JEE-Main-29-01-2023 (Memory Based)
 [Morning Shift]

Physics

Question: A projectile was projected at an angle $\theta=30^{\circ}$, then find the ratio of kinetic energy at a starting point to the kinetic energy at highest point.

Options:

(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{3}{2}$
(c) $\frac{4}{3}$
(d) $\frac{2}{\sqrt{3}}$

Answer: (c)
Solution:

$K=\frac{1}{2} m u^{2}$
$K^{\prime}=\frac{1}{2} m\left(4 \frac{\sqrt{3}}{2}\right)^{2}$
$\frac{K}{K^{\prime}}=\frac{4}{3}$

Question: Point 0 and two long wires are kept in same plane such that point 0 lies at middle of the line. Then magnetic field at point 0 due to the current i flowing in both the wires is equal to

Options:

(a) $\frac{\mu_{0} i}{2 \pi l}$
(b) $\frac{\mu_{0} i}{\pi l}$
(c) $\frac{2 \pi \mu_{0} i}{l}$
(d) $\frac{\mu_{0} i}{2 l}$

Answer: (b)

Solution:

$B=\frac{2 \times \mu_{0} i}{2 \mu \pi\left(\frac{l}{2}\right)}=\frac{\mu_{0} i}{\pi l}$

Question: A block is sliding down an inclined plane of inclination 30° with an acceleration of $g / 4$. Find the coefficient of friction between the block and incline

Options:
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{1}{2 \sqrt{3}}$
(c) $1 / 3$
(d) $1 / 2$

Answer: (b)
Solution:
$a=g \sin \theta-M g \cos \theta$
$\frac{g}{4}=\frac{g}{2}-\mu g \frac{\sqrt{3}}{2}$
$\frac{\sqrt{3}}{2} \mu g=\frac{g}{4}$
$\mu=\frac{1}{2 \sqrt{3}}$

Question: A car is moving on a circular track of radius 50 cm with coefficient of friction being 0.34 . On this horizontal track the maximum safe speed for turning is equal to ($\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

Options:

(a) 1.03
(b) 1.7
(c) 1.3
(d) 1.8

Answer: (c)

Solution:
$f=\frac{m V^{2}}{R} \leq \mu m g$
$V \leq \sqrt{\mu R g}$
$V_{\text {max }}=\sqrt{\mu R g}=\sqrt{0.34 \times 0.5 \times 10}=\sqrt{1.7}=1.3$

Question: Two resistors R and 3R are in parallel, find the ratio of power dissipated in them.
Options:
(a) $1: 2$
(b) $2: 1$
(c) $3: 1$
(d) $1: 3$

Answer: (c)

Solution:

$P=\frac{V^{2}}{R}$
$P \propto \frac{1}{R}$
$\frac{P_{1}}{P_{2}}=\frac{R_{2}}{R_{1}}=\frac{3 R}{R}$

Question: In a meter bridge experiment, null point is found at a particular point for resistance 2Ω and 3Ω. Then resistance of $\mathrm{X} \Omega$ is shunted on 3Ω resistor, and null point shifts by 22.5 cm . Then find the value of X .

Options:

(a) 1
(b) 2
(c) 3
(d) 4

Answer: (b)

Solution:

$\frac{2}{3}=\frac{l}{100-l} \Rightarrow 200-2 l=3 l$
$l=40 \mathrm{~cm}$
Finally, after attaching X in parallel with 3Ω
New Resistance $=\frac{3 x}{x+3}$
So $\frac{2}{\left(\frac{3 x}{x+3}\right)}=\frac{40+22.5}{60-22.5}=\frac{62.5}{37.5}=2 \Omega$

Question: Find the ratio of maximum wavelength of Lyman series of Hydrogen atom to minimum wavelength of Balmer series of Helium atom.

Options:

(a) $4 / 3$
(b) 1
(c) $3 / 2$
(d) $3 / 4$

Answer: (a)
Solution:
$\frac{1}{\lambda}=R\left[\frac{1}{n_{f}^{2}-\frac{1}{n_{i}^{2}}}\right] Z^{2}$
$\frac{1}{\lambda_{1}}=R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \times 1^{2}$
$\frac{1}{\lambda_{2}}=R\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right] \times 2^{2}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{4}{3}$
Question: In YDSE 1st minima is formed directly opposite to upper slit, then find d ($\lambda=800$ $\mathrm{nm}, \mathrm{D}=5 \mathrm{~cm}$)

Options:

(a) 0.4 mm
(b) 0.3 mm
(c) 0.2 mm
(d) 0.1 mm

Answer: (c)
Solution:
$\frac{d^{2}}{2 D}=\frac{\lambda}{2}$
$d=\sqrt{\lambda D}$
$\Delta x=\frac{d y}{D}=\frac{d(d / 2)}{D}$

Question: Two objects of equal mass m are moving in a circular path of radius " r " because of their mutual gravitational attraction force. Find the velocity of each particle.

Options:

(a) $\sqrt{\frac{G m}{r}}$
(b) $\sqrt{\frac{G m}{2 r}}$
(c) $\sqrt{\frac{G m}{4 r}}$
(d) $\sqrt{\frac{2 G m}{r}}$

Answer: (c)
Solution:

$$
\begin{aligned}
& F=\frac{G m^{2}}{4 r^{2}}=\frac{M v^{2}}{r} \\
& V=\sqrt{\frac{G m}{4 r}}
\end{aligned}
$$

Question: Find coordinates of null point.

Options:
(a) $(12,0)$
(b) $(0,12)$
(c) $(0,24)$
(d) $(24,0)$

Answer: (d)

Solution:

Suppose the null point is at ' x '
Then
$\frac{K\left(4 q_{0}\right)}{(12+x)^{2}}=\frac{K q_{0}}{x^{2}}$
$\Rightarrow x=24$

Question: A soap bubble of Radius R \& surface tension S is blown to double the radius. Find charge in surface energy.
Options:
(a) $24 \pi \mathrm{SR}^{2}$
(b) $12 \pi \mathrm{SR}^{2}$
(c) $6 \pi \mathrm{SR}^{2}$
(d) $3 \pi \mathrm{SR}^{2}$

Answer: (a)
Solution:

$$
\begin{aligned}
& U_{i}=\left(S \times 4 \pi R^{2}\right) \times 2 \\
& U_{i}=8 \pi S R^{2} \\
& U_{\text {final }}=S \times 4 \pi(2 R)^{2} \times 2 \\
& U_{f}=32 S \pi R^{2} \\
& \Delta U=24 \pi S R^{2}
\end{aligned}
$$

Question: There is square loop of length ' L '. A very small ring of radius r is placed at centre of square. Find coefficient of mutual inductance.

Solution:

$$
\begin{aligned}
& B=\frac{\mu_{o} i_{1}}{4 \pi \frac{L}{2}}\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right) \times \pi r^{2} \\
& \phi_{2,1}=\left[\frac{2 \sqrt{2} \mu_{0} r^{2}}{L}\right] i_{1}
\end{aligned}
$$

Question: A Tennis ball is dropped from 9.8 m it hits the ground and rebounds to 5 m calculate average acceleration at point of contact $t=0.2 \mathrm{sec}$

Options:
(a) $50 \mathrm{~m} / \mathrm{s}^{2}$
(b) $120 \mathrm{~m} / \mathrm{s}^{2}$
(c) $100 \mathrm{~m} / \mathrm{s}^{2}$
(d) $200 \mathrm{~m} / \mathrm{s}^{2}$

Answer: (b)
Solution:
$V_{1}=\sqrt{2 g h}=\sqrt{2 \times 10 \times 9.8}=14 \mathrm{~ms}^{-1}$
$V_{2}=\sqrt{2 \times 10 \times 5}=10 \mathrm{~ms}^{-1}$
$\vec{a}=\frac{\Delta \vec{v}}{t}=\frac{(10 \hat{i})-(-14) \hat{j}}{0.2}=\frac{240}{2} \hat{j}=120 \hat{j}$
$=120 \mathrm{~ms}^{-1}$

Question: Match quantities with correct dimensions.

Column A	Column B
1. Latent Heat	(p) MLA $\mathrm{ML}^{-1} \mathrm{~T}^{-3}$
2. Electric field	(q) $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$
3. Pressure Gradient	(r) $\mathrm{ML}^{2} \mathrm{~A}^{-1} \mathrm{~T}^{-3}$
4. Electric Potential	(s) $\mathrm{L}^{2} \mathrm{~T}^{-2}$

Options:

(a) 1-s, 2-p, 3-q, 4-r
(b) 1-p, 2-s, 3-q, 4-r
(c) 1-s, 2-p, 3-r, 4-q
(d) 1-q, 2-p, 3-s, 4-r

Answer: (a)

Solution:

$L=\frac{Q}{m}=\frac{M L^{2} T^{-2}}{M}$
$E=\frac{F}{q}=\frac{M L T^{-2}}{A T}$
$\frac{d P}{d x}=\frac{M L^{-1} T^{-2}}{L}=M L^{2} T^{-2}$
$V=\frac{P \cdot E .}{2}=\frac{M L^{2} T^{-2}}{A T}$

Question: A nucleus ${ }^{236} \mathrm{X}_{92}$ undergoes two α decays and one β^{-}decay. Find atomic number and mass number.

Options:

(a) $\mathrm{Z}=88, \mathrm{Z}=227$
(b) $\mathrm{Z}=90, \mathrm{Z}=225$
(c) $\mathrm{Z}=89, \mathrm{Z}=228$
(d) $\mathrm{Z}=81, \mathrm{Z}=210$

Answer: (c)

Solution:

2α decays means A-8 and Z-4
$236-8=228$
1β decay means $Z+1$
$\therefore \mathrm{Z}=94-4+1=89$

Question: A wire has been made into a circle and placed in constant magnetic field. If the radius of wire starts decreasing at rate of $2 \mathrm{~cm} / \mathrm{s}$ when wire starts shrinking, find the EMF induced in the wire when radius of wire is 10 cm . Magnetic field strength in the region is 0.8 T.

Options:

(a) 0.01 V
(b) 0.1 V
(c) 1 V
(d) 10 V

Answer: (a)
Solution:
Flux via circular wire is given by
$\phi=\mathrm{B} . \pi \mathrm{r}^{2}$
So emf induced $|\varepsilon|=\left|\frac{d \phi}{d t}\right|=B .2 \pi r\left|\frac{d r}{d t}\right|$
$=0.8 \times 2 \pi \times \frac{10}{100} \times \frac{2}{100}$
$=\frac{3.2 \pi}{1000} \approx \frac{10}{1000}=\frac{1}{100 \mathrm{~V}}$
Question: Two antenna's has height 80 m , what is the range to which signal can be transmitted?
Options:
(a) 28 km
(b) 10 km
(c) 64 km
(d) 51 km

Answer: (c)
Solution:

$$
\begin{aligned}
& d=2 \sqrt{2 R h} \\
& =2 \sqrt{2 \times 6400 \times 80 \times 10^{-3}} \\
& =\sqrt{8 \times 80 \times 6400 \times 10^{-3}} \\
& =64 \mathrm{~km}
\end{aligned}
$$

Question: Cuboid of dimensions $2 \mathrm{~L} \times 2 \mathrm{~L} \times \mathrm{L}, \mathrm{A}$ charge q is placed at centre for of S with area $4 \mathrm{~L}^{2}$ flux through opposite side is?

Solution:

$q / 6 \varepsilon_{0}$
Question: A solid sphere is released from point 0 at the top of an incline as shown. Find the value of velocity of centre of mass of sphere at the bottom most point of the incline after it reaches there doing pure rolling ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

Options:

(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $7 \mathrm{~m} / \mathrm{s}$
(c) $10 \mathrm{~m} / \mathrm{s}$
(d) $0.7 \mathrm{~m} / \mathrm{s}$

Answer: (c)

Solution:

$V=\sqrt{\frac{2 g h}{1+\frac{I}{M R^{2}}}}$
$h=\frac{1}{2} m v^{2}+\frac{1}{2} I\left(\frac{v^{2}}{R^{2}}\right)$
$v=\sqrt{\frac{2 g h}{1+\frac{I}{M R^{2}}}}=\sqrt{\frac{2 \times 10 \times 7}{1+\frac{2}{5}}}$
$=\sqrt{\frac{20 \times 7 \times 5}{7}}=10 \mathrm{~ms}^{-1}$

Question: KE of a solid sphere is 4220 J on a horizontal plane. Find the velocity of COM of the sphere

Options:

(a) $40 \sqrt{7}$
(b) $40 \sqrt{3}$
(c) $30 \sqrt{7}$
(d) $30 \sqrt{3}$

Answer: (a)

Solution:

$m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I\left(\frac{V^{2}}{R^{2}}\right)$
$V=\sqrt{\frac{2 g h}{1+\frac{I}{M R^{2}}}}=\sqrt{\frac{2 \times 10 \times 7}{1+\frac{2}{5}}}=\sqrt{\frac{20 \times 7 \times 5}{7}}=10 \mathrm{~ms}^{-1}$
$K=\frac{1}{2} m V^{2}+\frac{1}{2}\left[\frac{2}{5} M R^{2}\right] \times \frac{V^{2}}{R^{2}}$
$K=\frac{7}{10} M V^{2}=2240$
$V^{2}=\frac{112 \times 100}{7}=40 \mathrm{~ms}^{-1}$
Question: A disk of radius R is given ω_{0} angular speed and placed gently on a rough horizontal surface. Find the velocity of centre of disk when pure rolling starts.

Options:

(a) $\frac{R \omega_{0}}{3}$
(b) $R \omega_{0}$
(c) $\frac{R \omega_{0}}{4}$
(d) $2 R \omega_{0}$

Answer: (a)

Solution:

$L_{i}=L_{f}$
$\frac{M R^{2}}{2} \omega_{0}=M R V+\frac{M R V}{2}$
$0+\left[\frac{M R^{2}}{2} \omega_{0}\right]=(R M V)+\left[\frac{M R^{2}}{2} \omega\right](C L W)$
$\frac{M R^{2}}{2} \omega_{0}=\frac{3}{2} M R V$
$V=\frac{R \omega_{0}}{3}$
$\vec{L}=M\left(\vec{r}_{c o m} \times \vec{v}_{c o m}\right)+I \vec{\omega}_{c o m}$

JEE-Mains-29-01-2023 (Memory Based) [Morning Shift]

Chemistry

Question: Which of the following is paramagnetic in nature?
Options:
(a) $\mathrm{Na}_{2} \mathrm{O}_{2}$
(b) KO_{2}
(c) Both (a) and (b)
(d) None of the above

Answer: (b)
Solution: The molecular electronic configuration of
$\mathrm{O}_{2}^{-}=\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p_{z}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{1}$
$\mathrm{O}_{2}^{2-}=\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p_{z}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{2}$
Since O_{2}^{-}has unpaired electron in its antibonding molecular orbital, thus it is paramagnetic and oppositely O_{2}^{2-} is diamagnetic.

Question: Arrange the following (increasing order of PKa)
Phenol, 2,4-dinitrophenol, 2,4,5-trimethyl phenol, 4-nitrophenol, 4-chlorophenol
Options:
(a) Phenol < 2,4-dinitrophenol < 2,4,5-trimethyl phenol < 4-nitrophenol < 4-chlorophenol
(b) 2,4-dinitrophenol < Phenol < 2,4,5-trimethyl phenol < 4-nitrophenol < 4-chlorophenol
(c) 2,4,5-trimethyl phenol < 4-chlorophenol < Phenol < 2,4-dinitrophenol < 4-nitrophenol
(d) 2,4-dinitrophenol < 4-nitrophenol < Phenol < 4-chlorophenol < 2,4,5-trimethyl phenol

Answer: (d)
Solution:

Compound	Pka value
Phenol	9.98
2,4-dinitrophenol	4.114
2,4,5-trimethyl phenol	10.57
4-nitrophenol	7.14
4-chlorophenol	10.07

Question: At low pressure Van der Waals equation will be Options:
(a) $\left[1+\frac{\mathrm{a}}{\mathrm{RTV}}\right]$
(b) $\left[1-\frac{\mathrm{RTV}}{\mathrm{a}}\right]$
(c) $\left[1-\frac{\mathrm{a}}{\mathrm{RTV}}\right]$
(d) $\left[1+\frac{\mathrm{RTV}}{\mathrm{a}}\right]$

Answer: (c)
Solution:
$\mathrm{pV}+\frac{\mathrm{a}}{\mathrm{v}}=\mathrm{RT}$
$\therefore \frac{\mathrm{pV}}{\mathrm{RT}}+\frac{\mathrm{a}}{\mathrm{RTV}}=1 \quad \therefore \mathrm{Z}=\frac{\mathrm{pV}}{\mathrm{RT}}$
$=\left[1-\frac{\mathrm{a}}{\mathrm{RTV}}\right]$

Question: Order of Hydration: $\mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Ca}^{2+}$
Options:
(a) $\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(b) $\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}$
(c) $\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}$
(d) $\mathrm{Cs}^{+}>\mathrm{Mg}^{2+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Ca}^{2+}$

Answer: (a)
Solution: $\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
Question: Which compound will give both lassaigne test of nitrogen and halogen?
Options:
(a)

(b)

(c)

(d) None of these

Answer: (a)
Solution:

Question: Number of Bridging CO in $\mathrm{W}(\mathrm{CO})_{6}$ and $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ Options:
(a) 0
(b) 1
(c) 2
(d) 3

Answer: (a)
Solution:

Question: Order of bond dissociation enthalpy of $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{~F}_{2}$ Options:
(a) $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(b) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
(c) $\mathrm{Br}_{2}>\mathrm{I}_{2}>\mathrm{F}_{2}>\mathrm{Cl}_{2}$
(d) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$

Answer: (b)
Solution: Fluorine which is an exception for this order, due to the high electronegativity of fluorine atom it tends to break the bond present between the fluorine molecule hence requiring less energy for the breaking of the bond which results in requiring low bond dissociation enthalpy.

Question: Which of the following ions does not liberate hydrogen gas on reaction with dilute acids?

Options:

(a) Cr^{2+}
(b) Mn^{2+}
(c) Ti^{2+}
(d) V^{2+}

Answer: (b)

Solution: Mn^{2+} does not liberate hydrogen gas on reaction with dilute acids. +2 oxidation state of Mn is very stable due to exactly half filled electronic configuration.

Question: Which of the following is incorrect statement about the following graph?

Options:
(a) $\lambda^{\circ} \mathrm{m}$ value of weak electrolyte can be determined by extrapolating the graph
(b) $\lambda^{0} \mathrm{~m}$ value of weak electrolyte cannot be determined by extrapolating the graph
(c) $\lambda^{0} \mathrm{~m}$ value of strong electrolyte can be determined by extrapolating as linear graph is obtained
(d) All of these

Answer: (a)
Solution: For weak electrolyte molar conductivity at infinite dilution cannot be determined experimentally and by extrapolation because graph is not linear, maximum value of molar conductivity at infinite dilution cannot be obtained.

Question: Match the following.

Reaction (Column-I)	Reagents (Column-II)
(A) Hofmann Degradation	(i) Conc KOH
(B) Clemmensen reaction	(ii) $\mathrm{NaOH}, \mathrm{Br}_{2}$
(C) Cannizzaro reaction	(iii) $\mathrm{Zinc}-\mathrm{Hg}, \mathrm{HCl}$
(D) Reimer-Tiemann reaction	(iv) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$

Options:

(a) A - (ii); B - (i); C - (iii); D - (iv)
(b) A - (iii); B - (i); C - (ii); D - (iv)
(c) $\mathrm{A}-$ (iv); $\mathrm{B}-$ (iiii); C - (ii); D - (i)
(d) A - (ii); B - (iii); C - (i); D - (iv)

Answer: (d)
Solution:

Reaction (Column-I)	Reagents (Column-II)
(A) Hofmann Degradation	(i) $\mathrm{NaOH}, \mathrm{Br}_{2}$
(B) Clemmensen reaction	(ii) $\mathrm{Zinc}-\mathrm{Hg}, \mathrm{HCl}$
(C) Cannizzaro reaction	(iii) Conc KOH
(D) Reimer-Tiemann reaction	(iv) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$

Question:

(i) $\mathrm{Zn} /(\mathrm{Hg}) \mathrm{HCl}$
(ii) $\mathrm{LiAlH}_{4} / \mathrm{H}_{3} \mathrm{O}^{+}$

Options:

(a) $\mathrm{PhCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(b) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(c) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(d) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: (d)

Solution:

Question: Number of millimoles of $\mathrm{Ca}(\mathrm{OH})_{2}$ in 100 mL solution, given $\mathrm{pH}=12$ Options:
(a) 1
(b) 0.5
(c) 0.05
(d) 2

Answer: (b)

Solution:

$\mathrm{pH}=12$
$\mathrm{pOH}=14-\mathrm{Ph}=14-12=2$
$\therefore\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$
$\therefore\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.5 \times 10^{-2} \mathrm{M}$
Mili moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ in solution
$=\mathrm{MV}(\mathrm{in} \mathrm{mL})$
$=0.5 \times 10^{-2} \times 100=0.5$
Question: $\mathrm{K}_{\mathrm{f}}=10^{3}, \mathrm{~K}_{\mathrm{b}}=10^{2}$ find $\Delta \mathrm{G}^{\mathrm{o}}$ at $\Delta \mathrm{T}=27^{\circ} \mathrm{C}$
Options:
(a) -700 R
(b) -500 R
(c) -690 R
(d) -400 R

Answer: (c)

Solution:

$\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{C}}$
$=-2.303 \mathrm{R} \times 300 \log \frac{\mathrm{~K}_{\mathrm{F}}}{\mathrm{K}_{\mathrm{b}}}$
$=-2.303 \mathrm{R} \times 300 \log \frac{10^{3}}{10^{2}}$
$=-2.303 \mathrm{R} \times 300 \log _{10}$
$=-2.303 \mathrm{R} \times 300 \times 1=-690 \mathrm{R}$

Question: Which of the following metalist is purified by Mond Process
Options:
(a) Ti
(b) Ge
(c) Ni
(d) Zr

Answer: (c)

Solution:

$$
\begin{aligned}
& \mathrm{Ni}+4 \mathrm{CO} \xrightarrow{330-350 \mathrm{~K}} \mathrm{Ni}(\mathrm{CO})_{4} \\
& \mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{~K}} \mathrm{Ni}+\mathrm{CO}
\end{aligned}
$$

Question: Which of the following is not odd electron?

$$
\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{NO}_{2}{ }^{+}, \mathrm{ClO}_{2}, \mathrm{BrCl}_{3}
$$

Options:

(a) BrCl_{3}
(b) NO
(c) NO_{2}
(d) $\mathrm{NO}_{2}{ }^{+}$and ClO_{2}

Answer: (a)
Solution:

Question: Which of the following compound used as Narrow spectrum antibiotics?
Options:
(a) Penicillin
(b) Gentamycin
(c) Erythromycin
(d) All of these

Answer: (d)
Solution: Narrow spectrum antibiotics are used against only limited pathogens. Penicillin, gentamycin and erythromycin are used to treat only certain pathogens such as Staphylococci, Clostridia, Streptococci and hence fall under the class of narrow spectrum antibiotics.

Question: Select the correct statement among the following Options:

Learn LIVE Online
(a) Photochemical smog has high concentration of oxidising agent
(b) Classical smog has high concentration of oxidising agent
(c) Classical smog contains NO_{2}
(d) None of these

Answer: (a)
Solution:
Smog: The word smog is derived from smoke and fog.
This is the most common example of air pollution that occurs in many cities throughout the world.
There are two types of smog:
(a) Classical smog occurs in cool humid climate. It is a mixture of smoke, fog and sulphur dioxide. Chemically it is a reducing mixture and so it is also called as reducing smog.
(b) Photochemical smog occurs in warm, dry and sunny climate. The main components of the photochemical smog result from the action of sunlight on unsaturated hydrocarbons and nitrogen oxides produced by automobiles and factories. Photochemical smog has high concentration of oxidising agents and is. therefore. called as oxidising smog.
Formation of photochemical smog, when fossil fuels are burnt, a variety of pollutants are emitted into the earth's

Question: In ostwald's process Ammonia is oxidized to give A and oxidised again to give B and forms an oxoacid of nitrogen. B gives positive brown ring test. What are A and B?
Options:
(a) $\mathrm{A}=\mathrm{NO}, \mathrm{B}=\mathrm{NO}_{2}$
(b) $\mathrm{A}=\mathrm{NO}_{2}, \mathrm{~B}=\mathrm{NO}$
(c) $\mathrm{A}=\mathrm{HNO}_{2}, \mathrm{~B}=\mathrm{NO}$
(d) $\mathrm{A}=\mathrm{HNO}_{2}, \mathrm{~B}=\mathrm{NO}_{2}$

Answer: (b)
Solution: Ostwald's process for the manufacture of nitric acid.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$4 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$
Question: Which of the following tank use to store hydrogen?
Options:
(a) High pressure tank
(b) Low pressure tank
(c) High temperature tank
(d) Low temperature tank

Answer: (a)
Solution: Hydrogen can be stored physically as either a gas or a liquid. Storage of hydrogen as a gas typically requires high-pressure tanks (350-700 bar [5,000-10,000 psi] tank pressure). Storage of hydrogen as a liquid requires cryogenic temperatures because the boiling point of hydrogen at one atmosphere pressure is $-252.8^{\circ} \mathrm{C}$.

Question: The compound formed in borax bead test, of CuSO_{4} in oxidizing flame is \qquad Options:
(a) $\mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}$
(b) $\mathrm{Cu}_{3} \mathrm{~B}_{2}$
(c) $\mathrm{Cu}(\mathrm{BO})_{2}$
(d) $\mathrm{Cu}\left(\mathrm{BO}_{3}\right)_{2}$

Answer: (a)

Solution: $\mathrm{CuSO}_{4}(\mathrm{aq}) \xrightarrow{\Delta} \mathrm{CuO}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g})$

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}
$$

Cupric metaborate

JEE-Main-29-01-2023 (Memory Based)
 [Morning Shift]

Mathematics

Question: If $f(x+y)=f(x)+f(y), f(1)=\frac{1}{5}$ and $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then find m.
Answer: 10.00

Solution:

$f(x+y)=f(x)+f(y)$
$f(x)=a x$
$x=1 \Rightarrow f(1)=a=\frac{1}{5}$
$f(x)=\frac{1}{5} x$
$\frac{1}{5} \sum \frac{n}{n(m+1)(n+2)}=\frac{1}{12}$
$\frac{1}{5}\left[\sum_{n=1}^{m}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right]=\frac{1}{12}$
$\frac{1}{2}-\frac{1}{m+2}=\frac{5}{12}$
$\Rightarrow m=10$

Question: Tangent at $A(4,-11)$ and $B(8,-5)$ to $x^{2}+y^{2}-3 x+10 y-15=0$ intersect at C. Find the radius of circle touching $A B$ and having centre at C.
Answer: $\frac{2 \sqrt{13}}{3}$
Solution:

Radius $r=\sqrt{\frac{9}{4}+25+15}=\frac{13}{2}$
$A M=\frac{1}{2} A B$
$=\frac{1}{2} \sqrt{16+36}$
$=\sqrt{13}$
$\frac{C M}{A M}=\cot \theta$
$C M=\sqrt{13} \cot \theta$
$\Delta O A M \Rightarrow O M=\sqrt{\left(\frac{13}{2}\right)^{2}-13}=\sqrt{\frac{169-52}{4}}=\frac{\sqrt{117}}{2}$
$C M=\sqrt{13} \cot \theta$
$C M=\sqrt{13} \times \frac{\sqrt{13}}{\sqrt{117}} \times 2=\sqrt{13} \times \frac{\sqrt{13}}{\sqrt{13} \times 3} \times 2=\frac{2 \sqrt{13}}{3}$

Question: Five digit numbers are formed using 1, 2, 3, 5, 7 (repetition is allowed), and these numbers are arranged in descending order. Find the rank of 35337.

Answer: 1436.00

Solution:

Five digit number using 35337

$\frac{7}{5}$	$\frac{5}{5}$	$\frac{5}{5}$	$\frac{5}{5}$	$\frac{5}{5}$	$=5^{4}$
$\frac{5}{3}$	$\frac{5}{7}$	$\frac{5}{5}$	$\frac{5}{5}$	$=5^{3}$	
$\frac{3}{3}$	$\frac{5}{5}$	$\frac{5}{5}$	$\frac{5}{5}$	$=5^{3}$	

3 $\quad 5 \quad 7 \quad 5 \quad 5=5^{2}$
$\frac{3}{3} \frac{5}{5} \frac{5}{3} \frac{5}{7} \frac{5}{5}=5^{2}$
$\frac{3}{3} \frac{5}{5} \frac{3}{3} \frac{7}{5} \frac{5}{5}=5$
$3 \quad 5 \quad 3 \quad 5 \quad 5=5$
3 5 3 3 그=1
So total $=5^{4}+5^{4}+5^{3}+5^{3}+5^{2}+5^{2}+5+5+1=1436$

Question: A function $f(x)$ is such that $f(x+y)=f(x)+f(y)-1, \forall x, y \in R$. If $f^{\prime}(0)=2$, then $|f(-2)|=$?

Answer: $\mathbf{3 . 0 0}$

Solution:

$f(x+y)=f(x)+f(y)-1$
$x=y=0 \Rightarrow f(0)=f(0)+f(0)-1 \Rightarrow f(0)=1$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-1-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(h)-1}{h}$
$=f^{\prime}(0)=2$
$f^{\prime}(x)=2$
$f(x)=2 x+c$
$1=0+c \Rightarrow c=1$
$\therefore f(x)=2 x+1$
$|f(-2)|=|-3|=3$

Question: If the 3 consecutive coefficients in the expansion of $(1+2 x)^{n}$ are in the ratio 2:5:8 then the middle term is
Answer: ${ }^{8} C_{4}(2 x)^{4}$

Solution:

${ }^{n} C_{r-1}(2)^{r-1}:{ }^{n} C_{r} 2^{r}:{ }^{n} C_{r+1} 2^{r+1}:: 2: 5: 8$
$\frac{{ }^{n} C_{r} 2^{r}}{{ }^{n} C_{r-1} 2^{r-1}}=\frac{5}{2}$
$2\left(\frac{n-r+1}{r}\right)=\frac{5}{2}$
Similarly, $2\left(\frac{n-r}{r+1}\right)=\frac{8}{5}$
Comparing $n=8$
Mid term $={ }^{8} C_{4}(2 x)^{4}$

Question: If $\frac{d y}{y}=\left(\frac{x+1}{x^{2}}\right) d x ; y(1)=e$, then $\lim _{x \rightarrow 0^{+}} f(x)=$?
Answer: 0.00

Solution:

$\int \frac{d y}{y}=\int\left(\frac{1}{x}+\frac{1}{x^{2}}\right) d x$
$\ln |y|=\ln |x|-\frac{1}{x}+c$
Given ($1, e$)
$1=0-1+c$
$c=2$
\therefore We have
$\ln |y|=\ln |x|-\frac{1}{x}+2$
$y=e^{\ln |x|-\frac{1}{x}+2}$
As we take $\lim _{x \rightarrow 0^{+}}$
$y=e^{-\infty}=0$

Question: α, β are positive numbers. A is a 3×3 matrix such that $A^{2}=3 A+\alpha I$ and $A^{4}=21 A+\beta I$. Find α, β.
Answer: -1, -8

Solution:

Given, $A^{2}=3 A+\alpha I$ and $A^{4}=21 A+\beta I$
$A^{4}=A^{2} \cdot A^{2}$
$A^{4}=(3 A+\alpha I)(3 A+\alpha I)=21 A+\beta I$
$9 A^{2}+3 A \alpha I+3 \alpha A I+\alpha^{2} I=21 A+\beta I$
$9 A^{2}+6 \alpha A+\alpha^{2} I=21 A+\beta I$
Again using $A^{2}=3 A+\alpha I$ in LHS
$\Rightarrow 9(3 A+\alpha I)+6 \alpha A+\alpha^{2} I=21 A+\beta I$
$\Rightarrow(27+6 \alpha) A+\left(9 \alpha+\alpha^{2}\right) I=21 A+\beta I$
$\therefore 27+6 \alpha=21 \& 9 \alpha+\alpha^{2}=\beta$
$6 \alpha=-6 \quad \& \quad 1-9=\beta$
$\alpha=-1 \quad \& \quad \beta=-8$

Question: Consider a function $f(x)=\frac{x^{2}+2 x+1}{x^{2}+1}$, then which of the following is correct?

Options:

(a) $f(x)$ is one-one for $x \in(0, \infty)$
(b) $f(x)$ is one-one for $x \in(1, \infty)$
(c) $f(x)$ is one-one for $x \in(2, \infty)$ and many-one for $x \in(-\infty, 0]$
(d)

Answer: (c)

Solution:

Question: If real part of the product of $z_{1} \& z_{2}$ is zero i.e., $\operatorname{Re}\left(z_{1} z_{2}\right)=0 \& \operatorname{Re}\left(z_{1}+z_{2}\right)=0$ then $\operatorname{Im}\left(z_{1}\right) \& \operatorname{Im}\left(z_{2}\right)$ is

Answer: $\operatorname{Im}\left(z_{1}\right) \& \operatorname{Im}\left(z_{2}\right)$ are of opposite signs

Solution:

Given product of $z_{1} \& z_{2}$ is zero
i.e., $\operatorname{Re}\left(z_{1} \cdot z_{2}\right)=0$

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)
\end{aligned}
$$

$\operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2}=0$
$\Rightarrow x_{1} x_{2}=y_{1} y_{2}$
$\operatorname{Re}\left(z_{1}+z_{2}\right)=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)$
$\operatorname{Re}\left(z_{1}+z_{2}\right)=\left(x_{1}+x_{2}\right)=0$
$x_{2}=-x_{1}$
Substitute x_{2} in (i)
$-x_{1} \cdot x_{1}=y_{1} y_{2}$
$\Rightarrow y_{1} y_{2}=-x_{1}^{2}=-v e$
$\operatorname{Im}\left(z_{1}\right) \& \operatorname{Im}\left(z_{2}\right)$ is one positive and one negative.

Question: If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an increasing GP such that $a_{4} \times a_{6}=9$ and $a_{5}+a_{7}=12$. Find $a_{7}+a_{9}=$?

Answer: $\mathbf{3 6 . 0 0}$

Solution:

Given $a_{5}+a_{7}=12$ and $a_{4} \times a_{6}=9$
$a_{5}+a_{7}=12$
$a r_{4}+a r^{6}=12$
$a r^{4}\left(1+r^{2}\right)=12$
$a_{4} \cdot a_{6}=9$
$a r^{3} \cdot a r^{5}=9$
$a^{2} \cdot r^{8}=9$
$a \cdot r^{4}=3$
Substitute in (1)
$3\left(1+r^{2}\right)=12$
$r^{2}=3$
$r= \pm \sqrt{3}$
$a=\frac{1}{3}$
Now $a_{7}+a_{9}$
$\Rightarrow a r^{6}+a r^{8}=a r^{4}\left(r^{2}+r^{4}\right)$
$=3 \times r^{2}\left(1+r^{2}\right)$
$=3 \times 3(1+3)$
$=9 \times 4$
$=36$

Question: Δ is the area between $x^{2}+y^{2} \leq 21, y^{2} \leq 4 x$ and $x \geq 1$. Find $\frac{1}{2}\left(\Delta-21 \sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)\right)$.
Answer: $\sqrt{3}-\frac{4}{3}$

Solution:

$x^{2}+y^{2}=21$
$y^{2}=4 x$
$x=3$

$$
\begin{aligned}
& 2 \times \int_{1}^{3} 2 \sqrt{x} d x=4\left[\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{1} ^{3}\right]=\frac{8}{3}(3 \sqrt{3}-1) \\
& 2 \int_{3}^{\sqrt{21}} \sqrt{21-x^{2}}=2\left[\frac{1}{2} x \sqrt{21-x^{2}}+\frac{1}{2} \times 21 \sin ^{-1}\left(\frac{x}{\sqrt{21}}\right)\right]_{3}^{21} \\
& =0+21 \frac{\pi}{2} 3 \times 2 \sqrt{3}-21 \sin ^{-1}\left(\frac{\sqrt{3}}{\sqrt{7}}\right) \\
& =21\left(\cos ^{-1} \sqrt{\frac{3}{7}}\right)-6 \sqrt{3} \\
& =21 \sin ^{-1} \frac{2}{\sqrt{7}}-6 \sqrt{3} \\
& \Delta=\frac{8}{3}(3 \sqrt{3}-1)+21 \sin ^{-1} \frac{2}{\sqrt{7}}-6 \sqrt{3} \\
& \Delta=\sqrt{3}-\frac{4}{3}
\end{aligned}
$$

Question: $\int_{0}^{2} \max \left\{x^{2}, 1+[x]\right\} d x$ is equal to
Answer: $\frac{5+4 \sqrt{2}}{3}$

Solution:

$x^{2}=2 \Rightarrow x=\sqrt{2}$
$(1 \times 1)+2(\sqrt{2}-1)+\int_{\sqrt{2}}^{2} x^{2} d x$
$=\frac{5+4 \sqrt{2}}{3}$

Question: 4 apples are picked one by one without replacing from a bag containing 3 rotten and 7 normal apples. Let x be no. of rotten apples. Find $\bar{x}+v_{x}$.
Answer: $\frac{6}{5}, \frac{14}{25}$

Solution:

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$\frac{{ }^{7} C_{4}}{{ }^{10} C_{4}}$	$\frac{{ }^{3} C_{1} \times{ }^{7} C_{4}}{{ }^{10} C_{4}}$	$\frac{{ }^{3} C_{2} \times{ }^{7} C_{2}}{{ }^{10} C_{4}}$	$\frac{{ }^{7} C_{1}}{{ }^{10} C_{4}}$

$\bar{x}=\sum x_{i} P_{i}$
$\bar{x}=\frac{6}{5}$
Variance $=V=\sum x_{i}{ }^{2} P_{i}-(\bar{x})^{2}$
$V=\frac{14}{25}$

Question: Domain of $f(x)=\frac{\log _{x}(x-1)}{\log _{x-1}(x-4)}$ is:
Answer: $x \in(4, \infty) \backslash\{5\}$

Solution:

For domain
$x>0, x-1>0, x \neq 1$
\& $x-1>0, x-1 \neq 1, x-4>0$
$\log _{x-1}(x-4) \neq 0$
$\Rightarrow x-4 \neq 1 \Rightarrow x \neq 5$
$\therefore x \in(4, \infty)-\{5\}$

Question: If the coefficient of x^{5} in the expansion of $\left(a x^{3}+\frac{1}{\beta x}\right)^{11}$ and $\left(\alpha x+\frac{1}{\beta x^{3}}\right)^{11}$ are equal, then the value of $(\alpha+\beta)^{2}$ is

Answer: 1.00

Solution:

General term of $\left(\alpha x^{3}+\frac{1}{\beta x}\right)^{11}$ is
$T_{k+1}={ }^{11} C_{k}\left(\alpha x^{3}\right)^{11-k}\left(\frac{1}{\beta x}\right)^{k}$
$={ }^{11} C_{k} \alpha^{11-k} \beta^{-k} x^{33-4 k}$
Now for coefficient of x^{9}, we have
$33-4 k=9$
$\Rightarrow 4 k=24$
$\Rightarrow k=6$
Similarly, general term of $\left(\alpha x+\frac{1}{\beta x^{3}}\right)^{11}$ is

$$
\begin{aligned}
T_{k+1} & ={ }^{11} C_{k}(\alpha x)^{11-k}\left(\frac{1}{\beta x^{3}}\right)^{k} \\
& ={ }^{11} C_{k} \alpha^{11-k} \beta^{-k} x^{11-4 k}
\end{aligned}
$$

For coefficient of x^{-9}, we have
$11-4 k=9$
$\Rightarrow 4 k=20$
$\Rightarrow k=5$

$$
\begin{aligned}
& { }^{11} C_{6} \frac{\alpha^{5}}{\beta^{6}}={ }^{11} C_{5} \cdot \frac{\alpha^{6}}{\beta^{5}} \\
& \Rightarrow \alpha \beta=\frac{{ }^{11} C_{6}}{{ }^{11} C_{5}}=1 \\
& \Rightarrow(\alpha \beta)^{2}=1
\end{aligned}
$$

Question: Consider 3 coplanar vector $\vec{a}=3 \hat{i}-4 \hat{j}+\lambda \hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-4 \hat{k}$.
Then 9λ is \qquad
Answer: 87.00

Solution:

$\left|\begin{array}{ccc}3 & -4 & \lambda \\ 4 & 3 & -1 \\ 1 & 3 & -4\end{array}\right|=0$
$-27-60+9 \lambda=0$
$9 \lambda=87$

