 $\frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p}q_{p}}{m_{\alpha}q_{\alpha}}} = \sqrt{\frac{1}{4} \times \frac{1}{2}} = \frac{1}{\sqrt{8}}$
 $\Rightarrow x = 8$

23. Time period of rotation of a planet is 24 hours. If the radius decreases to $\frac{1}{4}$ th of original value, then the new time period is *x* hours. Find 2*x*.

Answer (03.00)

- Sol. I = constant
 - $\Rightarrow I_1 \omega_1 = \frac{I_1}{16} \omega_2$ $\Rightarrow \omega_2 = 16\omega_1$
 - $\Rightarrow T_2 = \frac{T_1}{16} = 1.5 \text{ hours}$
- 24. A projectile is fire with velocity 54 km/hr making angle 45° with horizontal. Angular momentum of this particle of mass 1 kg about the point of projection one second into the motion will be $\frac{5N}{\sqrt{2}}$ in SI unit (*g* = 10 m/s²). Find the value of *N*.

Answer (15.00)

Sol. u = 54 km/hr = 15 m/sec.

torque at time *t* is $\tau = mgu\cos\theta t$

$$\frac{dl}{dt} = \tau$$

$$\int_{1}^{L} dL = \int_{0}^{1} mgu \cos\theta t dt$$

$$L = \frac{mgu \cos\theta}{2} = \frac{10 \times 15}{2\sqrt{2}} = \frac{75}{2} \text{ kg m}^{2}/\text{sec}$$
So $N = 15$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

25. A block of mass 20 kg is moved with a constant force 'F' for 20 seconds starting from rest and then F is removed. It is then observed that block moves 50 m in next 10 seconds. Find *F* (in N).

Answer (05.00)

Sol. Impulse, *Ft* = *mv*

$$\Rightarrow v = \frac{50}{10} = 5 \text{ m/s}$$

$$F \times 20 = 20 \times 5 \Rightarrow F = 5 \text{ N}$$

26. Atomic mass number of a nuclei *A* is 16 and half life is 1 day. The values for a nuclei *B* are 32 and $\frac{1}{2}$ days. 320 grams each of *A* and *B* are taken initially. Find the ratio of their number of atoms after 2 days.

Answer (08.00)

Sol.
$$N_A = N_{0A}e^{-\lambda_A t}$$

 $N_B = N_{0B}e^{-\lambda_B t}$
 $\Rightarrow \frac{N_A}{N_B} = \frac{N_{0A}}{N_{0B}}\frac{e^{-\lambda_A t}}{e^{-\lambda_B t}}$
 $= \frac{\frac{320}{16}}{\frac{320}{32}} \times \frac{1}{\frac{4}{16}}$
 $= 8$
27.
28.
29.
30.

CHEMISTRY

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. In which molecule, dehydrohalogenation forms maximum number of isomers (excluding rearrangement)

Br

Sol. (1)

(cis + trans)

Total 3 isomers are possible

- (2) \rightarrow Only 1 product
- $(3) \rightarrow 2$ products
- (4) \rightarrow Only 1 product
- 2. Which of the following complex has zero spin only magnetic moment?
 - (1) $\left[\operatorname{Fe}(\mathsf{F})_{6} \right]^{3-}$
 - (2) $[CoF_6]^{3-}$
 - (3) $\left[Co(C_2O_4)_3 \right]^{3-1}$
 - (4) $\left[\operatorname{Fe}(H_2O)_{e} \right]^{3+}$

Answer (3)

- **Sol.** $\left[Co(C_2O_4)_3 \right]^{3-}$ has d^2sp^3 hybridisation and $3d^6$ electronic configuration and it has zero unpaired electrons.
- 3. Which of the following diseases can be cured by equanil drug?
 - (1) Pain (2) Stomach ulcer
 - (3) Depression (4) Hyperacidity

Answer (3)

Sol. Based on fact

- 4. If Bohr's Radius of H-atom in Ground state is 0.6 A°. Find out Bohr's Radius of 3rd orbit of He⁺ Ion.
 - (1) 2.7 A° (2) 0.9 A° (3) 5.4 A° (4) 1.8 A°

Sol.
$$r \propto \frac{n^2}{z}$$

$$r = \frac{.6 \times n^2}{z}$$
$$r = \frac{.6 \times (3)^2}{(2)}$$
$$= .3 \times 9$$
$$= 2.7 \text{ A}^\circ$$

5. Compare the bond order of the following molecules

 O_2^{-2} , NO, CO

(1) $O_2^{-2} > NO > CO$ (2) $O_2^{-2} > CO > NO$ (3) $CO > NO > O_2^{-2}$ (4) $NO > CO > O_2^{-2}$

Answer (3)

Sol. The correct bond order :

 $O_2^{-2} \rightarrow 1$ CO $\rightarrow 3$

 $NO \rightarrow 2.5$

- \therefore Correct order is CO > NO > O₂⁻²
- 6. Which one of the following ores contains sulphide ions?
 - (1) Malachite (2) Calamine
 - (3) Sphalerite (4) Siderite

Answer (3)

Sol. The chemical formulae of the given ores are

Malachite : CuCO₃.Cu(OH)₂ Calamine : ZnCO₃ Sphalerite : ZnS Siderite : FeCO₃

... Sphalerite contains sulphide ions.

JEE (Main)-2023 : Phase-1 (29-01-2023)- Evening

7. Statement-I : Ionisation enthalpy difference from B to AI is more than that of AI to Ga.

Statement-II : Ga has completely filled d-orbital.

Then, the correct option is?

- (1) Statement-I and Statement-II both are correct.
- (2) Statement-I is incorrect and Statement-II is correct.
- (3) Statement-I is correct and Statement-II is incorrect.
- (4) Statement-I and Statement-II both are incorrect.

Answer (1)

- **Sol.** Ga has similar ionisation enthalpy as Al because of inert pair effect (or completely filled d-orbital in Ga).
- 8. Which of the following relation is correct?
 - (1) $\Delta G = \Delta H T\Delta S$ (at constant T& P)
 - (2) $\Delta U = \Delta H + nR\Delta T$ (for n moles of ideal gas)
 - (3) $P\Delta V = (\Delta n)RT$
 - (4) None of these

Answer (1)

- **Sol.** $\Delta G = \Delta H T\Delta S \rightarrow correct relation at constant T & P$
 - $\Delta H = \Delta U + nR\Delta T$ (for n moles of an ideal gas)

 $P\Delta V = (\Delta n)RT$ [is only true for a chemical reaction at constant T & P] (not always true)

- So, correct answer is (1)
 Match the correct column.
- - (A) Thermosetting (p) Neoprene
 - (B) Thermoplastic (q) Polyester
 - (C) Elastomer (r) Polystyrene
 - (D) Fibre
- (s) Urea formaldehyde resin
- (1) $A \rightarrow p$; $B \rightarrow r$; $C \rightarrow q$; $D \rightarrow s$
- (2) $A \rightarrow s; B \rightarrow r; C \rightarrow p; D \rightarrow q$
- (3) $A \rightarrow s; B \rightarrow r; C \rightarrow q; D \rightarrow p$
- (4) $A \rightarrow p$; $B \rightarrow r$; $C \rightarrow s$; $D \rightarrow q$

Answer (2)

- Sol. Urea- formaldehyde resin is Thermosetting
 - Polystyrene is Thermoplastic
- 10. At 300 K the ratio of V_{rms} and V_{avg} of oxygen
 - molecule is $\sqrt{\frac{\alpha \pi}{\alpha + 5}}$, the value of α will be (1) 1 (2) 2
 - (3) 3 (4) 4

Sol.
$$\frac{V_{ms}}{V_{avg}} = \frac{\sqrt{3\pi}}{\sqrt{8}} = \sqrt{\frac{\alpha\pi}{\alpha+5}}$$

11. Thermal decomposition products of LiNO3 are

 $\text{LiNO}_3 \xrightarrow{\Delta} \text{Products}$

- (1) LiNO₂ and O₂
- (2) LiNO₂, NO₂ and O₂
- (3) Li_2O , NO_2 and O_2
- (4) Li, NO and O₂

Answer (3)

Sol. Thermal decomposition of LiNO₃ gives the following products

 $4LiNO_3 \xrightarrow{\Delta} 2Li_2O + 4NO_2 + O_2$

- 12. BOD value of drinking water ranges between
 - (1) 3-5
 - (2) 10-13
 - (3) 14-17
 - (4) 20-22

Answer (1)

- **Sol.** BOD value of drinking water ranges between 3 and 5
- 13. Match List-I with List-II.
 - (A) Electro-osmosis
 - (B) Electrophoresis
 - (C) RO(Reverse osmosis)

(D) Osmosis

low concentration to high concentration of solution(Q) Solvent moves from

(P) Solvent moves from

- high concentration to low concentration of solution
- (R) Dispersion medium
 (DM) moves towards oppositely charged electrode across semi-permeable membrane
- (S) Colloidal particles move in the presence of electric field. (DP and DM)
- (1) A(R), B(S), C(Q), D(P)
- (2) A(Q), B(P), C(R), D(S)
- (3) A(P), B(Q), C(R), D(S)
- (4) A(P), B(R), C(Q), D(S)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol. All options are definition based.

- (A) Electro-osmosis \rightarrow movement of DM across SPM
- (B) Electrophoresis → movement of DP and DM towards respective electrodes
- (C) RO → movement of solvent from high concentration to low concentration
- (D) Osmosis → movement of solvent from low concentration to high concentration
- The ratio of de-Broglie wavelength of proton to that of α-particle if they are accelerated through same potential
 - (1) 2√2:1
 - (2) 2:1
 - (3) 1:2√2
 - (4) √2:1

Answer (1)

Sol. $\frac{\lambda \rho}{\lambda \alpha} = \sqrt{\frac{m\alpha \cdot kE_{\alpha}}{m\rho \cdot kE_{\rho}}}$

- $= \sqrt{\frac{4m\rho \cdot 2V}{m\rho \cdot V}}$ $= \sqrt{8}:1$
- = 2\sqrt{2}:1
- 15. Which of the following is produced when propanamide is treated with Br₂ in presence of KOH?
 - (1) Ethyl nitrile
 - (2) Propanamine
 - (3) Ethylamine
 - (4) Propanenitrile

Answer (3)

Sol.
$$CH_3CH_2 - C - NH_2 \xrightarrow{Br_2/KOH} CH_3CH_2NH_2$$

16. Consider the following reaction:

$$\overset{H^{\oplus}}{\longrightarrow} Major product 'P'$$

Find the number of α -H in the major product 'P'?

- (1) 7
- (2) 8
- (3) 9
- (4) 10

Answer (4)

Sol.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many oxides are acidic?

NO, NO₂, N₂O₃, Cl₂O₇, CO, SO₂, SO₃, N₂O

Answer (5)

Sol. Acidic oxides \rightarrow NO₂, N₂O₃, Cl₂O₇, SO₂, SO₃

22. A 1 : 1 (by mole) mixture of A and B is present in a container. Molar mass of A = 16 g and molar mass of B is 32 and the half life of A is 1 day and half life of B is $\frac{1}{2}$ day. Then find the average molar mass of the mixture of A and B remained in the container after 2 days is _____.? [Round off to nearest integer] Answer (19)

Sol. For A 1 $\xrightarrow{2 \text{ days}} \xrightarrow{1}{4}$ moles remained

For B 1 $\xrightarrow{2 \text{ days}}$ $\xrightarrow{1}$ moles remained

.
$$M_{avg} = \frac{\frac{1}{4} \times 16 + \frac{1}{16} \times 32}{\frac{1}{4} + \frac{1}{16}}$$

23.

27. 28.

29.

30.

25.

26.

- 18. The colour of CrO_5 in ether is
 - (1) Yellow
 - (2) Green
 - (3) Blue
 - (4) Orange

Answer (3)

- Sol. CrO5 is blue in colour
- 19. The number of voids in 0.02 moles of a solid which forms HCP lattice is _____.

[Given : $N_A = 6 \times 10^{23}$]

- (1) 3.6×10^{22}
- (2) 3.6×10^{24}
- (3) 7.2 × 10²⁰
- (4) 5.4×10^{26}

Answer (1)

Sol. Voids =
$$\frac{18}{6} \times 6 \times 10^{23} \times 0.02$$

 $= 3.6 \times 10^{22}$

20.

MATHEMATICS

	SECT	ION - A
Mu mul (1),	Itiple Choice Question Itiple choice questions. I (2), (3) and (4), out of w	ns: This section contains 20 Each question has 4 choices which ONLY ONE is correct.
Cho	pose the correct answe	er :
1.	The 3 digit numbers w 4 but not divisible by 4	which are divisible either 3 or
	(1) 414	(2) 420
	(3) 429	(4) 432
Ans	swer (4)	
Sol	. No's divisible by 3 = 3	00
	No's divisible by $4 = 2$	25
	No's divisible by 12 =	75
	No's divisible by 48 =	18
	Total no's = 300 + 225	5 – 75 – 18
	= 432	
2.	The letters of the alphabetically as in a word TOUGH is	word GHOTU is arranged dictionary. The rank of the
	(1) 84	(2) 79
	(3) 74	(4) 89
Ans	swer (4)	
Sol	. GHOTU	
	G 24	
	H 24	
	O 24	
	TG 6	
	TH 6	
	TOG 2	
	TOH 2	
	TOUGH 1	
	= 89	
3.	$\int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx \text{ equals}$	
	(1) $\frac{\pi}{2}$ ln2	(2) $\frac{\pi}{4}$ ln2
	(3) π ln 2	(4) In 2
Ans	swer (1)	

Sol.
$$I = \int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx$$

Put $x = \frac{1}{t}$
 $I = \int_{1/2}^{2} \frac{\tan^{-1} t}{t} \left(\frac{1}{t}\right) dt$
 $\therefore 2I = \int_{1/2}^{2} \frac{\pi}{2} \frac{dt}{t}$
 $\Rightarrow I = \frac{\pi}{2} \ln 2$

4. Shortest distance between lines:

$$\frac{x-1}{2} = \frac{2y-2}{3} = \frac{z-3}{1} \text{ and } \frac{x-2}{3} = \frac{y-1}{2} = \frac{z+2}{4} \text{ is}$$
(1) $\frac{13}{\sqrt{165}}$
(2) $\frac{15}{\sqrt{165}}$
(3) $\frac{18}{\sqrt{165}}$
(4) $\frac{19}{\sqrt{165}}$

Answer (1)

Sol. Lines are

$$\frac{x-1}{2} = \frac{y-1}{\frac{3}{2}} = \frac{z-3}{1} & \frac{x-2}{3} = \frac{y-1}{2} = \frac{z+2}{4}$$

$$\overline{b_1} \times \overline{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & \frac{3}{2} & 1 \\ 3 & 2 & 4 \end{vmatrix} = \hat{i}(4) - \hat{j}(5) + \hat{k}\left(-\frac{1}{2}\right)$$

$$\left(\overline{a_2} - \overline{a_1}\right) \cdot \left(\overline{b_1} \times \overline{b_2}\right) = \left(\hat{i} - 5\hat{k}\right) \left(4\hat{i} - 5\hat{j} - \frac{\hat{k}}{2}\right)$$

$$= 4 + \frac{5}{2} = \frac{13}{2}$$

$$\therefore \text{ Shortest distance} = \frac{\frac{13}{2}}{\sqrt{16 + 25 + \frac{1}{4}}} = \frac{3}{\sqrt{165}}$$

 $R = \{(a, b) : 2a + 3b \text{ is divisible by 5 and } a, b \in N\}$ 5. is (1) Transitive but not symmetric (2) Equivalence relation (3) Symmetric but not transitive (4) Not equivalence Answer (2) **Sol.** Let $(a, b) \in R$ f(a, b) = 2a + 3bFor Reflexive *f*(*a*, *a*) = 2*a* + 3*a* = 5*a i.e*, divisible by 5 \Rightarrow (a, a) $\in R$ For symmetric f(b, a) = 2b + 3a = 5a + 5b - (2a + 3b)divisible divisible by 5 by 5 f(b, a) is divisible by 5 \Rightarrow (b, a) $\in R$ For transitive f(a, b) = 2a + 3b is divisible by 5 f(b, c) = 2b + 3c is divisible by 5 \Rightarrow 2a + 5b + 3c is divisible by 5 So, 2a + 3c is divisible by 5 \Rightarrow (*a*, *c*) \in *R* $(\sim A) \lor B$ is equivalent to 6. (1) $A \rightarrow B$ (2) $A \leftrightarrow B$ (3) ~ $A \wedge B$ (4) $B \rightarrow A$ Answer (1) Sol. Making truth table Α В ~ B $(\sim A) \lor B$ $A \rightarrow B$ Т Т F Т Т Т F F F F F Т Т Т Т

The truth table clearly shows.

Т

Т

F

 $(\sim A) \lor B \equiv A \rightarrow B$

F

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening
7. The value of
$$\int_{\frac{1}{2}}^{2} \left(\frac{t^{4}+1}{t^{6}+1}\right) dt =$$

(1) $\tan^{-1}2 + \tan^{-1}8 + \frac{2\pi}{3}$
(2) $2\tan^{-1}2 + \frac{2}{3}\tan^{-1}8 - \frac{2\pi}{3}$
(3) $2\tan^{-1}2 + \frac{2}{3}\tan^{-1}8 + \frac{2\pi}{3}$
(4) $2\tan^{-1}2 - \frac{2}{3}\tan^{-1}(8) + \frac{2\pi}{3}$
Answer (2)
Sol. $= \int_{\frac{1}{2}}^{2} \frac{t^{4}+1}{t^{6}+1} dt$
 $= \int_{\frac{1}{2}}^{2} \frac{(t^{4}+1)(t^{2}+1)}{(t^{6}+1)(t^{2}+1)} dt = \int_{\frac{1}{2}}^{2} \frac{t^{6}+1+t^{2}(t^{2}+1)}{(t^{6}+1)(t^{2}+1)} dt$
 $= \int_{\frac{1}{2}}^{2} \frac{dt}{t^{2}+1} + \frac{1}{3}\int_{\frac{1}{2}}^{3} \frac{3t^{2}dt}{t^{6}+1}$
 $= \tan^{-1}t | \frac{1}{2} + \frac{1}{3}\tan^{-1}(t^{3}) | \frac{1}{2}$
 $= (\tan^{-1}2 - \tan^{-1}(\frac{1}{2})) + \frac{1}{3}(\tan^{-1}8 - \cot^{-1}8)$
 $= (\tan^{-1}2 - (\frac{\pi}{2} - \tan^{-1}2) + \frac{1}{3}(\tan^{-1}8 - (\frac{\pi}{2} - \tan^{-1}8)))$
 $= 2(\tan^{-1}2) + \frac{2}{3}\tan^{-1}8 - \frac{\pi}{2} - \frac{\pi}{6}$
 $= 2\tan^{-1}2 + \frac{2}{3}\tan^{-1}8 - \frac{2\pi}{3}$
8. Area of region
 $|\cos x - \sin x| \le y \le \sin x$ for $x \in (0, \pi/2)$ is
(1) $(-1 + 2\sqrt{2})$ sq. unit
(2) $(1 - \frac{1}{\sqrt{2}})$ sq. unit
(3) $(\sqrt{5} + 1 - 2\sqrt{2})$ sq. unit

(4)
$$(\sqrt{5} - \sqrt{2})$$
 sq. unit

Т

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening			
Sol. $A = \int_{\theta}^{\pi/2} (\sin x - \cos x - \sin x) dx$	10. Let $f(x) = x^2 + 2x + 5$ and α , β be roots of $f\left(\frac{1}{t}\right) = 0$,		
Where $\theta = \tan^{-}\frac{1}{2}$	then α + β =		
$= \int_{\theta}^{\pi/4} (\sin x - \cos x + \sin x) dx +$	(1) $\frac{-2}{5}$ (2) -2		
$\int_{\pi/4}^{\pi/2} (\sin x + \cos x - \sin x) dx$	(3) $\frac{5}{2}$ (4) $\frac{-5}{2}$		
$= -2\cos x - \sin x \Big _{\theta}^{\pi/4} + \left(1 - \frac{1}{\sqrt{2}}\right)$	Answer (1) Sol. $f(x) = x^2 + 2x + 5$		
$= -\left(\sqrt{2} + \frac{1}{\sqrt{2}} - 2\cos\theta - \sin\theta\right) + 1 - \frac{1}{\sqrt{2}}$	$f\left(\frac{1}{t}\right) = 0 \implies \frac{1}{t^2} + \frac{2}{t} + 5 = 0$		
$= -\sqrt{2} - \frac{1}{\sqrt{2}} + \left(2\cos\theta + \sin\theta\right) + 1 - \frac{1}{\sqrt{2}}$	\Rightarrow 5t ² + 2t + 1 = 0 [t ≠ 0] This equation has roots α and β.		
$= 1 - 2\sqrt{2} + 2 \cdot \frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}$	$\therefore \alpha + \beta = \frac{-2}{5}$		
$= \sqrt{5} + 1 - 2\sqrt{2}$ 9. For solution of differential equation	11. If the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+3}{1}$ and		
$x \ln x \frac{dy}{dx} + y = x^2 \ln x, y(2) = 2$ then $y(e)$ is equal to	$\frac{x-11}{4} = \frac{y-9}{2} = \frac{z-4}{3}$ intersects at point p, then		
(1) $1 + \frac{e^2}{4}$ (2) $1 - \frac{e^2}{4}$	perpendicular distance of p from plane 3x + 2y + 6z = 10 is		
(3) $\frac{e^2}{2}$ (4) $1 + \frac{e^2}{2}$	(1) $\frac{2}{7}$ (2) $\frac{3}{7}$		
Answer (1)	(3) $\frac{4}{7}$ (4) $\frac{5}{7}$		
Sol. $x \ln x \frac{dy}{dx} + y = x^2 \ln x$	Answer (2)		
$\frac{dy}{dx} + \frac{y}{x \ln x} = x$	Sol. Given		
$I.F = e^{\int \frac{1}{x \ln x} dx} = e^{\ln \ln x } = \ln x $	$L_{1} = \frac{x-1}{2} = \frac{y-2}{3} = \frac{z+3}{1} = \lambda$		
Solution of equation is	and $L_2 \equiv \frac{x-11}{4} = \frac{y-9}{2} = \frac{z-4}{3} = \mu$		
$y(IF) = \int x \cdot \ln x dx$	Finding intersection, we get $\lambda = 1$, $\mu = -2$		
$y \ln x = \ln x \frac{x^2}{2} - \frac{x^2}{4} + c$	$\therefore p \equiv (3, 5, -2)$		
$x = 2$, 2 $ \ln 2 = \ln 2 \cdot 2 - 1 + c$	Distance from given plane $= \left \frac{9 + 10 - 12 - 10}{\sqrt{9 + 4 + 36}} \right = \frac{3}{7}$		
\Rightarrow $c=1$	12. If $\cos^2 2x - \sin^4 x - 2\cos^2 x = \lambda$, has a solution		
For $x = e$	$\forall x \in R$, then the range of λ is		
$y = \frac{e^2}{2} - \frac{e^2}{4} + 1$	(1) $\left[-\frac{1}{2}, 1\right]$ (2) $\left[-\frac{4}{3}, 0\right]$		
$\Rightarrow y(e) = 1 + \frac{e^2}{4}$	(3) (0, 2) (4) None of these Answer (2)		

Sol. $\cos^2 2x - \sin^4 x - 2\cos^2 x = \lambda$ $\Rightarrow (\cos^2 x - \sin^2 x)^2 - \sin^4 x - 2\cos^2 x = \lambda$ $\Rightarrow 3\cos^4 x - 4\cos^2 x = \lambda$ $\Rightarrow 3\left[\left(\cos^2 x - \frac{2}{3}\right)^2 - \frac{4}{9}\right] = \lambda$ $\lambda_{\min} = -\frac{4}{3}$ $\lambda_{\max} = 0$ $\therefore \lambda \in \left[-\frac{4}{3}, 0\right]$

13. $\vec{a} = 9\hat{i} + 2\hat{k}, \vec{b} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = 7\hat{i} - 3\hat{j} + 2\hat{k}$ are three given vectors. Let there be a \vec{r} such that $(\vec{r} \times \vec{b}) + (\vec{b} \times \vec{c}) = \vec{0}$ and $\vec{r} \cdot \vec{a} = 0$ then $\vec{r} \cdot \vec{c}$ is

(1)
$$\frac{280}{11}$$
 (2) 28
(3) $\frac{279}{13}$ (4) $\frac{290}{11}$

Answer (1)

Sol. $\vec{r} \times \vec{b} - \vec{c} \times \vec{b} = \vec{0}$ $(\vec{r} - \vec{c}) \times \vec{b} = 0$ $\Rightarrow \vec{r} = \vec{c} + \lambda \vec{b}$ $\vec{r} \cdot \vec{a} = 0$ $\vec{c} \cdot \vec{a} + \lambda \vec{b} \cdot \vec{a} = 0$ $67 + \lambda (11) = 0$ $\boxed{\lambda = -\frac{67}{11}}$ $\vec{r} \cdot \vec{c} = (\vec{c} + \lambda \vec{b}) \cdot \vec{c}$ $= |\vec{c}|^2 + \lambda \vec{b} \cdot \vec{c}$ $= 62 - \frac{67}{11}(7 - 3 + 2)$ $= 62 - \frac{67}{11}(6)$ $= \frac{682 - 402}{11} = \frac{280}{11}$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

14. For observation set x data obtained is

$$x_i = \{11, 12, 13, \dots 41\}$$

For another observation set y data obtained is

 $y_i = \{61, 62, 63, \dots 91\}$

Then value of $\overline{x} + \overline{y} + \sigma^2$ where $\overline{x}, \overline{y}$ are means of respective data set while 6² is variance of combined data is

(1)	801	(2)	754
(0)	~~-		

(3)	807		(4)	774

Answer (3)

Sol.
$$\bar{x} = \frac{\frac{31}{2}(11+41)}{31} = \frac{1}{2} \times 52 = 26$$

 $\bar{y} = \frac{\frac{31}{2}(61+91)}{31} = \frac{1}{2} \times 152 = 76$
 $\sigma^2 = \frac{\Sigma x_i^2 + \Sigma y_i^2}{62} - \left(\frac{\Sigma x_i + \Sigma y_i}{62}\right)^2$
 $= \frac{(11^2 + 12^2 + ... + 41^2) + (61^2 + 62^2 + ... + 91^2)}{62} - (51)^2$
 $= \frac{\left(\frac{41 \cdot 42 \cdot 83}{6} - \frac{10 \cdot 11 \cdot 21}{6}\right) + \left(\frac{91 \cdot 92 \cdot 183}{6} - \frac{60 \cdot 61 \cdot 121}{6}\right)}{62} - (51)^2$
 $= \frac{(41 \cdot 7 \cdot 83 - 11 \cdot 35) + (91 \cdot 46 \cdot 61 - 10 \cdot 61 \cdot 121)}{62} - (51)^2$
 $= \frac{23436 + 181536}{62} - (51)^2$
 $= 3306 - 2601 = 705$
 $\bar{x} + \bar{y} + \sigma^2$
 $= 26 + 76 + 705$
 $= 807$
15. If curve represented by $y = \frac{(x-a)}{(x-3)(x-2)}$ passes through $(1, -3)$ then equation of normal at $(1, -3)$ to

through (1, -3) then equation of normal at (1, -3) to the curve is given by

Answer (4)	
(3) $3x - 4y = 21$	(4) $x - 4y = 13$
(1) $2x+3y=-7$	(2) 3x-2y=9

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening Sol. If passes through (1, -3) $-3 = \frac{1-a}{(-2)(-1)}$ a = 7 $f'(x) = \frac{(x-3)(x-2) - (x-7)(2x-5)}{((x-3)(x-2))^2}$ $f'(1) = \frac{2 - 18}{(2)^2} = -4$ Slope of normal $=\frac{1}{4}$ Equation of normal $y+3=\frac{1}{4}(x-1)$ or 4y + 12 = x - 1or x - 4y = 1316. 17. 18. 19. 20. **SECTION - B**

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. Find the number of four-digit numbers N such that GCD(N, 54) = 2

Answer (3000)

Sol. *N* should be divisible by 2 but not by 3.

N = (Number of numbers divisible by 2) – (Number of numbers divisible by 6)

$$=\frac{9000}{2}-\frac{9000}{6}=3000$$

22. If
$$f(1) + 2f(2) + 3f(3) + \dots + nf(n) = n(n+1)f(n)$$

and $f(1) = 1$, then $\frac{1}{f(2022)} + \frac{1}{f(2028)} =$

Answer (4050)

Sol.
$$f(1) + 2f(2) + \dots + nf(n) = n(n+1)f(n)$$
 ...(i)
 $f(1) + 2f(2) + \dots + nf(n) + (n+1)f(n+1)$
 $= (n+1)(n+2)f(n+1)$...(ii)

Using (i) in (ii),

$$n(n+1)f(n) + (n+1)f(n+1) = (n+1)(n+2)f(n+1)$$

$$\Rightarrow f(n+1) = \frac{n}{n+1}f(n)$$

$$f(1) = 1$$

$$\Rightarrow f(2) = \frac{1}{2}, f(3) = \frac{1}{3}, \dots, f(n) = \frac{1}{n}$$
$$\frac{1}{f(2022)} + \frac{1}{f(2028)} = 2022 + 2028 = 4050$$

23. A line x + y = 3 cuts the circle having center (2, 3) and radius 4 at two points *A* and *B*. Tangents drawn at *A* and *B* intersect at (α , β). Find the value of $4\alpha - 7\beta$.

Answer (11)

Sol. The given line is the polar of (α, β) w.r.t. given circle

Circle : $x^2 + y^2 - 4x - 6y - 3 = 0$ Chord of contact :

 $\alpha x + \beta y - 2(x + \alpha) - 3(y + \beta) - 3 = 0$

$$(\alpha - 2)x + (\beta - 3)y - (2\alpha + 3\beta + 3) = 0$$

But equation of chord of contact is

$$x+y-3=0$$

Comparing the coefficients,

$$\frac{\alpha - 2}{1} = \frac{\beta - 3}{1} = \frac{-(2\alpha + 3\beta + 3)}{-3}$$
$$\Rightarrow \alpha = -6, \beta = -5$$
$$\Rightarrow 4\alpha - 7\beta = 11$$

24. Consider a sequence a_1, a_2, \dots, a_n given by $a_n = a_{n-1} + 2^{n-1}, a_1 = 1$ and another sequence given by $b_n = b_{n-1} + a_{n-1}, b_1 = 1$. Also

$$P = \sum_{n=0}^{10} \frac{b_n}{2^{n-1}}$$
 and $Q = \sum_{n=0}^{10} \frac{n}{2^{n-1}}$, then $2^7(P - 2Q)$ is

Answer (07.50)

Sol.
$$a_2 - a_1 = 2^1$$

 $a_3 - a_2 = 2^2$
 \vdots
 $\frac{a_n - a_{n-1} = 2^{n-1}}{a_n = 2^n - 1} \begin{vmatrix} b_2 - b_1 = a_1 \\ b_3 - b_2 = a_2 \\ \vdots \end{vmatrix}$
 $\frac{a_n - a_{n-1} = 2^{n-1}}{a_n = 2^n - 1} \begin{vmatrix} b_n - b_{n-1} = a_{n-1} \\ b_n = 2^n - n \end{vmatrix}$
 $P - 2Q = \sum_{n=1}^{10} \frac{2^n - n}{2^n} - \frac{2n}{2^{n-1}}$
 $= \sum_{n=1}^{10} \left(1 - \frac{5n}{2^n}\right) = 10 - 5\Sigma \frac{n}{2^n}$
Let $S = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n}$
 $\frac{S}{2} = \frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{n-1}{2n} + \frac{n}{2^{n+1}}$
 $\frac{S}{2} = \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}\right) - \frac{n}{2^{n+1}}$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

$$\Rightarrow \frac{S}{2} = \frac{\frac{1}{2} \left[\left(\frac{1}{2} \right)^{n} - 1 \right]}{-\frac{1}{2}} - \frac{n}{2^{n+1}}$$

$$\Rightarrow S = 2 \left[1 - \left(\frac{1}{2} \right)^{n} - \frac{n}{2^{n+1}} \right]$$

$$= 2 \left[1 - \left(\frac{1}{2} \right)^{10} - \frac{10}{2^{11}} \right] = 2 \left(1 - \frac{12}{2^{11}} \right)$$

$$P - 2Q = 10 - 5 \times 2 \left(1 - \frac{12}{2^{11}} \right)$$

$$= 10 - 10 + \frac{120}{2^{11}} = \frac{60}{2^{10}}$$

$$\Rightarrow 2^{7} (P - 2Q) = \frac{60}{8}$$

$$= 07.50$$
25.
26.
27.
28.
29.
30.

- 16 -