

NARAYANA GRABS THE LION'S SHARE IN JEE-ADV.2022

RANKS in OPEN CATEGORY ONLY FROM NARAYANA
IN TOP 10 AIR

JEE MAIN (JAN) 2023 (29-01-2023-Session-1)

Memory Based Duestion Paper **MATHEMATICS**

Toll Free: 1800 102 3344

JEE-Main-29-01-2023 (Memory Based) [Morning Shift]

Mathematics

Question: If
$$f(x+y) = f(x) + f(y)$$
, $f(1) = \frac{1}{5}$ and $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12}$, then find m .

Answer: 10.00 Solution:

$$f(x+y) = f(x) + f(y)$$

$$f(x) = ax$$

$$x=1 \Rightarrow f(1)=a=\frac{1}{5}$$

$$f(x) = \frac{1}{5}x$$

$$\frac{1}{5} \sum_{n \pmod{1}} \frac{n}{n(m+1)(n+2)} = \frac{1}{12}$$

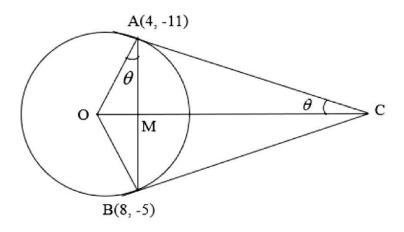
$$\frac{1}{5} \left[\sum_{n=1}^{m} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right] = \frac{1}{12}$$

$$\frac{1}{2} - \frac{1}{m+2} = \frac{5}{12}$$

$$\Rightarrow m = 10$$

Question: Tangent at A(4,-11) and B(8,-5) to $x^2 + y^2 - 3x + 10y - 15 = 0$ intersect at C. Find the radius of circle touching AB and having centre at C.

Answer: $\frac{2\sqrt{13}}{3}$



Radius
$$r = \sqrt{\frac{9}{4} + 25 + 15} = \frac{13}{2}$$

$$AM = \frac{1}{2}AB$$
$$= \frac{1}{2}\sqrt{16+36}$$
$$= \sqrt{13}$$

$$\frac{CM}{AM} = \cot \theta$$

$$CM = \sqrt{13} \cot \theta$$

$$\Delta OAM \Rightarrow OM = \sqrt{\left(\frac{13}{2}\right)^2 - 13} = \sqrt{\frac{169 - 52}{4}} = \frac{\sqrt{117}}{2}$$

$$CM = \sqrt{13} \cot \theta$$

$$CM = \sqrt{13} \times \frac{\sqrt{13}}{\sqrt{117}} \times 2 = \sqrt{13} \times \frac{\sqrt{13}}{\sqrt{13} \times 3} \times 2 = \frac{2\sqrt{13}}{3}$$

Question: Five digit numbers are formed using 1, 2, 3, 5, 7 (repetition is allowed), and these numbers are arranged in descending order. Find the rank of 35337.

Answer: 1436.00

Solution:

Five digit number using 35337

$$\frac{7}{5} \quad \frac{5}{5} \quad \frac{5}{5} \quad \frac{5}{5} = 5^4$$

$$\frac{3}{5} \quad \frac{7}{5} \quad \frac{5}{5} \quad \frac{5}{5} = 5^3$$

3 5 7 5 5 =
$$5^2$$

$$3 \quad 5 \quad 5 \quad 5 \quad 5 = 5^2$$

$$3 \ 5 \ 3 \ 5 \ 5 = 5$$

$$\frac{3}{5} \frac{5}{3} \frac{3}{3} \frac{7}{7} = 1$$

So total =
$$5^4 + 5^4 + 5^3 + 5^3 + 5^2 + 5^2 + 5 + 5 + 1 = 1436$$

Question: A function f(x) is such that f(x+y) = f(x) + f(y) - 1, $\forall x, y \in R$. If f'(0) = 2

, then
$$|f(-2)| = ?$$

Answer: 3.00

Solution:

$$f(x+y) = f(x) + f(y) - 1$$

$$x = y = 0 \Rightarrow f(0) = f(0) + f(0) - 1 \Rightarrow f(0) = 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x) + f(h) - 1 - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{f(h)-1}{h}$$

$$= f'(0) = 2$$

$$f'(x)=2$$

$$f(x) = 2x + c$$

$$1 = 0 + c \Rightarrow c = 1$$

$$\therefore f(x) = 2x + 1$$

$$|f(-2)| = |-3| = 3$$

Question: If the 3 consecutive coefficients in the expansion of $(1+2x)^n$ are in the ratio

2:5:8 then the middle term is

Answer: ${}^{8}C_{4}(2x)^{4}$

$${}^{n}C_{r-1}(2)^{r-1}:{}^{n}C_{r}2^{r}:{}^{n}C_{r+1}2^{r+1}::2:5:8$$

$$\frac{{}^{n}C_{r}2^{r}}{{}^{n}C_{r+1}2^{r-1}} = \frac{5}{2}$$

$$2\left(\frac{n-r+1}{r}\right) = \frac{5}{2}$$

Similarly,
$$2\left(\frac{n-r}{r+1}\right) = \frac{8}{5}$$

Comparing n=8

 $Mid term = {}^{8}C_{4}(2x)^{4}$

Question: If $\frac{dy}{y} = \left(\frac{x+1}{x^2}\right) dx$; y(1) = e, then $\lim_{x \to 0^+} f(x) = ?$

Answer: 0.00

Solution:

$$\int \frac{dy}{y} = \int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx$$

$$\ln|y| = \ln|x| - \frac{1}{x} + c$$

Given (1, e)

$$1 = 0 - 1 + c$$

$$c = 2$$

.. We have

$$\ln |y| = \ln |x| - \frac{1}{x} + 2$$

$$y = e^{\ln|x| - \frac{1}{x} + 2}$$

As we take $\lim_{x\to 0^+}$

$$y = e^{-\infty} = 0$$

Question: α, β are positive numbers. A is a 3×3 matrix such that $A^2 = 3A + \alpha I$ and $A^4 = 21A + \beta I$. Find α, β .

Answer: -1, -8

Given,
$$A^2 = 3A + \alpha I$$
 and $A^4 = 21A + \beta I$

$$A^4 = A^2 \cdot A^2$$

$$A^4 = (3A + \alpha I)(3A + \alpha I) = 21A + \beta I$$

$$9A^2 + 3A\alpha I + 3\alpha AI + \alpha^2 I = 21A + \beta I$$

$$9A^2 + 6\alpha A + \alpha^2 I = 21A + \beta I$$

Again using $A^2 = 3A + \alpha I$ in LHS

$$\Rightarrow$$
 9(3A+ αI)+6 αA + $\alpha^2 I$ = 21A+ βI

$$\Rightarrow$$
 $(27+6\alpha)A+(9\alpha+\alpha^2)I=21A+\beta I$

$$\therefore 27 + 6\alpha = 21 \& 9\alpha + \alpha^2 = \beta$$

$$6\alpha = -6$$

$$6\alpha = -6 \qquad \qquad \& \qquad 1 - 9 = \beta$$

$$\alpha = -1$$

$$\alpha = -1$$
 & $\beta = -8$

Question: Consider a function $f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$, then which of the following is correct?

Options:

- (a) f(x) is one-one for $x \in (0, \infty)$
- (b) f(x) is one-one for $x \in (1, \infty)$
- (c) f(x) is one-one for $x \in (2, \infty)$ and many-one for $x \in (-\infty, 0]$

(d)

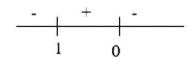
Answer: (c)

Solution:

$$f(x) = \frac{(x^2+1)+2x}{x^2+1} = 1 + \frac{2x}{x^2+1}$$

$$f'(x) = \frac{(x^2+1)^2 - 2x(2x)}{(x^2+1)^2}$$

$$f'(x) = \frac{2 - 2x^2}{\left(x^2 + 1\right)^2}$$



Question: If real part of the product of z_1 & z_2 is zero i.e., $Re(z_1z_2) = 0$ & $Re(z_1+z_2) = 0$ then $Im(z_1)$ & $Im(z_2)$ is

Answer: $Im(z_1)$ & $Im(z_2)$ are of opposite signs

Solution:

Given product of $z_1 \& z_2$ is zero

i.e.,
$$Re(z_1 \cdot z_2) = 0$$

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2)$$
$$= (x_1 x_2 - y_1 y_2)$$

$$\text{Re}(z_1z_2) = x_1x_2 - y_1y_2 = 0$$

$$\Rightarrow x_1 x_2 = y_1 y_2$$
(i)

$$\operatorname{Re}(z_1 + z_2) = (x_1 + iy_1) + (x_2 + iy_2)$$

$$\operatorname{Re}(z_1 + z_2) = (x_1 + x_2) = 0$$

$$x_2 = -x_1$$

Substitute x_2 in (i)

$$-x_1 \cdot x_1 = y_1 y_2$$

$$\Rightarrow y_1 y_2 = -x_1^2 = -ve$$

 $\mathrm{Im} \big(z_{\scriptscriptstyle \rm I}\big)$ & $\mathrm{Im} \big(z_{\scriptscriptstyle \rm I}\big)$ is one positive and one negative.

Question: If $a_1, a_2, a_3, ..., a_n$ is an increasing GP such that $a_4 \times a_6 = 9$ and $a_5 + a_7 = 12$. Find

$$a_7 + a_9 = ?$$

Answer: 36.00

Solution:

Given $a_5 + a_7 = 12$ and $a_4 \times a_6 = 9$

$$a_5 + a_7 = 12$$

$$ar_4 + ar^6 = 12$$

$$ar^4(1+r^2)=12$$
(1)

$$a_4 \cdot a_6 = 9$$

$$ar^3 \cdot ar^5 = 9$$

$$a^2 \cdot r^8 = 9$$

$$a \cdot r^4 = 3$$

Substitute in (1)

$$3(1+r^2)=12$$

$$r^2 = 3$$

$$r = \pm \sqrt{3}$$

$$a = \frac{1}{3}$$

Now $a_7 + a_9$

$$\Rightarrow ar^6 + ar^8 = ar^4 \left(r^2 + r^4 \right)$$

$$=3\times r^2\left(1+r^2\right)$$

$$=3\times3(1+3)$$

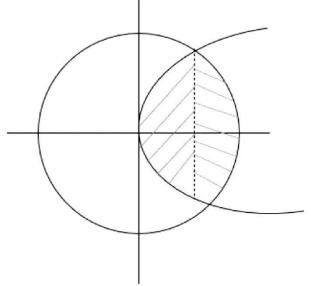
$$=9\times4$$

$$= 36$$

Question: Δ is the area between $x^2 + y^2 \le 21$, $y^2 \le 4x$ and $x \ge 1$. Find

$$\frac{1}{2}\!\!\left(\Delta\!-\!21sin^{-\!1}\!\left(\frac{2}{\sqrt{7}}\right)\!\right)\!.$$

Answer: $\sqrt{3} - \frac{4}{3}$



$$x^2 + y^2 = 21$$

$$y^2 = 4x$$

$$x = 3$$

$$2 \times \int_{1}^{3} 2\sqrt{x} dx = 4 \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{1}^{3} = \frac{8}{3} \left(3\sqrt{3} - 1 \right)$$

$$2 \int_{3}^{\sqrt{21}} \sqrt{21 - x^{2}} = 2 \left[\frac{1}{2} x \sqrt{21 - x^{2}} + \frac{1}{2} \times 21 \sin^{-1} \left(\frac{x}{\sqrt{21}} \right) \right]_{3}^{21}$$

$$= 0 + 21 \frac{\pi}{2} 3 \times 2\sqrt{3} - 21 \sin^{-1} \left(\frac{\sqrt{3}}{\sqrt{7}} \right)$$

$$= 21 \left(\cos^{-1} \sqrt{\frac{3}{7}} \right) - 6\sqrt{3}$$

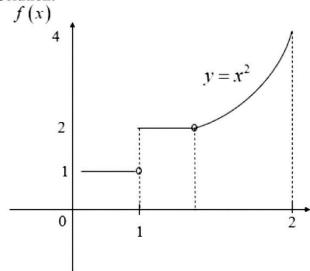
$$= 21 \sin^{-1} \frac{2}{\sqrt{7}} - 6\sqrt{3}$$

$$\Delta = \frac{8}{3} \left(3\sqrt{3} - 1 \right) + 21 \sin^{-1} \frac{2}{\sqrt{7}} - 6\sqrt{3}$$

$$\Delta = \sqrt{3} - \frac{4}{3}$$

Question: $\int_{0}^{2} \max \left\{ x^{2}, 1 + [x] \right\} dx$ is equal to

Answer: $\frac{5+4\sqrt{2}}{3}$



$$x^2 = 2 \Rightarrow x = \sqrt{2}$$

$$(1\times1)+2(\sqrt{2}-1)+\int_{\sqrt{2}}^{2}x^{2}dx$$

$$=\frac{5+4\sqrt{2}}{3}$$

Question: 4 apples are picked one by one without replacing from a bag containing 3 rotten and 7 normal apples. Let x be no. of rotten apples. Find $\overline{x} + v_x$.

Answer: $\frac{6}{5}, \frac{14}{25}$

Solution:

X	0	1	2	3
P(X)	$\frac{{}^{7}C_{4}}{{}^{10}C_{4}}$	$\frac{{}^{3}C_{1}^{7}C_{4}}{{}^{10}C_{4}}$	$\frac{{}^{3}C_{2}^{7}C_{2}}{{}^{10}C_{4}}$	$\frac{{}^{7}C_{1}}{{}^{10}C_{4}}$

$$\overline{x} = \sum_{i} x_i P_i$$

$$\overline{x} = \frac{6}{5}$$

Variance =
$$V = \sum x_i^2 P_i - (\overline{x})^2$$

$$V = \frac{14}{25}$$

Question: Domain of
$$f(x) = \frac{\log_x(x-1)}{\log_{x-1}(x-4)}$$
 is:

Answer:
$$x \in (4, \infty) \setminus \{5\}$$

Solution:

For domain

$$x > 0$$
, $x - 1 > 0$, $x \ne 1$

&
$$x-1>0$$
, $x-1\neq 1$, $x-4>0$

$$\log_{x-1}(x-4) \neq 0$$

$$\Rightarrow x-4 \neq 1 \Rightarrow x \neq 5$$

$$\therefore x \in (4, \infty) - \{5\}$$

Question: If the coefficient of x^5 in the expansion of $\left(ax^3 + \frac{1}{\beta x}\right)^{11}$ and $\left(\alpha x + \frac{1}{\beta x^3}\right)^{11}$ are

equal, then the value of $(\alpha + \beta)^2$ is

Answer: 1.00 Solution:

General term of $\left(\alpha x^3 + \frac{1}{\beta x}\right)^{11}$ is

$$T_{k+1} = {}^{11}C_k \left(\alpha x^3\right)^{11-k} \left(\frac{1}{\beta x}\right)^k$$

$$={}^{11}C_{k}\alpha^{11-k}\beta^{-k}x^{33-4k}$$

Now for coefficient of x^9 , we have

$$33 - 4k = 9$$

$$\Rightarrow 4k = 24$$

$$\Rightarrow k = 6$$

Similarly, general term of $\left(\alpha x + \frac{1}{\beta x^3}\right)^{11}$ is

$$T_{k+1} = {}^{11}C_k \left(\alpha x\right)^{11-k} \left(\frac{1}{\beta x^3}\right)^k$$
$$= {}^{11}C_k \alpha^{11-k} \beta^{-k} x^{11-4k}$$

For coefficient of x^{-9} , we have

$$11 - 4k = 9$$

$$\Rightarrow 4k = 20$$

$$\Rightarrow k = 5$$

$$^{11}C_6 \frac{\alpha^5}{\beta^6} = {}^{11}C_5.\frac{\alpha^6}{\beta^5}$$

$$\Rightarrow \alpha\beta = \frac{{}^{11}C_6}{{}^{11}C_5} = 1$$

$$\Rightarrow (\alpha\beta)^2 = 1$$

Question: Consider 3 coplanar vector $\vec{a} = 3\hat{i} - 4\hat{j} + \lambda \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + 3\hat{j} - 4\hat{k}$.

Then 9λ is __

Answer: 87.00

$$\begin{vmatrix} 3 & -4 & \lambda \\ 4 & 3 & -1 \\ 1 & 3 & -4 \end{vmatrix} = 0$$
$$-27 - 60 + 9\lambda = 0$$
$$9\lambda = 87$$