JEE MAIN 2023

JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - CHEMISTRY

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance?

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM :
15 \& 29 MARCH'23

Unleashing Potential

CHEMISTRY

1. Which of the following is water soluble?
(a) BeSO_{4}
(b) MgSO_{4}
(c) CaSO_{4}
(d) SrSO_{4}
(e) BaSO_{4}
(1) (a) only
(2) (a) \& (b)
(3) (c) only
(4) (c) \& (d)

Ans. (2)
Sol. $\mathrm{BeSO}_{4} \& \mathrm{MgSO}_{4}$ are water soluble.
2. During the qualitative analysis of SO_{3}^{2-} using dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
(1) Green
(2) Black
(3) Blue
(4) Red

Ans. (1)
Sol. $\quad \mathrm{SO}_{3}^{2-} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { dil }} \mathrm{SO}_{2} \xrightarrow[\mathrm{H}^{+}]{\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{7}} \xrightarrow[\text { (green) }]{\mathrm{Cr}^{3+}}+\mathrm{SO}_{4}^{2-}$
3. Match the following

Atomic number			
(a)	52	(p)	s block
(b)	37	(q)	p block
(c)	65	(r)	d block
(d)	78	(s)	f block

(1) $a-(q), b-(p), c-(r), d-(s)$
(2) $\mathrm{a}-(\mathrm{q}), \mathrm{b}-\mathrm{p}), \mathrm{c}-(\mathrm{s}), \mathrm{d}-(\mathrm{r})$
(3) $\mathrm{a}-\mathrm{s}), \mathrm{b}-(\mathrm{r}), \mathrm{c}-$ (p), $\mathrm{d}-\mathrm{q})$
(4) $a-(r), b-(p), c-(q), d-(s)$

Ans. (2)
Sol. $\quad 52 \longrightarrow$ p-block
$37 \longrightarrow$ s-block
$65 \longrightarrow$ f-block
$78 \longrightarrow$ d-block

Unleashing Potential
4. If volume of ideal gas is increased isothermally than its internal energy
(1) Increased
(2) Remain constant
(3) Decreased
(4) Can be increased or decreased

Ans. (2)
Sol. Isothermal process
$\Delta \mathrm{T}=0$
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=0$
5. Which of the following compounds acts as an inhibitor for cancer growth.
(1) Cisplatin
(2) EDTA
(3) Cobalt
(4) Ethane 1,2-diamine

Ans. (1)
Sol. Cisplatin $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
6. Order of strength of ligands $\mathrm{S}^{-2}, \mathrm{CO}$, en, $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}, \mathrm{NH}_{3}$
(1) $\mathrm{S}^{-2}<\mathrm{C}_{2} \mathrm{O}_{4}^{-2}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
(2) $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}<\mathrm{S}^{-2}<\mathrm{NH}_{3}<\mathrm{CO}<$ en
(3) $\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{-2}<\mathrm{S}^{-2}<\mathrm{CO}<$ en
(4) $\mathrm{CO}<$ en $<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{-2}<\mathrm{S}^{-2}$

Ans. (1)
Sol. Order of strength of ligand $\mathrm{S}^{-2}<\mathrm{C}_{2} \mathrm{O}_{4}^{-2}<\mathrm{NH}_{3}<$ en $<\mathrm{CO}$
7. Number of lone pairs in central atom of following species $\mathrm{IF}_{7}, \mathrm{ICl}_{4}^{-}, \mathrm{XeF}_{2} \& \mathrm{XeO}_{3}$
(1) $0,2,3,1$
(2) $3,2,1,0$
(3) $1,2,0,3$
(4) $0,2,3,1$

Ans. (1)
Sol. Species
No. of lone pair
IF_{7} 0
ICl_{4}^{-} 2
XeF_{2} 3
$\mathrm{XeO}_{3} \quad 1$

Unleashing Potential
8. Which of the following reaction can be used to prepared LiAlH_{4}
(1) $\mathrm{LiCl}+\mathrm{AlCl}_{3}$
(2) $\mathrm{LiH}+\mathrm{Al}(\mathrm{OH})_{3}$
(3) $\mathrm{LiH}+\mathrm{AlCl}_{3}$
(4) None of these

Ans. (3)
Sol. $8 \mathrm{LiH}+2 \mathrm{AlCl}_{3} \rightarrow 2 \mathrm{LiAlH}_{4}+6 \mathrm{LiCl}$
9. Permanganate reacts in acidic medium to produce Mn^{2+}. Calculate number of electrons used.

Ans. 5
Sol. $5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
10. Speed of e^{-}in $7^{\text {th }}$ orbit is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then find speed in $3^{\text {rd }}$ orbit
(1) $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(2) $8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(3) $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(4) $1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $V=2.18 \times 10^{6} \times \frac{Z}{n} \mathrm{~m} / \mathrm{s}$
$3.6 \times 10^{6}=2.18 \times 10^{6} \times \frac{Z}{7}$
$V=2.18 \times 10^{6} \times \frac{Z}{3}$
$=\frac{3.6 \times 10^{6}}{\mathrm{~V}}=\frac{\mathrm{Z}}{7} \times \frac{3}{\mathrm{Z}}$
$=\frac{3.6 \times 10^{6}}{\mathrm{~V}}=\frac{1 \times 3}{7}$
$\mathrm{V}=\frac{3.6 \times 10^{6} \times 7}{3}$
$=8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
11. If rate constant K is $2.011 \mathrm{~min}^{-1}$ for radioactive decay reaction. Calculate time period for changing mass of radioactive element from 7 gram to 2 gram.
$\left[\log _{10} 7=0.84, \log _{10} 2=0.30\right]$
Ans. 0.618 min .
Sol. $\quad \mathrm{t}=\frac{1}{\mathrm{~K}} \ln \left[\frac{7}{2}\right]$
$=\frac{1}{2.011} \ln 3.5$
$=\frac{2.303}{2.011} \log _{10} 3.5$
$=\frac{2.303}{2.011}[0.84-0.30]$
$=\frac{2.303}{2.011} \times 0.54=0.618$

Unleashing Potential
12. Molarity of CO_{2} in soft drink is 0.2 M . The volume of soft drink is 300 ml . Volume of CO_{2} (in L) at STP present in soft drink is

Ans. $\quad 1.362$ L
Sol. $\quad \mathrm{n}_{\mathrm{CO}_{2}}=\mathrm{M} \times \mathrm{V}=\frac{0.2 \times 300}{1000}=\frac{6}{100}$
$\mathrm{V}_{\mathrm{CO}_{2}}$ at $\mathrm{STP}=\frac{6}{100} \times 22.7$
$=1.362 \mathrm{~L}$
13. Find mole of a non-volatile solute dissolved in 30 g water. The solution have boiling point 373.52 K \& $\mathrm{K}_{\mathrm{b} \text { (water) }}=0.52 \mathrm{~K} \mathrm{Kg} / \mathrm{mol}$.

Ans. $\quad 0.03$ mole
Sol. (i=1) Considering solute to be non-electrolyte

Unleashing Potential
14. Observe the following reactions

A and B are respectively.
(1)

(2)

(3)

(4)

Ans. (2)
15. Which of the following acts as antacid?
(1) Brompheniramine
(2) Terfenadine
(3) Ranitidine
(4) Iproniazid

Ans. (3)
16. Caprolactum when heated at high temperature gives
(1) Nylon-6,6
(2) Nylon-6
(3) Teflon
(4) Buna-S

Ans. (2)
17. Match the following

Column-I

(p) $\mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{NaI} \xrightarrow{\text { Acetone }} \mathrm{CH}_{3}-\mathrm{I}$
(q) $\mathrm{Ph}-\mathrm{Cl} \xrightarrow[\text { dry ether }]{\mathrm{Na}} \mathrm{Ph}-\mathrm{Ph}$
(r) $\mathrm{CH}_{3}-\mathrm{Cl} \xrightarrow[\text { DMF }]{\mathrm{AgF}} \mathrm{CH}_{3}-\mathrm{F}$
(s) $\mathrm{Ph}-\stackrel{\oplus}{\mathrm{N}} \equiv \stackrel{\ominus}{\mathrm{N}} \stackrel{\ominus}{\mathrm{Cl}} \xrightarrow{\mathrm{Cu}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}} \mathrm{Ph}-\mathrm{Cl}$

	p	q	r	s
(1)	iii	i	ii	iv
(2)	ii	iii	i	iv
(3)	iv	iii	ii	i
(4)	i	ii	iii	iv

Ans. (2)

- (2)

Column-II

(i) Swart's reaction
(ii) Finkelstein reaction
(iii) Fittig reaction
(iv) Sandmeyer's reaction
iv

Unleashing Potential
18. Which of the following is correct acidic strength order for the marked hydrogen in the given compound?

(1) $a>d>b>c$
(2) $a>b>d>c$
(3) $c>d>b>a$
(4) $a>c>b>d$

Ans. (1)
19. Consider the following reactions.

$$
\mathrm{NO}_{2} \xrightarrow{\mathrm{UV}} \mathrm{~A}+\mathrm{B}
$$

$\mathrm{A}+\mathrm{O}_{2} \longrightarrow \mathrm{C}$
$\mathrm{B}+\mathrm{C} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
Find $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ respectively
(1) $\mathrm{NO}, \mathrm{O}_{3}, \mathrm{O}$
(2) $\mathrm{O}, \mathrm{NO}, \mathrm{O}_{3}$
(3) $\mathrm{NO}, \mathrm{O}, \mathrm{O}_{3}$
(4) $\mathrm{O}_{3}, \mathrm{O}, \mathrm{NO}$

Ans. (2)
20. Which of the following compound gives positive test with Fehling solution and blood red colour when fused with sodium metal followed by neutral FeCl_{3}, solution?
(1)

(2)

(3)

(4)

Ans. (1)
Sol. - CHO group gives positive Tollen's test where as,

Unleashing Potential
21. Which of the following reaction will yield benzyl isocyanide as a major product?
(1)

(2)

\qquad
(3)

(4)
 $+\mathrm{LiAlH}_{4} \longrightarrow$

Ans. (2)
22. Mark correct answer on the basis of following two statements.

Statement-I : Ketoses give seliwanoff's test faster than aldose
Statement-II : When heated, fructose (ketose sugar) is more rapidly dehydrated than glucose (aldose sugar).
(1) Both statements are true.
(2) Both statements are false.
(3) (I) is true (II) is false.
(4) (II) is true (I) is false.

Ans. (1)
23. Compound (A) $\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\right)-$

Find the number of π bonds present in compound A
Ans. 4

Sol.

Since compound gives FeCl_{3} test so phenolic group is present.
Compound gives NaOI test (Iodoform test), so methyl ketone group should present.

\#\#llikipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Test on Every SUNDAY

Scholarship up to $\mathbf{9 0 \%}$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com f reliablekota © reliablekota © reliableinstitutekota © reliable_kota in reliablekota

