

PHYSICS

1. Acceleration of block on the inclined wedge is g/4. Find friction coefficient between block & the wedge.

2. Find magnetic field at O.

- 3. A charge + 4q is placed at origin and a charge of -q was placed at 12 cm on x-axis. Find the position of charge +q on x-axis such that net force on it is zero.
- **4.** A stone is projected at 30° from horizontal. Find the ratio of kinetic energy at point of projection and at a maximum height.
- 5. A car is moving on a circular path of radius 50 m. If friction coefficient between car tyres and road is $\mu = 0.33$, Find maximum speed of the car.
- 6. Half life for a radioactive element is 30 minutes. Find the active nuclei after 90 minutes.
- 7. An object cools down from 60°C to 40°C in 6 minutes. Find the temperature of the object after another 6 minutes. Temperature of surrounding is 10°C.
- **8.** An object of mass 0.4 kg is released from rest. If it takes 8 sec to reach the ground, then find the loss of potential energy in last second.
- **9.** A meter bridge consists of two resistances, 2Ω & 3Ω . When 3Ω resistance is shunted by a resistance, null point shifts by 22.5 cm, find the value of shunt resistance.

- **10.** For a hydrogen atom, maximum wavelength of Lyman series is $(\lambda_{Lyman})_{max}$. Find the minimum wavelength of balmer series for Helium atom.
- 11. An observer is at station. Find the difference in frequencies as heard by observer between (1) when train is approaching the station with speed of 30 m/s and (2) when train is leaving the station with speed of 30 m/s.
- **12.** Two resistances, R and 3R are connected in parallel to each other. Find the ratio of power consumed by R and 3R, respectively
- 13. In YDSE, first minima is found in front of one of the slits. If separation between slits and screen is 5 cm and wavelength of light is 800 nm, then the separation between slits.
- **14.** Mutual inductance of a small circular ring of radius r which is kept at the centre of a large square loop of side L is:
- **15.** Two stars of mass m are revolving around each other due to their mutual attraction. If distance between them is 2R, then find the speed of any of the star.
- 16. A soap bubble having radius R = 3.5 cm is expanded by an external agent so that its radius becomes 2R. Find the change in surface energy of the soap bubble if surface tension, T = 2×10^{-2} N/m. (Take $\pi = \frac{22}{7}$).
- 17. A tennis ball is dropped from a height of 9.8 m. It hits the ground and rebounds to 5 m. Calculate average acceleration during the collision with ground if time of contact is 0.2 sec.
- **18.** Match the following:
 - (A) Pressure gradient

(P) $M^0L^2T^{-2}$

(B) Electric field

(Q) $M^1L^{-1}T^{-2}$

(C) Latent heat

(R) M¹L¹T⁻³I⁻¹

(D) Energy density

- (S) $M^1L^{-2}T^{-2}$
- 19. A charge q is placed on the centre of surface having area (4L²) of a cuboid of dimension (2L × 2 L × L). Find the value of electric flux passing through the surface that is just opposite to the surface having charge.
- **20.** Find the range to which an antenna of height, h = 80 m can transmit signals on earth. Radius of earth is 6400 km.

21. Variation of magnetic field due to a ring in XY plane., at point (0,0,z) is best represented by:

- 22. A particle having atomic number 92 is unstable so it emits 2 α particles and 1 β^{-1} particle. Then find the atomic number of stable daughter nuclei.
- **23. Assertion:** dQ = dU dw, here dQ = heat supplied, dU = change in internal energy, dw = work done by gas.

Reason: Law of conservation of energy

- (1) A is correct, R is correct and R is correct explanation of A.
- (2) A is correct, R is correct and R is not a correct explanation of A.
- (3) A is correct, R is incorrect.
- (4) A is incorrect.
- 24. Two polarizer P₁ and P₂ are placed such that their transmission axis are at 45° from each other. When ordinary light is passed through P₁, I₁ intensity is observed and when this light is passed through P₂, I₂ intensity is observed. Find the I₁/I₂.
- 25. Magnetic field through a circular loop is 0.8 T. The radius of loop is expanding at a rate of 2 cm/s. The induced emf in the loop, when radius of the loop is 10 cm, is $x\pi \times 10^{-4}$ volts. Find x:
- **26.** Two coherent waves of amplitude 8 cm each are superimposed on one another. If the amplitude of resultant wave is 8 cm then the phase difference between two waves is equal to:

CHEMISTRY

- What is the ratio of the longest wavelength in Lyman Series for hydrogen is λ and shortest 1. wavelength in Balmer Series for He+ is?
- (3) $\frac{20}{27}$
- (4)1
- 2. The bluish green colour is due to which of the following compound when Borax is reacted with copper sulphate
 - (1) CuO
- (2) $Cu(BO_2)_2$
- (3) CuBO₂
- (4) Cu
- 3. Arrange the following incorrect order of pKa values?
 - (i) Phenol
 - (iii) 4-Nitrophenol
 - (1) 2 > 1 > 3 > 4
- (2) 1 > 2 > 3 > 4
- (ii) 2,4,6-trimethyl Phenol
- (iv) 2,4,6-trinitro Phenol
- (3) 2 > 1 > 4 > 3
- (4) 4 > 3 > 1 > 2

- 4. Column-I
 - (a) Broad spectrum
 - (b) Narrow spectrum
 - (c) Antibiotic
 - (d) Antiseptic
 - (1) (a) s, (b) q, (c) p, (d) r
 - (3) (a) r, (b) s, (c) p, (d) r

- Column-II
- (p) Furacin
- (q) Penicillin G
- (r) SO₂
- (s) Chloramphenicol
- (2) (a) p, (b)- s, (c) r, (d) q
- (4) (a) s, (b) r, (c) q, (d) p
- 5. What is the order of hydration energy

Ca, Mg, K, Rb, Cs

(1) Mg > Ca > K > Rb > Cs

(2) Ca > Mg > K > Rb > Cs

(3) Ca > Mg > Rb > K > Cs

- (4) Mg > Ca > K > Cs > Rb
- What is the correct bond dissociation energy order for F2, Cl2, Br2, I2? 6.
 - (1) $Cl_2 > Br_2 > F_2 > I_2$ (2) $Cl_2 > F_2 > Br_2 > I_2$ (3) $Cl_2 > F_2 > I_2 > Br_2$ (4) $F_2 > I_2 > Br_2 > Cl_2$

7. Find the major product

(2) Ph-CH₂-CH₂-CH₂-NH₂

8. Column-I

Reactions

- (a) Hoffmann Bromamide
- (b) Cannizzarro Reaction
- (c) Clemmensen Reduction
- (d) Reimer Tiemann Reaction
- (1) (a) -q, (b) -s, (c) -p, (d) -r
- (3) (a)-p, (b)-q, (c)-s, (d)-r

Column-II

Reagents

- (p) Zn-Hg / Conc. HCl
- (q) KOH and Br₂
- (r) CHCl₃ + KOH
- (s) Conc. NaOH
- (2) (a)-s, (b)-p, (c)-r, (d)-q
- (4) (a)-r, (b)-p, (c)-q, (d)-s
- **9.** Which of the following compound is / are paramagnetic

NO₂, NO, K₂O, Na₂O₂

(1) NO₂ & NO

(2) NO₂, NO & K₂O

(3) NO₂, NO, K₂O & Na₂O₂

- (4) NO₂, NO & Na₂O₂
- **10.** Select the correct statement among the following
 - (1) Photochemical smog has high concentration of oxidising agent
 - (2) Classical smog has high concentration of oxidising agent
 - (3) Classical smog contains NO₂
 - (4) None of these
- 11. Arrange of the following in the increasing order of their boiling point.

(1) (I) > (II) > (III) > (IV)

(2) (I) > (II) > (IV) > (III)

(3) (III) > (IV) > (II) > (I)

- (4) (IV) > (III) > (II) > (I)
- **12.** Cannizzaro reaction is an example of disproportionation reaction. What is the catalyst used in Cannizzaro reaction.
 - (1) FaCl₃

(2) conc. NaOH / H₂O

(3) $ZnCl_2 / H^+$

- (4) H₂/ Pd / BaSO₄
- 13. Number of cyclic tripeptides formed with two amino acids A and B are:
 - (1) 2
- (2) 3
- (3) 4
- (4)5
- **14.** Which of the following will give positive lassaigne test
 - (1) NH₄OH
- (2) NH₄Cl
- (3) N_2H_4
- (4) CH₃—NH₂

15. Which of the following reaction corresponding to Mond process.

$$(1) ZrI_4 \xrightarrow{1800K} Zr + 2I_2$$

(2) Ni(CO)₄
$$\xrightarrow{450-470 \text{ K}}$$
 Ni + 4CO

(3)
$$2[Au(CN)_2]^- + Zn(s) \longrightarrow 2Au(s) + [Zn(CN)_4]^{2-}$$

(4)
$$2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$$

16. Assertion: First law of thermodynamics has equation: $\Delta U = q + W$

Reason: First law of thermodynamics is based on the law of conservation of energy

- (1) A is correct and R is correct and R is the correct explanation of A.
- (2) A is correct and R is correct and R is not the correct explanation of A.
- (3) A is correct while R is incorrect.
- (4) A is incorrect while R is correct.

17. Match the column

Column – I		Column – II	
(i)	Siderite	(a)	ZnCO₃
(ii)	Galena	(b)	FeCO₃
(iii)	Calamine	(c)	PbS

18. Find out the magnetic character of Li₂O, KO₂ and MgO in that order.

- (1) Diamagnetic, paramagnetic and diamagnetic
- (2) Paramagnetic, paramagnetic and diamagnetic
- (3) Diamagnetic, paramagnetic and paramagnetic
- (4) Diamagnetic, diamagnetic and diamagnetic

19. Which of the following complex is optically active:

(1) Cis-[Pt(NH
$$_3$$
) $_2$ Cl $_2$]

(3) Cis-[Pt(en)
$$_2$$
Cl $_2$]

20. X: No: of bridge bonds present in compound Mn₂(CO)₁₀

Y: No: of bridge bonds present in compound W(CO)6

Find out (X + Y).

21. For the hypothetical reaction :

$$A \rightleftharpoons B$$
; $K_f = 10^3$, $K_b = 10^2$

Use T = 27°C, R = 8.3 J K^{-1} mol⁻¹; If the value of ΔG° for the above reaction is x kJ, find the value of 2x (round off to nearest integer)

- **22.** Number of milimoles of $Ca(OH)_2$ in 100 mL solution, given pH = 12.
- 23. An element $\frac{239}{92}$ X decays as:

$$_{92}^{239}X \longrightarrow _{z}^{231}Y + 2\alpha + 1\beta$$

Then find the value of Z in the above reaction.

24. How many elements can liberate H_2 from dilute acids?

- **25.** How many of the following compounds are odd electrons species NO₂, NO₂⁺, ICl₄⁻, NO, BrF₃
- **26.** Consider the following reaction.

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g)$$

If $K_p = 2 \times 10^{-3}$ at 2300 K and initial pressure if $H_2O(g)$ is 1 atm, then degree of dissociation of above reaction will be $x \times 10^{-2}$, the value of x is:

MATHEMATICS

- 1. If the product of real part of z_1z_2 is 0 i.e. $Re(z_1z_2) = 0$ & $Re(z_1 + z_2) = 0$ Then Im (z_1) & Im $(z_2) = 0$
 - (1) > 0, > 0
 - (2) < 0, < 0
 - (3) > 0, < 0
 - (4) 0, 0
- 2. If f(x) is a differentiable function such that f(x + y) = f(x) + f(y) 1 and f'(0) = 2 then |f(-2)| is
- **3.** Five digit number from 1, 2, 3, 5, 7 with repetition are formed then number 35337 lies at which number when counting is from backwards
- 4. $x^2 dy y (1 + x)dx = 0$, y(1) = e, $\lim_{x \to 0^+} y(x)$ is
- 5. $f(x) = \frac{\log_{(x-1)}(x-2)}{e^{2\log_e x}(x^2-2x+3)}$ find domain of f(x)
- 6. $f(x) = max(x^2, 1 + [x]) then \int_0^2 f(x) dx =$
- 7. If $A^2 = A + \alpha I$ and $A^4 = 27A + \beta I$ then α , β is
- 8. If A_1 is the area bounded by $2x \le y \le \sqrt{4(x-1)^2}$ in I^{st} Quadrant & A_2 is the area bounded by $y = min(2x, \sqrt{4(x-1)^2})$ and x axis. Find $\frac{A_1}{A_2}$
- **9.** There are 7 rotten apples and 4 good apples placed in a basket, apples are drawn one by one without replacement till all good apples are drown find the probability that, in all 5 five apples are drawn
- 10. If a_1 , a_2 , a_3 , are positive numbers in G.P. such that $a_5 + a_7 = 12$ and a_4 $a_6 = 9$ find the value of $a_7 + a_9$
- 11. Consider a function $f(x) = \frac{2x^2 + x + 1}{x^2 + 1}$ then which of the following is correct
 - (1) f(x) is one to one $\forall x \in (0, 2)$
 - (2) f(x) is many to one $\forall x \in (0, 2)$
 - (3) f(x) is one to one $\forall x \in (0, \infty)$
 - (4) f(x) is one to one $\forall x \in (1, \infty)$

JEE(Main)-2023 | 29 January 2023 (Shift-1 Morning) | Question Paper | Memory Based

- A function satisfy the relation f(x + y) = f(x) + f(y), $\forall x, y \in W$ and $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12}$, f(1) = 1/5 then, find m
- 13. In the expansion of $(1 + 2x)^n$, ratio of 3 consecutive coefficient is 2 : 5 : 8. find the middle term of $(1 + 2x)^n$.
- 14. Two tangent are drawn at A(4, -11) and B(8, -5) to the circle $x^2 + y^2 3x + 10y 15 = 0$. These tangent meet at P. Radius of circle centered at P and touching AB, is $\frac{\lambda\sqrt{13}}{3}$ find λ

- **15.** Consider $\left(\alpha x \frac{1}{\beta x}\right)^n$ if coefficient of x^9 is equal to coefficient of x^{-9} find $(\alpha\beta)^2$
- **16.** Find the area common to following region $x^2 + y^2 \le 21$, $x \ge 1$ and $y^2 \le 4x$.
- 17. In a football club there are 15 players, each player has a T-shirt of their own name. Find the number of ways such that atleast thirteen players pick the correct T-shirt of their own name.
- **18.** Consider three coplanar vectors $\vec{a} = 3\hat{i} 4\hat{j} + \lambda \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} \hat{k}$, $\vec{c} = \hat{i} + 3\hat{j} 4\hat{k}$ then 9λ is –