JEE-Main-30-01-2023 (Morning shift) [MORNING SHIFT]

Physics

Question: If the height of capillary rise is 5 cm for a liquid. What is the rise in height of the surface tension and density is doubled
Options:
(a) 10 cm
(b) 5 cm
(c) 2.5 cm
(d) 20 cm

Answer: (b)

Solution:

$h=\frac{2 T \cos \theta}{\rho g r} \Rightarrow h \propto \frac{T}{\rho}$
h will remain same.
$h=5 \mathrm{~cm}$

Question: Capacitor of $400 \mu F$ is connected to a 100 V battery. Now battery is removed and identical capacitor is connected. Find change is P.E.
Options:
(a) 1 J
(b) 2 J
(c) 3 J
(d) 4 J

Answer: (a)
Solution:

$\Delta P \cdot E=\frac{1}{2} C\left(\frac{V}{2}\right)^{2} \times 2-\frac{1}{2} C V^{2}=-\frac{1}{4} C V^{2}$

Question: What is the correct relation between Young's Modulus (Y), modulus of rigidity (η) , and Poisson ratio (σ) ?
Options:
(a) $Y=2 \eta(1+\sigma)$
(b) $Y=\eta(1-2 \sigma)$
(c) $Y=2 \eta(1+2 \sigma)$
(d) $Y=2 \eta(1-\sigma)$

Answer: (a)
Solution:

$$
Y=2 \eta(1+\sigma)
$$

Question: The maximum and minimum voltage of an amplitude modulated signal are 120 V and 8 V respectively. Find the amplitude of the side band.

Options:

(a) 10 V
(b) 20 V
(c) 30 V
(d) 60 V

Answer: (a)
Solution:
$\mu=\frac{A m}{A c}$
$\mu=0.2$
$A_{\text {max }}=120 \mathrm{~V}=A_{c}+A_{m}$
$A_{\text {min }}=80 \mathrm{~V}=A_{c}-A_{m}$
$\Rightarrow \mu \frac{A C}{2}=0.2 \times \frac{100}{2}=10 \mathrm{~V}$

Question: If in an isothermal process heat is given to a gas then (1) Work is positive (2) Work is negative (3) ΔU negative (5) $\Delta U=0$. Choose the correct statement/s
Options:
(a) Only 1 is correct
(b) 1 and 5 are correct
(c) 1,3 , and 5 are correct
(d) None is correct

Answer: (b)
Solution:
$\Delta Q=\Delta U+\Delta W$
$W=+v e$
Hence, option b is correct

Question: Two coils of N_{A} and N_{B} number of turns carrying currents I_{A} and I_{B} respectively are having the radius as $r_{A}=10 \mathrm{~cm}, r_{B}=20 \mathrm{~cm}$. If their magnetic moments are same then
Options:
(a) $N_{A} I_{A}=4 N_{B} I_{B}$
(b) $4 N_{A} I_{A}=N_{B} I_{B}$
(c) $N_{A} I_{A}=2 N_{B} I_{B}$
(d) $2 N_{A} I_{A}=N_{B} I_{B}$

Answer: (a)
Solution: $m=n i A \Rightarrow m_{A}=m_{B}$
$N_{A} I_{A}\left(\pi r_{A}^{2}\right)=N_{B} I_{B}\left(\pi r_{B}^{2}\right)$
$\Rightarrow N_{A} I_{A}=4 N_{B} I_{B}$

Question: Match position time (x-t) graph with corresponding velocity time graph (v-t)

Solution:
$p \rightarrow c, r \rightarrow v, q \rightarrow d, s \rightarrow a$

Question: A bullet of mass 10 g strikes a ball of mass 200 g placed on a tower as shown.
After collision bullet falls at 120 m from base of tower \& ball falls at 30 m from the base of the tower. Find V_{0} ?

Options:
(a) $360 \mathrm{~ms}^{-1}$
(b) $60 \mathrm{~ms}^{-1}$
(c) $400 \mathrm{~ms}^{-1}$
(d) $100 \mathrm{~ms}^{-1}$

Answer: (a)

Solution:

$\frac{10}{1000} \times V_{0}=0.2 \times 15+0.01 \times 60$
$V_{0}=360 \mathrm{~ms}^{-1}$
$R=u \sqrt{\frac{2 H}{g}}$
$30=V_{1}(2)$
$V_{1}=15$
$120=V_{2}(2)$
$V_{2}=60$

Question: Bob P is released from the position of rest at the moment shown. If it collides elastically with an identical bob Q hanging freely then velocity of Q just after collision is ($\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

Options:

(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $8 \mathrm{~m} / \mathrm{s}$

Answer: (c)
Solution:

Rest

$L=\frac{1}{2} M V^{2}$
$V=\sqrt{2 g L}$
$=\sqrt{2 \times 10^{2} \times \frac{1}{5}}$
$\gamma=2 m s^{-1}$

Question: The heat passing through the cross-section of a conductor, varies with time ' t ' as $Q(t)=\alpha t-\beta t^{2}+\gamma t^{3}$ (α, β and γ are positive constants). The minimum heat current through the conductor is
Options:
(a) $\frac{\alpha-\beta^{2}}{2 \gamma}$
(b) $\frac{\alpha-\beta^{2}}{3 \gamma}$
(c) $\frac{\alpha-\beta^{2}}{\gamma}$
(d) $\frac{\alpha-3 \beta^{2}}{\gamma}$

Answer: (b)

Solution: $q=\alpha+-\beta t^{2}+\gamma t^{3}$
$I=\frac{d q}{d t}=\alpha-2 \beta(t)+3 r t^{2}$
Minima $I=\alpha-2 \beta t+3 r t^{2}$
$\frac{d I}{d t}=\alpha-2 \beta(1)+3 r(2 t)=0$
$t=\frac{\beta}{3 r}$
$I=\alpha-2 \beta\left[\frac{\beta}{3 r}\right]+3 r\left[\frac{\beta^{2}}{9 r^{2}}\right]$
$I=\alpha-\frac{2 \beta^{2}}{3 r}+\frac{\beta^{2}}{3 r}=\alpha-\frac{\beta^{2}}{3 r}$

Question: In SHM $x=20 \sin (\omega t)$. The slope of potential energy Vs time graph is maximum at time $t=\frac{T}{\beta}$. Find β

Options:

(a) 2
(b) 4
(c) 8
(d) 16

Answer: (c)
Solution: $x=20 \sin (\omega t)$
$U=\frac{1}{2} k x^{2}$
$U=\frac{k}{2} \times 400 \sin ^{2}(\omega t)$
$U=U_{0} \sin ^{2}(\omega t)$
Slope $\frac{d U}{d t}=U_{0} 2 \sin (\omega t)+\cos (\omega t) \omega$
Slope $\frac{d U}{d t}=\left[V_{0} \omega\right] \sin [2 \omega t]$
$\sin (2 \omega t)=1$
$2 \omega t=\frac{\pi}{2}$
$2 \times \frac{2 \pi}{T} \times t=\frac{\pi}{2}$
$t=\frac{T}{8}$

Question: In YDSE, with slits separation d and D is distance between slits and screen two slabs of thickness ' t ' each of $\mathrm{u} 1=1.5$ and $\mathrm{u} 2=2$ are introduced in front of slits. Find number of fringes that will surface after introducing slabe. Wavelength ' q ' is used.

Options:
(a) $\mu_{1}=1.51$
(b) $\mu_{2}=1.55$
(c) $\lambda=4000 \mathrm{~A}$
(d) $t=0.5 \mathrm{~mm}$

Answer: (d)
Solution: $n \beta=\left(u_{1}-1\right) t-\left(u_{2}-1\right) t$
$n \frac{\lambda D}{d}=1\left(u_{1}-u_{2}\right) t 1=.5 t$
$n=\frac{t d}{2 \lambda d}$

Question: Linear momentum vs time is shown $\left[t_{1}>\left(t_{2}-t_{3}\right)\right]$, Find the region of maximum and minimum force.
Options:
(a) Only a
(b) a, b
(c) c, d
(d) None of these

Answer: (c)
Solution:

$F=\frac{d p}{d t}$
$F=$ Slope of $\mathrm{p}-\mathrm{t}$

Question: If $\vec{E}=\frac{\alpha}{x^{2}} \hat{i}+\frac{\beta}{y^{2}} \hat{j} ; \mathrm{x}$ and y are distances (in m) find SI units of α and β
Options:
(a) $\frac{\mathrm{Nm}^{2}}{\mathrm{C}}, \frac{\mathrm{Nm}^{3}}{\mathrm{C}}$
(b) $\mathrm{Nm}^{2}, \frac{\mathrm{Nm}^{3}}{\mathrm{C}}$
(c) $\frac{\mathrm{Nm}^{2}}{\mathrm{C}}, \mathrm{Nm}^{3}$
(d) $\mathrm{Nm}^{2}, \mathrm{Nm}^{3}$

Answer: (a)
Solution: $\vec{E}=\left[\frac{\alpha}{x^{2}}+\frac{\beta}{y^{3}}\right]$

$$
\begin{aligned}
& \alpha \Rightarrow E x^{2} \Rightarrow N C^{-1} m^{2} \\
& \beta \Rightarrow E y^{3} \Rightarrow N C^{-1} m^{3}
\end{aligned}
$$

Question: Two spheres of radius ' r ' and ' $2 r$ ' having same charge density u_{0} are connected by a wire.
The new charge density is u^{\prime}. Find $\frac{u^{\prime}}{u_{0}}$ for each sphere.

Options:

(a) $\frac{5}{6}, \frac{5}{3}$
(b) $\frac{10}{3}, \frac{5}{6}$
(c) $\frac{5}{3}, \frac{5}{6}$
(d) $\frac{5}{6}, \frac{10}{3}$

Answer: (c)

Solution:

$$
\begin{aligned}
& \mathrm{Q}_{1}=4 \pi \mathrm{R}^{2} \mathrm{u}_{0} \\
& Q_{\text {otata }}=5 Q_{1}
\end{aligned}
$$

$$
\mathrm{Q}_{2}=4 \pi(2 \mathrm{R})^{2} \mathrm{u}_{0}=4 \mathrm{Q}_{1}
$$

$\frac{k Q^{\prime}}{R}=\frac{k\left(5 Q_{1}-Q^{\prime}\right)}{2 R}$
$\Rightarrow Q^{\prime}=\frac{5 Q_{1}-Q_{1}^{\prime}}{2} \Rightarrow Q^{\prime}=\frac{5 Q_{1}}{3}$
$\left(\frac{u^{\prime}}{u_{0}}\right)_{A}=\frac{5}{3} ; \quad\left(\frac{u^{\prime}}{u}\right)_{B}=\frac{5}{6}$

Question: Which gate is this

Options:

(a) OR
(b) AND
(c) NAND
(d) NOR

Answer: (a)
Solution:
$\gamma=\left[A^{\prime} \cdot B^{\prime}\right]=A+B$
$(A+B)^{\prime}=A^{\prime} B^{\prime}$
$(A B)^{\prime}=A^{\prime}+B^{\prime}$

JEE-Main-30-01-2023 (Memory Based)
 [Morning Shift]

Chemistry

Question: Which of the following is antacid?
Options:
(a) Sodium bicarbonate
(b) Magnesium hydroxide
(c) Magnesium carbonate
(d) All of the above

Answer: (d)
Solution: Examples of antacid include sodium bicarbonate, magnesium hydroxide, magnesium carbonate and aluminium hydroxide, as they are all basic in nature.

Question: Which of the following is formed on heating Caprolactum?
Options:
(a) Nylon 6
(b) Nylon 6,6
(c) Nylon 2,6
(d) None of these

Answer: (a)
Solution:

Question: $\mathrm{NO}_{2}+$ sunlight $\rightarrow \mathrm{A}+\mathrm{B}$
$\mathrm{B}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{C}+\mathrm{O}_{2}$
What is A, B and C ?
Options:
(a) $\mathrm{NO}, \mathrm{O}, \mathrm{NO}_{2}$
(b) $\mathrm{NO}_{2}, \mathrm{O}, \mathrm{NO}$
(c) $\mathrm{NO}_{2}, \mathrm{NO}, \mathrm{O}$
(d) $\mathrm{O}, \mathrm{NO}_{2}, \mathrm{NO}$

Answer: (a)
Solution: $\mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{hv}} \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
Oxygen atoms are very reactive and combine with the O_{2} in air to produce ozone.
$\mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{3}(\mathrm{~g})$

The ozone formed in the above reaction (ii) reacts rapidly with the $\mathrm{NO}(\mathrm{g})$ formed in the reaction (i) to regenerate $\mathrm{NO}_{2} . \mathrm{NO}_{2}$ is a brown gas and at sufficiently high levels can contribute to haze.
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Question: Which of the following is correct about OF_{2} ?
Options:
(a) Oxidation state of O is +2
(b) Tetrahedral
(c) V shaped
(d) Bond angle is less than 104.5°

Answer: (a)
Solution:
$\mathrm{OF}_{2}=\mathrm{x}-2=0$
$x=+2$

Question: Number of lone pairs in $\mathrm{IF}_{7}, \mathrm{ICl}_{4}^{-}, \mathrm{XeF}_{2}, \mathrm{XeF}_{6}, \mathrm{ICl}$ Options:
(a) $21,14,9,6,19$
(b) $14,21,9,6,19$
(c) $19,9,21,6,14$
(d) $21,14,9,19,6$

Answer: (d)

Solution:

IF_{7},

ICl_{4}

Question: Which of the following reaction can be used to prepared LiAlH_{4} ?
Options:
(a) $\mathrm{LiCl}+\mathrm{AlCl}_{3}$
(b) $\mathrm{LiH}+\mathrm{Al}(\mathrm{OH})_{3}$
(c) $\mathrm{LiH}+\mathrm{Al}_{2} \mathrm{Cl}_{6}$
(d) None of these

Answer: (c)

Solution: Lithium hydride is rather unreactive at moderate temperatures with O_{2} or Cl_{2}. It is, therefore, used in the synthesis of other useful hydrides, e.g.,
$8 \mathrm{LiH}+\mathrm{Al}_{2} \mathrm{Cl}_{6} \rightarrow 2 \mathrm{LiAlH}_{4}+6 \mathrm{LiCl}$
$2 \mathrm{LiH}+\mathrm{B}_{2} \mathrm{H}_{6} \rightarrow 2 \mathrm{LiBH}_{4}$

Question: Which coordination compound is used for the treatment of cancer?
Options:
(a) Potassium sulphocyanide
(b) Cis-diamine dichloro platinum (II)
(c) Trans-dichlorodiammine platinum (II)
(d) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}$

Answer: (b)
Solution: Cisplatin $\left.\left\{\operatorname{cis}-\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\right)\right\}$ is used in the treatment of cancer.

Question: Arrange the following in increasing order of Strength
S^{2-}, Oxalate, CO, ethylenediamine
Options:
(a) S^{2-} < Oxalate < ethylenediamine < CO
(b) $\mathrm{S}^{2-}<\mathrm{CO}<$ ethylenediamine < Oxalate
(c) ethylenediamine $<\mathrm{CO}<\mathrm{S}^{2-}<$ Oxalate
(d) ethylenediamine $<$ Oxalate $<\mathrm{S}^{2-}<\mathrm{CO}$

Answer: (a)
Solution: In general, ligands can be arranged in a series in the order of increasing field strength as given below:
$\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{SCN}^{-}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NCS}^{-}<\mathrm{edta}^{4}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CN}^{-}<$ CO

Question: Permanganate $\xrightarrow{\text { Acidic }}$ Manganese oxide
Change in oxidation number of Mn

Options:

(a) +6 to +4
(b) +4 to +6
(c) +4 to +5
(d) +7 to +4

Answer: (d)

Solution: Potassium permanganate KMnO_{4}
Potassium permanganate is prepared by fusion of MnO_{2} with an alkali metal hydroxide and an oxidising agent like KNO_{3}. This produces the dark green $\mathrm{K}_{2} \mathrm{MnO}_{4}$ which disproportionates in a neutral or acidic solution to give permanganate.
$2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Question: Frequency $=2 \times 10^{12}$ Hertz
Calculate energy for one mole
Options:
(a) 737.04
(b) 797.04
(c) 812.04
(d) 997.14

Answer: (b)
Solution: The energy of one photon $(E)=h v$
Here, $h=6.626 \times 10^{34}$ js
$\mathrm{v}=2 \times 10^{12}$ Hertz
$\mathrm{E}=6.626 \times 10^{-34} \times 2 \times 10^{12} \times 6.02 \times 10^{23}$
$=797.04$

Question: During the qualitative analysis of $\mathrm{SO}_{3}{ }^{2-}$ using dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution

Options:

(a) Green
(b) Black
(c) Blue
(d) Red

Answer: (a)

Solution: On treating sulphite with warm dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which is suffocating with the smell of burning sulphur.
$\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
The gas turns potassium dichromate paper acidified with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, green.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\underset{\text { Chromium sulphate (green) }}{\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}}+\mathrm{H}_{2} \mathrm{O}
$$

Question:

Correct order of acidic strength of $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$, and H_{d} Options:
(a) $\mathrm{H}_{\mathrm{b}}>\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{d}}$
(b) $\mathrm{H}_{\mathrm{d}}>\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{b}}$
(c) $\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{d}}>\mathrm{H}_{\mathrm{b}}$
(d) $\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{d}}>\mathrm{H}_{\mathrm{b}}>\mathrm{H}_{\mathrm{c}}$

Answer: (a)
Solution: $H_{b}>H_{a}>H_{c}>H_{d}$

Question: Which of the following is water soluble?
a) BeSO_{4},
b) MgSO_{4},
c) CaSO_{4},
d) SrSO_{4}, e) BaSO_{4}

Options:
(a) Only a and b
(b) Only a, b and c
(c) Only d and e
(d) Only a and e

Answer: (a)
Solution: Sulphates: The sulphates of the alkaline earth metals are all white solids and stable to heat. BeSO_{4}, and MgSO_{4} are readily soluble in water, the solubility decreases from CaSO_{4} to BaSO_{4}. The greater hydration enthalpies of Be^{2+} and Mg^{2+} ions overcome the lattice enthalpy factor and therefore their sulphates are soluble in water.

Question: Molarity of CO_{2} in soft drink is 0.01 M . The volume of soft drink is 300 mL . Mass of CO_{2} in soft drink is:
Options:
(a) 0.132 g
(b) 0.481 g
(c) 0.312 g
(d) 0.190 g

Answer: (a)

Solution:

0.01 mole in 1000 mL of solution

In $300 \mathrm{~mL} \mathrm{CO}_{2}$ will be 0.003 mole
Mass of CO_{2} in 0.003 mole $=0.003 \times 44=0.132 \mathrm{~g}$

Question: Match the following.
Atomic no (Column-I) (Column-II)
(i) 52
(p) s block

(ii) 37	(q) p block
(iii) 64	(r) d block
(iv) 78	(s) f block

Options:
(a) (i) - q, (ii) - p, (iii) - s , (iv) - r
(b) (i) -p , (ii) -q , (iii) -s , (iv) -r
(c) (i) - s , (ii) - r , (iii) - p , (iv) - q
(d) (i) - p, (ii) - r, (iii) - q, (iv) - s

Answer: (a)
Solution:

s block	37
p block	52
d block	78
f block	64

JEE-Main-30-01-2023 (Memory Based)
[Morning Shift]

Mathematics

Question: Let $S=\{1,2,3,4,5\}$. Find the number of one-one functions from S to $\mathrm{P}(\mathrm{S})$.
Answer: ${ }^{32} C_{5} \times 5$!
Solution:
$f: S \rightarrow P(S)$
$S=\{1,2,3,4,5\}$
$n(S)=5$
$n(P(S))=2^{5}=32$

Thus, number of one-one function $={ }^{32} C_{5} \times 5$!

Question: If $z=1+i$ and $z_{1}=\frac{i+\bar{z}(1-i)}{\bar{z}(1-z)}$, then $\frac{12}{\pi} \arg \left(z_{1}\right)=$?
Answer: 3.00

Solution:

We have, $z=1+i$
And $z_{1}=\frac{i+\bar{z}(1-i)}{\bar{z}(1-z)}$
$=\frac{i+(1-i)(1-i)}{(1-i)(1-1-i)}$
$=\frac{i+(1-i)^{2}}{(1-i)(-i)}$
$=\frac{-i}{-i(1-i)}$
$=\frac{1}{1-i}$
$=\frac{i+1}{2}$
$\therefore \arg \left(z_{1}\right)=\arg \left(\frac{1}{2}+\frac{1}{2} i\right)=\frac{\pi}{4}$
$\therefore \frac{12}{\pi} \arg \left(z_{1}\right)=\frac{12}{\pi} \times \frac{\pi}{4}=3$

Question: Find the number of 4 digits numbers divisible by 15 using 1,2,3, 5, given that repetition is allowed.

Answer: 21.00

Solution:

Since required number is divisible by 15 , so last digit will be 5 .
$\underline{a} \underline{b} \underline{c} \underline{5}$
The number should also be divisible by 3 .
So, $a+b+c+5=3 k$
$\Rightarrow a+b+c=3 t+1$
Case-1: $a+b+c=4$
The digits can be filled by numbers $(1,1,2)$ in 3 ways
Case-2: $a+b+c=7$
The digits can be filled by numbers
$(5,1,1)$ in 3 ways
$(3,3,1)$ in 3 ways
$(3,2,2)$ in 3 ways
Case-3: $a+b+c=10$
The digits can be filled by numbers $(5,3,2)$ in 6 ways.
Case-4: $a+b=c=13$
The digits can be filled by numbers $(5,5,3)$ in 3 ways
\therefore Total number of ways $=3+3+3+3+6+3=21$ ways

Question: The mean and variance of seven observations are 8 and 16 respectively. If observation 14 is omitted, the new mean and variance are ' a ' and ' b '. Find $a+3 b-5$.
Answer: 27

Solution:

Mean $=8$, Variance $=16$
Thus, $\frac{\sum_{i=1}^{6} x_{i}+14}{7}=8$
$\Rightarrow \sum_{i=1}^{6} x_{i}=56-14=42$
Now, new mean, $a=\frac{\sum x_{i}}{6}=\frac{42}{6}=7$
Also, $\frac{\sum_{i=1}^{6} x_{i}^{2}+14^{2}}{7}-8^{2}=16$
$\Rightarrow \sum_{i=1}^{6} x_{i}^{2}=560-196=364$
New Variance $=b=\frac{\sum x_{i}^{2}}{6}-a^{2}$
$=\frac{364}{6}-7^{2}=\frac{25}{3}$
$\therefore a+3 b-5=7+3 \times \frac{25}{3}-5$
$=32-5=27$

Question: $\lim _{x \rightarrow 0} \frac{48}{x^{4}} \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t=$?
Answer: 12.00

Solution:

$\lim _{x \rightarrow 0} \frac{48}{x^{4}} \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t$
$=\lim _{x \rightarrow 0} \frac{48 \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t}{x^{4}}$
$\lim _{x \rightarrow 0} \frac{48 \times \frac{x^{3}}{\left(x^{6}+1\right)}}{4 x^{3}}$
$=\lim _{x \rightarrow 0} \frac{12}{x^{6}+1}$
$=12$

Question: Coefficient of x^{15} in $\left(a x^{3}+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ and coefficient of x^{-15} in $\left(a x^{\frac{1}{3}}-\frac{1}{b x^{3}}\right)^{15}$ are equal, find relation between a and b.
Answer: $(a b)^{3}=1$

Solution:

General term of $\left(a x^{3}+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ is
$T_{k+1}={ }^{15} C_{k}\left(a x^{3}\right)^{15-k}\left(\frac{1}{b x^{\frac{1}{3}}}\right)^{k}$
$={ }^{15} C_{k} \cdot a^{15-k} \cdot b^{-k} \cdot x^{45-3 k-\frac{k}{3}}$
For coefficient of x^{15}, we have
$45-3 k-\frac{k}{3}=15$
$\Rightarrow \frac{10 k}{3}=30$
$\Rightarrow k=9$
General term of $\left(a x^{\frac{1}{3}}-\frac{1}{b x^{3}}\right)^{15}$ is
$T_{k+1}={ }^{15} C_{k}\left(a x^{\frac{1}{3}}\right)^{15-k}\left(\frac{-1}{b x^{3}}\right)^{k}$
For coefficient of x^{-15}, we have
$5-\frac{k}{3}-3 k=-15$
$\Rightarrow \frac{10 k}{3}=20$
$\Rightarrow k=6$

According to Question
${ }^{15} C_{9} \frac{a^{6}}{b^{9}}={ }^{15} C_{6} \cdot \frac{a^{9}}{b^{6}}$
$\Rightarrow(a b)^{6}=(a b)^{9}$
$\Rightarrow(a b)^{3}=1$

Question: A dice with numbers $-2,-1,0,1,2,3$, written on its faces is rolled 5 times. What is the probability that product of the numbers obtained is positive?
Answer: $\frac{521}{2592}$

Solution:

We have numbers $-2,-1,0,1,2,3$ on the dice.
$\therefore \mathrm{P}($ positive numbers $)=\frac{3}{6}=\frac{1}{2}$
$\mathrm{P}($ negative numbers $)=\frac{2}{6}=\frac{1}{3}$
Now, for the product of numbers to be positive, we may obtain 0 negative numbers, 2 negative numbers or 4 negative numbers.

Let X be number of times negative number is obtained.
$\therefore P(X=0)={ }^{5} C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$
$P(X=2)={ }^{5} C_{2}\left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right)^{3}=\frac{5}{36}$
$P(X=4)={ }^{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{1}{2}\right)=\frac{5}{162}$
Required probability $=P(X=0)+P(X=2)+P(X=4)$
$=\frac{1}{32}+\frac{5}{36}+\frac{5}{162}=\frac{521}{2592}$

Question: For a sequence, if $a_{n}=\frac{-2}{4 n^{2}-16 n+15}$, then $a_{1}+a_{2}+\ldots+a_{25}=$ \qquad .
Answer: $\frac{50}{141}$

Solution:

$a_{n}=\frac{-2}{4 n^{2}-6 n+15}$
$\Rightarrow a_{n}=\frac{-2}{(2 n-3)(2 n-5)}$
$\Rightarrow a_{n}=\frac{(2 n-5)-(2 n-3)}{(2 n-3)(2 n-5)}$
$\Rightarrow a_{n}=\frac{1}{2 n-3}-\frac{1}{2 n-5}$
$\therefore a_{1}=\frac{1}{-1}-\frac{1}{-3}$
$a_{2}=\frac{1}{1}-\frac{1}{-1}$
$a_{6}=\frac{1}{3}-\frac{1}{1}$
\vdots
$a_{25}=\frac{1}{47}-\frac{1}{45}$
$\therefore a_{1}+a_{2}+\ldots+a_{25}=\frac{1}{3}+\frac{1}{47}=\frac{50}{141}$

Question: The shortest distance between the line $\frac{x+4}{2}=\frac{y+6}{-1}=\frac{z}{2}$ and the line passing through $(2,6,2)$ and perpendicular to the plane $2 x-3 y+z=0$.
Answer: $\frac{46}{\sqrt{45}}$

Solution:

We have,
$L_{1}: \frac{x+4}{2}=\frac{y+6}{-1}=\frac{z}{2}$
$L_{2}:$ Line passing through $(2,6,2)$ and perpendicular to $2 x-3 y+z=0$
\therefore Shortest distance between $L_{1} \& L_{2}$ is $\frac{a}{b}$.
Where $a=\left|\begin{array}{lll}6 & 12 & 2 \\ 2 & -1 & 2 \\ 2 & -3 & 1\end{array}\right|=6(-1+6)-12(2-4)+2(-6+2)$
$=6(5)-12(-2)+2(-4)$
$=30+24-8$
$=46$

And $b=$ magnitude of $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ 2 & -3 & 1\end{array}\right|=$ magnitude of $(5 \hat{i}+2 \hat{j}+4 \hat{k})$
$=\sqrt{25+4+16}=\sqrt{45}$
\therefore S.D. $=\frac{46}{\sqrt{45}}$

Question: \vec{a}, \vec{b} and \vec{c} are three non-zero vectors such that $\hat{n} \perp \vec{c}, \vec{a}=\alpha \vec{b}-\hat{n} ; a \neq 0$ and $\vec{b} \cdot \vec{c}=12$, then $|\vec{c} \times(\vec{a} \times \vec{b})|=$?

Options:

(a) 9
(b) 6
(c) 12
(d) 5

Answer: (c)

Solution:

We have,
$\vec{a}=\alpha \vec{b}-\hat{n}$
$\Rightarrow \vec{a}+\hat{n}=\alpha \vec{b}$
$\Rightarrow \vec{a} \cdot \vec{c}+\hat{n} \cdot \vec{c}=\alpha \vec{b} \cdot \vec{c}$
$\Rightarrow \vec{a} \cdot \vec{c}=12 \alpha$
Now $|\vec{c} \times(\vec{a} \times \vec{b})|$
$=|(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b}|$
$=|12 \vec{a}-12 \alpha \vec{b}|$
$=12|\vec{a}-\alpha \vec{b}|$
$=12|-\hat{n}|$
$=12$

Question: The coefficient of x^{301} in $(1+x)^{500}+x(1+x)^{499}+x^{2}(1+x)^{498}+\ldots+x^{500}$ is
Answer: ${ }^{501} C_{301}$

Solution:

Let $S=(1+x)^{500}+x(1+x)^{499}+x^{2}(1+x)^{498}+\ldots+x^{500}$

This is a GP with $a=(1+x)^{500}$ and $r=\left(\frac{x}{1+x}\right)$
$\therefore S=(1+x)^{500}\left[\frac{1-\left(\frac{x}{1+x}\right)^{501}}{1-\left(\frac{x}{1+x}\right)}\right]$
$=\frac{(1+x)^{500}\left[(1+x)^{501}-x^{501}\right]}{(1+x)^{501}}(1+x)$
$=(1+x)^{501}-x^{501}$
Thus, the coefficient of x^{301} is given by ${ }^{501} C_{301}$

Question: If $\sum_{n=0}^{\infty} \frac{n^{3}\{(2 n)!\}+(2 n-1) n!}{n \times(2 n)!}=a e+\frac{b}{c}+c$, where $e=\sum_{n=0}^{\infty} \frac{1}{n!}$, then find $a^{2}-b+c$.

Answer: 26.00

Solution:

$\sum_{n=0}^{\infty} \frac{n^{3}(2 n)!}{n!(2 n)!}+\sum_{n=0}^{\infty} \frac{(2 n-1) n!}{n!(2 n)!}$
$\sum_{n=0}^{\infty} \frac{(2 n-1) n!}{n!(2 n)!}$
$\sum_{n=0}^{\infty} \frac{(2 n) \times n!}{n!(2 n)!}-\frac{n!}{n!(2 n)!}$
$\sum_{n=0}^{\infty} \frac{1}{(2 n-1)!}-\sum_{n=0}^{\infty} \frac{1}{(2 n)!}$
$\left.\frac{e^{x}-e^{-x}}{2}\right|_{x=1}-\left.\frac{e^{x}+e^{-x}}{2}\right|_{x=1}$
$\sum_{n=0}^{\infty} \frac{n^{3}(2 n)!}{n!(2 n)!}=\sum_{n=0}^{\infty} \frac{n^{3}}{n!}$
$n^{3}=a n(n-1)(n-2)+b(n)(n-1)+c n+d$
$n=1 \Rightarrow 1=C$
$n=2 \Rightarrow 8=2 b+2 \Rightarrow b=3$
$\sum_{n=0}^{\infty} \frac{n(n-1)(n-2)+3(n)(n-1)+n}{n!}$
$\sum_{n=3}^{\infty} \frac{1}{(n-3)!}+3 \sum_{n=2}^{\infty} \frac{1}{(n-2)}+\sum_{n=1}^{\infty} \frac{1}{(n-)!}$
$\sum_{n=0}^{\infty} \frac{n^{3}(2 n)!}{n!(2 n)!}+\sum_{n=0}^{\infty} \frac{(2 n-1) n!}{n!(2 n)!}$
$=5 e+\frac{e}{2}-\frac{1}{\frac{e}{2}}-\frac{e}{2}+\frac{1}{\frac{e}{2}}$
$=5 e-\frac{1}{e}$
$a=5, b=-1, c=0$
Now, $a^{2}-b+c=25-(-1+0)=26$

Question: If $y=x+1,3 y=4 x+3,4 y=3 x+6$ are tangents of the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$, then find $(h+k)$.
Answer: $\mathbf{3 . 0 0}$

Solution:

$4 x-3 y+3=0 ; 2 x-4 y+6=0$
Angle bisectors:
$\frac{4 x-3 y+3}{5}= \pm\left(\frac{2 x-4 y+6}{5}\right)$
Taking ' + ' on RHS we get
$20 x-15 y+15=15 x-20 y+30$
$\Rightarrow 5 x+5 y-15=0$
$\Rightarrow x+y-3=0$
Now, this pass through centre (h, k)
$\therefore h+k-3=0$
$\Rightarrow h+k=3$
On taking '-' on RHS of (i), we get
$20 x-15 y+15=-15 x+20 y-30$
$\Rightarrow 35 x-35 y+45=0$
Slope of above line is equal to the slope of third tangent, $y=x+2$
Thus, this forms external angle bisector
So, we reject this case.

Question: If the bigger area in first quadrant bounded by the curve $y^{2}=8 x$, and the lines $y=x$, and $x=2$ is α, then the value of 3α is

Answer: 22.00

Solution:

On solving $y^{2}=8 x$ and $y=x$, we get
$x=0,8$
Now, Shaded area $=\int_{2}^{8}(2 \sqrt{2} \cdot \sqrt{x}-x) d x$
$=2 \sqrt{2} \int_{2}^{8} \sqrt{x} d x-\int_{2}^{8} x d x$
$=\frac{4 \sqrt{2}}{3}\left[x^{\frac{3}{2}}\right]_{2}^{8}-\frac{1}{2}\left[x^{2}\right]_{2}^{8}$
$=\frac{4 \sqrt{2}}{3}\left[8^{\frac{3}{2}}-2^{\frac{3}{2}}\right]-\frac{1}{2}\left[8^{2}-2^{2}\right]$
$=\frac{4 \sqrt{2} \times 2 \sqrt{2}}{3}[8-1]-\frac{1}{2} \times 60$
$=\frac{8 \times 2 \times 7}{3}-30=\frac{22}{3}$
Given that, shaded area $=\alpha=\frac{22}{3}$
$\therefore 3 \alpha=22$

Question: If $\tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a$, then $a+\frac{1}{a}$ is equal to
Answer:

Solution:

$$
\begin{aligned}
& \tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a \\
& \Rightarrow \tan 15^{\circ}+\frac{1}{\cot 15^{\circ}}+\frac{1}{\left(-\cot 15^{\circ}\right)}+\tan 15^{\circ}=2 a \\
& \Rightarrow 2 \tan 15^{\circ}=2 a \\
& \Rightarrow \tan 15^{\circ}=a
\end{aligned}
$$

Now, $a+\frac{1}{a}=\tan 15^{\circ}+\frac{1}{\tan 15^{\circ}}$
$=2-\sqrt{3}+\frac{1}{2-\sqrt{3}}$
$=2-\sqrt{3}+2+\sqrt{3}$
$=4$

Question: The minimum number of elements that must be added to the relation $R=\{(a, b),(b, c)\}$ defined on the set $\{a, b, c\}$ to make it symmetric and transitive is

Answer: 7.00

Solution:

Taking symmetric, transitive elements

$$
\{(a, b),(b, c),(b, a),(c, b),(a, c),(a, a),(b, b),(c, c),(c, a)\}
$$

We have added 7 new elements

Question: If $5 f(x+y)=f(x) \cdot f(y)$ and $f(2)=3$, then $\sum_{n=0}^{5} f(n)=$?

Answer: 6825.00

Solution:

$5 f(x+y)=f(x) \cdot f(y)$
Put $x=1, y=2$ in (1)
$5 f(3)=f(1) \cdot f(2)$
$\Rightarrow f(1) \cdot f(2)=5 \times 320=1600$
Put $x=y=1$ in (1)
$f(2)=\frac{(f(1))^{2}}{5}$
Using (2) and (3)
$f(1) \cdot \frac{f(1)^{2}}{5}=16000$
$(f(1))^{3}=80000$
$f(1)=20$
$x=1, y=1$
$5 f(2)=(20)^{2}$
$f(2)=20 \times 4=80$
$x=1, y=2$
$5 f(3)=f(1) \times f(2)$
$f(3)=\frac{20 \times 80}{5}=320$
$x=1, y=3$
$5 f(4)=20 \times 320$
$f(4)=1280$
$x=1, y=4$
$5 f(5)=20 \times 1280$
$f(5)=4 \times 1280=5120$
So, total $=5+20+80+320+1280+5120=6825$

Question: A line intercepts x and y-axes at $A(a, 0)$ and $B(0, b)$. Area of triangle $O A B$ is $\frac{98}{\sqrt{3}}$ and normal to line from origin makes angle 30° with y-axis. Find $a^{2}-b^{2}$.
Answer: $\frac{392}{3}$

Solution:

$\frac{1}{2} a \times b=\frac{98}{\sqrt{3}}$
Slope $=\frac{-b}{a}=-\frac{1}{\sqrt{3}}$
$a=\sqrt{3} b$
$\frac{1}{2} \sqrt{3} b^{2}=\frac{98}{\sqrt{3}}$
$b^{2}=\frac{196}{3}$
$a^{2}=3 b^{2}$
$a^{2}-b^{2}=3 b^{2}-b^{2}=2 b^{2}$
$2 b^{2}=2 \times \frac{196}{3}=\frac{392}{3}$

Question: A line has direction ratios $(\cos \alpha, \cos \beta, \cos \gamma), \beta \in\left(0, \frac{\pi}{2}\right)$. If this line is perpendicular to $2 x-3 y+z=10$, then α and γ belongs to \qquad .

Answer: Second Quadrant

Solution:

Given line has direction ratios as $\langle\cos \alpha, \cos \beta, \cos \gamma\rangle$
This line is perpendicular to $2 x-3 y+z=10$

Let $l=\cos \alpha, m=\cos \beta, n=\cos \gamma$
Then, $l \hat{i}+m \hat{j}+n \hat{k}$ is parallel to $2 \hat{i}-3 \hat{j}+\hat{k}$
i.e., $l \hat{i}+m \hat{j}+n \hat{k}=\frac{ \pm(2 \hat{i}-3 \hat{j}+\hat{k})}{\sqrt{14}}$

Now, $\beta\left(0, \frac{\pi}{2}\right) \Rightarrow m>0$
$\therefore l \hat{i}+m \hat{j}+n \hat{k}=\frac{-2 \hat{i}}{\sqrt{14}}+\frac{3 \hat{j}}{\sqrt{14}}-\frac{\hat{k}}{\sqrt{14}}$
$\Rightarrow \cos \alpha=\frac{-2}{\sqrt{14}}, \cos \gamma=\frac{-1}{\sqrt{14}}$
$\Rightarrow \alpha \& \gamma$ belongs to IInd quadrant.

Question: Evaluate: $I=3\left(\frac{e-1}{e}\right) \int_{1}^{2} x^{2} \cdot e^{[x]\left[+x^{3}\right]} d x$
Answer: $e\left(e^{7}-1\right)$

Solution:

$\int_{1}^{2} x^{2} e^{1+\left[x^{3}\right]} d x$
$e \int_{1}^{2} x^{2} \times e^{\left[x^{3}\right]} d x$
Put $x^{3}=t$
$3 x^{2} d x=d t$
$\frac{e}{3} \int_{1}^{8} e^{[t]} d t$
$\frac{e}{3}\left[\int_{1}^{2} e^{1}+\int_{2}^{3} e^{2}+\int_{3}^{4} e^{3}+\ldots+\int_{7}^{8} e^{7}\right]$
$\frac{e}{3}\left[e+e^{2}+\ldots+e^{7}\right]$
$=\frac{e}{3} \times e \frac{\left(e^{7}-1\right)}{(e-1)}$
$=e\left(e^{7}-1\right)$

Question: A line with Direction ratios $(1,4,3)$ is perpendicular to the plane $a x+b y+c z=1$. If the point $(1,1,2)$ lines in the plane, then find $a-b+c$.
Answer: $\mathbf{0 . 0 0}$
Solution:
Given (1, 4, 3)
$a+b+2 c=1$
$a, b, c \propto(1,4,3)$
$a, b, c=t, 4 t, 3 t$
$t+4 t+6 t=1$
$11 t=1$
$t=\frac{1}{11}$
$(a, b, c)=\left(\frac{1}{11}, \frac{4}{11}, \frac{3}{11}\right)$
$a-b+c=0$

