

JEE MAIN 2023

JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

UESTIONS &

Reproduced from Memory Retention

() 9:00 AM to 12:00 Noon

🛗 30 JANUARY, 2023

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - CHEMISTRY

RESULT JEE ADVANCED 2022

NORTH INDIA & IIT DELHI ZONE

Accomplish your **DREAM** with Reliable **FACULTY TEAM**

TARGET JEE Adv. 2024

Not satisfied with your **JEE Performance ?**

Join VISHESH For Class XII Passed / Repeater Students

One Year Classroom Course for Complete JEE (Main+Adv) Syllabus

STARTING FROM : **15 & 29 MARCH'23**

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

1.	Which of the following is water soluble?								
	(a) BeSO ₄	(b) MgSO ₄	(c) CaSO ₄	(d) SrSO ₄					
	(e) BaSO ₄								
	(1) (a) only	(2) (a) & (b)	(3) (c) only	(4) (c) & (d)					
Ans.	(2)								
Sol.	BeSO ₄ & MgSO ₄ are water soluble.								
2.	During the qualita	tive analysis of SO_3^{2-} using	ng dil. H ₂ SO ₄ , SO ₂ gas	s is evolved which turns $K_2Cr_2O_7$					
	solution.								
	(1) Green	(2) Black	(3) Blue	(4) Red					
Ans.	(1)								
Sol.	$\mathrm{SO}_{3}^{2-} \xrightarrow{\mathrm{dil}}_{\mathrm{H}_{2}\mathrm{SO}_{4}} \rightarrow \mathrm{SO}_{2} \xrightarrow{\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7}}_{\mathrm{H}^{+}} \xrightarrow{\mathrm{Cr}^{3+}}_{\mathrm{(green)}} + \mathrm{SO}_{4}^{2-}$								
3.	Match the following								
	Atomic number								
	(a) 52	(p) s block		kelle					
	(b) 37	(q) p block		20 ¹					
	(c) 65	(r) d block	6 0						
	(d) 78	(s) f block	4.100						
	(1) $a - (q), b - (p), c - (r), d - (s)$ (2) $a - (q), b - (p), c - (s), d - (r)$								
	(3) $a - (s), b - (r), c - (p), d - (q)$ (4) $a - (r), b - (p), c - (q), d - (s)$								
Ans.	(2)	1							
Sol.	$52 \longrightarrow p-block$								
	$37 \longrightarrow s-block$								
	$65 \longrightarrow f$ -block								
	$78 \longrightarrow d$ -block								

8.	Which of the following reaction can be used to prepared LiAlH ₄									
	(1) $LiCl + AlCl_3$	(2) $LiH + Al(OH)_3$	(3) $LiH + AlCl_3$	(4) None of these						
Ans.	(3)									
Sol.	$8LiH + 2AlCl_3 \rightarrow 2LiAlH_4 + 6LiCl$									
9.	Permanganate reacts in acidic medium to produce Mn ²⁺ . Calculate number of electrons used.									
Ans.	5									
Sol.	$5e^{-} + 8H^{+} + MnO_{4}^{-} \longrightarrow Mn^{+2} + 4H_2O$									
10.	Speed of e ⁻ in 7 th orbit is 3.6×10^6 m/s then find speed in 3 rd orbit									
	(1) 3.6×10^6 m/s	(2) 8.4×10^6 m/s	(3) 7.5×10^6 m/s	(4) 1.8×10^6 m/s						
Ans.	(2)									
Sol.	$V = 2.18 \times 10^6 \times \frac{Z}{n} \text{ m/s}$									
	$3.6 \times 10^6 = 2.18 \times 10^6$	$^{6} \times \frac{Z}{7}$,, (1)	1)							
	$V = 2.18 \times 10^6 \times \frac{Z}{3}$									
	$=\frac{3.6\times10^6}{\mathrm{V}}=\frac{\mathrm{Z}}{7}\times\frac{3}{\mathrm{Z}}$									
	$=\frac{3.6\times10^6}{\mathrm{V}}=\frac{1\times3}{7}$			e ation						
	$V = \frac{3.6 \times 10^6 \times 7}{3}$ $= 8.4 \times 10^6 \text{ m/s}$			otert						
	- 0.4 ^ 10 111/5									

If rate constant K is 2.011 min⁻¹ for radioactive decay reaction. Calculate time period for changing 11. Unleash mass of radioactive element from 7 gram to 2 gram.

 $\mathcal{C}_{\mathcal{D}}$

 $[\log_{10}7 = 0.84, \log_{10}2 = 0.30]$

0.618 min. Ans. $t = \frac{1}{K} \ln \left[\frac{7}{2} \right]$ Sol. $=\frac{1}{2.011}\ln 3.5$ $=\frac{2.303}{2.011}\log_{10}3.5$ 2 303

$$=\frac{2.303}{2.011}[0.84 - 0.30]$$
$$=\frac{2.303}{2.011} \times 0.54 = 0.618$$

Molarity of CO₂ in soft drink is 0.2M. The volume of soft drink is 300 ml. Volume of CO₂ (in L) 12.

at STP present in soft drink is

- 1.362 L Ans.
- $n_{CO_2} = M \times V = \frac{0.2 \times 300}{1000} = \frac{6}{100}$ Sol.

$$V_{CO_2}$$
 at STP = $\frac{6}{100} \times 22.7$
= 1.362 L

- Find mole of a non-volatile solute dissolved in 30g water. The solution have boiling point 13. $373.52K \& K_{b (water)} = 0.52 K Kg/mol.$
- 0.03 mole Ans.
- (i = 1) Considering solute to be non-electrolyte Sol.

0.03 mole
(i = 1) Considering solute to be non-electrolyte

$$\Delta T_b = K_b.m$$

$$\Delta T_b = 373.52 - 373 = 0.52 \text{ K}$$

$$0.52 = 0.52 \times m$$

$$\Rightarrow m = 1$$

$$m = \frac{n_{solute}}{W_{solvent(g)}} \times 1000$$

 $n_{solute} = 0.03 \text{ mol}$

14. Observe the following reactions

$$B \xleftarrow[conc.H_2SO_4]{conc.H_2SO_4} \longrightarrow A$$

A and B are respectively.

Ans. (2)

15.Which of the following acts as antacid?
(1) Brompheniramine
(3) Ranitidine(2) Terfenadine
(4) Iproniazid

Ans. (3)

16.Caprolactum when heated at high temperature gives
(1) Nylon-6,6(2) Nylon-6(3) Teflon(4) Buna-S

Ans. (2)

17.	Matcl	611. 4			
	Co	olumn –	I		Column — II
	(p) C	$H_3 - Cl +$	NaI $\xrightarrow{\text{Acetone}} C$	CH ₃ –I	(i) Swart's reaction
	(q) Pł	n–Cl –d	$\xrightarrow[ry ether]{Na} Ph-Ph$	(ii) Finkelstein reaction	
	(r) C	H ₃ Cl	(iii) Fittig reaction		
	(s) $Ph - \stackrel{\oplus}{N} \equiv \stackrel{\Theta}{NCl} \xrightarrow{Cu_2Cl_2 + HCl} Ph - Cl$		(iv) Sandmeyer's reaction		
		р	q	r	S
	(1)	iii	i	ii	iv
	(2)	ii	iii	i	iv
	(3)	iv	iii	ii	i
	(4)	i	ii	iii	iv
Ans.	(2)				

TE otential

18. Which of the following is correct acidic strength order for the marked hydrogen in the given

compound ?

(c) H
$$\downarrow$$
 COOH (a)
(d) \downarrow H (b)
(1) $a > d > b > c$ (2) $a > b > d > c$ (3) $c > d > b > a$ (4) $a > c > b > d$
(1)

- **Ans.** (1)
- **19.** Consider the following reactions.

$$NO_{2} \xrightarrow{UV} A + B$$

$$A + O_{2} \longrightarrow C$$

$$B + C \longrightarrow NO_{2} + O_{2}$$
Find A,B & C respectively
(1) NO, O_{3}, O
(2) O, N
(3) NO, O, O_{3}
(4) O_{3}, O
(4) O_{3}, O
(4) O_{3}, O
(5) O_{3}
(5) O

) O, NO, O₃) O₃, O, NO

```
Ans. (2)
```

20. Which of the following compound gives positive test with Fehling solution and blood red colour when fused with sodium metal followed by neutral FeCl₃ solution?

- **Ans.** (1)
- **Sol.** –CHO group gives positive Tollen's test where as,

 $Na + S + C + N \xrightarrow{\Delta} NaSCN \xrightarrow{FeCl_3} Fe(SCN)_3$ Blood red colour

21. Which of the following reaction will yield benzyl isocyanide as a major product?

- Mill Mark correct answer on the basis of following two statements. 22. Statement-I: Ketoses give seliwanoff's test faster than aldose. Statement-II : When heated, fructose (ketose sugar) is more rapidly dehydrated than glucose rat NShing (aldose sugar).
 - (1) Both statements are true.
 - (2) Both statements are false.
 - (3) (I) is true (II) is false.
 - (4) (II) is true (I) is false.
- Ans. (1)

Compound (A)
$$(C_{10}H_{12}O_2)$$

NaOI →Positive test

Positive test

Find the number of π bonds present in compound A

FeCl

4 Ans.

23.

Sol.
$$OH$$

 H
 $CH_2-CH_2-C-CH_3$ $DU = 5$; no. of π bonds = 4

Since compound gives FeCl₃ test so phenolic group is present. Compound gives NaOI test (Iodoform test), so methyl ketone group should present.

ADMISSIONS OPEN (Session 2023-24)

JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Test on Every

Scholarship up to 90%

MAYANK MOTWANI Classroom

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota g reliablekota c reliableinstitutekota @ reliable_kota in reliablekota