

JEE-Main-30-01-2023 (Morning shift) [MORNING SHIFT]

Physics

Question: If the height of capillary rise is 5 cm for a liquid. What is the rise in height of the surface tension and density is doubled

Options:

(a) 10 cm

(b) 5 cm

(c) 2.5 cm

(d) 20 cm

Answer: (b)

Solution: $2T \cos \theta$

$$h = \frac{21\cos\theta}{\rho gr} \Longrightarrow h \propto \frac{1}{\rho}$$

h will remain same.

h = 5cm

Question: Capacitor of $400 \mu F$ is connected to a 100 V battery. Now battery is removed and identical capacitor is connected. Find change is P.E.

Options:

(a) 1 J

(b) 2 J

(c) 3 J

(d) 4 J

Answer: (a) Solution:

$$\Delta P.E = \frac{1}{2}C\left(\frac{V}{2}\right)^2 \times 2 - \frac{1}{2}CV^2 = -\frac{1}{4}CV^2$$

Question: What is the correct relation between Young's Modulus (Y), modulus of rigidity (η)

, and Poisson ratio (σ) ?

Options:

(a) $Y = 2\eta(1+\sigma)$ (b) $Y = \eta(1-2\sigma)$ (c) $Y = 2\eta(1+2\sigma)$ (d) $Y = 2\eta(1-\sigma)$ Answer: (a) Solution:

 $Y = 2\eta (1 + \sigma)$

Question: The maximum and minimum voltage of an amplitude modulated signal are 120 V and 8V respectively. Find the amplitude of the side band.

Options: (a) 10 V (b) 20 V (c) 30 V (d) 60 V Answer: (a) Solution: $\mu = \frac{Am}{Ac}$ $\mu = 0.2$ $A_{\text{max}} = 120V = A_c + A_m$ $A_{\text{min}} = 80V = A_c - A_m$ $\Rightarrow \mu \frac{AC}{2} = 0.2 \times \frac{100}{2} = 10V$

Question: If in an isothermal process heat is given to a gas then (1) Work is positive (2) Work is negative (3) ΔU negative (5) $\Delta U = 0$. Choose the correct statement/s **Options:** (a) Only 1 is correct (b) 1 and 5 are correct (c) 1, 3, and 5 are correct (d) None is correct **Answer: (b)**

Solution:

 $\Delta Q = \Delta U + \Delta W$ W = +ve

Hence, option b is correct

Question: Two coils of N_A and N_B number of turns carrying currents I_A and I_B respectively are having the radius as $r_A = 10cm$, $r_B = 20cm$. If their magnetic moments are same then

Options:

(a) $N_A I_A = 4N_B I_B$ (b) $4N_A I_A = N_B I_B$ (c) $N_A I_A = 2N_B I_B$ (d) $2N_A I_A = N_B I_B$ Answer: (a) Solution: $m = niA \Rightarrow m_A = m_B$ $N_A I_A (\pi r_A^2) = N_B I_B (\pi r_B^2)$ $\Rightarrow N_A I_A = 4N_B I_B$

Question: Match position time (x-t) graph with corresponding velocity time graph (v-t)

Solution:

 $p \rightarrow c, r \rightarrow v, q \rightarrow d, s \rightarrow a$

Question: A bullet of mass 10 g strikes a ball of mass 200 g placed on a tower as shown. After collision bullet falls at 120 m from base of tower & ball falls at 30 m from the base of the tower. Find V_0 ?

Question: Bob P is released from the position of rest at the moment shown. If it collides elastically with an identical bob Q hanging freely then velocity of Q just after collision is ($g = 10 \text{ m/s}^2$)

Solution:

Question: The heat passing through the cross-section of a conductor, varies with time 't' as $Q(t) = \alpha t - \beta t^2 + \gamma t^3$ (α, β and γ are positive constants). The minimum heat current through the conductor is **Options:**

(a)
$$\frac{\alpha - \beta^2}{2\gamma}$$

(b) $\frac{\alpha - \beta^2}{3\gamma}$
(c) $\frac{\alpha - \beta^2}{\gamma}$
(d) $\frac{\alpha - 3\beta^2}{\gamma}$
Answer: (b)
Solution: $q = \alpha + -\beta t^2 + \gamma t^3$
 $I = \frac{dq}{dt} = \alpha - 2\beta(t) + 3rt^2$
Minima $I = \alpha - 2\beta t + 3rt^2$
 $\frac{dI}{dt} = \alpha - 2\beta(1) + 3r(2t) = 0$

$$t = \frac{\beta}{3r}$$

$$I = \alpha - 2\beta \left[\frac{\beta}{3r}\right] + 3r \left[\frac{\beta^2}{9r^2}\right]$$

$$I = \alpha - \frac{2\beta^2}{3r} + \frac{\beta^2}{3r} = \alpha - \frac{\beta^2}{3r}$$

Question: In SHM $x = 20 \sin(\omega t)$. The slope of potential energy Vs time graph is maximum

at time
$$t = \frac{T}{\beta}$$
. Find β
Options:
(a) 2
(b) 4
(c) 8
(d) 16
Answer: (c)
Solution: $x = 20 \sin(\omega t)$
 $U = \frac{1}{2}kx^2$
 $U = \frac{k}{2} \times 400 \sin^2(\omega t)$
 $U = U_0 \sin^2(\omega t)$
Slope $\frac{dU}{dt} = U_0 2 \sin(\omega t) + \cos(\omega t)\omega$
Slope $\frac{dU}{dt} = [V_0 \omega] \sin[2\omega t]$
 $\sin(2\omega t) = 1$
 $2\omega t = \frac{\pi}{2}$
 $2 \times \frac{2\pi}{T} \times t = \frac{\pi}{2}$
 $t = \frac{T}{8}$

Question: In YDSE, with slits separation d and D is distance between slits and screen two slabs of thickness 't' each of u1 = 1.5 and u2 = 2 are introduced in front of slits. Find number of fringes that will surface after introducing slabe. Wavelength 'q' is used.

Question: Linear momentum vs time is shown $[t_1 > (t_2 - t_3)]$, Find the region of maximum and minimum force. Options: (a) Only a (b) a, b (c) c, d (d) None of these Answer: (c) Solution:

$$F = \frac{dp}{dt}$$

F = Slope of p ·

Question: If $\vec{E} = \frac{\alpha}{x^2}\hat{i} + \frac{\beta}{y^2}\hat{j}$; x and y are distances (in m) find SI units of α and β

Options:

(a)
$$\frac{Nm^2}{C}$$
, $\frac{Nm^3}{C}$
(b) Nm^2 , $\frac{Nm^3}{C}$
(c) $\frac{Nm^2}{C}$, Nm^3
(d) Nm^2 , Nm^3
Answer: (a)
Solution: $\vec{E} = \left[\frac{\alpha}{x^2} + \frac{\beta}{y^3}\right]$
 $\alpha \Rightarrow Ex^2 \Rightarrow NC^{-1}m^2$
 $\beta \Rightarrow Ey^3 \Rightarrow NC^{-1}m^3$

Question: Two spheres of radius 'r' and '2r' having same charge density u_0 are connected by a wire.

The new charge density is u'. Find $\frac{u'}{u_0}$ for each sphere.

Options: 5 5

(a) $\frac{5}{6}, \frac{5}{3}$

Question: Which gate is this

JEE-Main-30-01-2023 (Memory Based) [Morning Shift]

Chemistry

Question: Which of the following is antacid? **Options:**

(a) Sodium bicarbonate

(b) Magnesium hydroxide

(c) Magnesium carbonate

(d) All of the above

Answer: (d)

Solution: Examples of antacid include sodium bicarbonate, magnesium hydroxide, magnesium carbonate and aluminium hydroxide, as they are all basic in nature.

Question: Which of the following is formed on heating Caprolactum? **Options:**

(a) Nylon 6

(b) Nylon 6,6
(c) Nylon 2,6
(d) None of these Answer: (a) Solution:

$$H_{2}C \xrightarrow{\mathbf{N}} C=O$$

$$H_{2}C \xrightarrow{\mathbf{C}} CH_{2} \xrightarrow{533-543K} H_{2}O \xrightarrow{\mathbf{C}} CH_{2} \xrightarrow{\mathbf{C}} H_{2}O \xrightarrow{\mathbf{C}} H_{2}O \xrightarrow{\mathbf{C}} CH_{2} \xrightarrow{\mathbf{C}} H_{2}O \xrightarrow{\mathbf{C}} (CH_{2})_{5} \xrightarrow{\mathbf{C}} N \xrightarrow{\mathbf{C}}$$

$$Caprolactam \qquad Nylon 6$$

Question: NO₂ + sunlight \rightarrow A + B B +O₂ \rightarrow O₃ NO + O₃ \rightarrow C + O₂ What is A, B and C? Options: (a) NO, O, NO₂ (b) NO₂, O, NO (c) NO₂, NO, O (d) O, NO₂, NO Answer: (a) Solution: NO₂(g) \xrightarrow{hv} NO(g) + O(g) Oxygen atoms are very reactive and combine with the O₂ in air to produce ozone.

 $O(g) + O_2(g) \rightleftharpoons O_3(g)$

The ozone formed in the above reaction (ii) reacts rapidly with the NO(g) formed in the reaction (i) to regenerate NO_2 . NO_2 is a brown gas and at sufficiently high levels can contribute to haze.

 $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$

Question: Which of the following is correct about OF₂?
Options:

(a) Oxidation state of O is +2
(b) Tetrahedral
(c) V shaped
(d) Bond angle is less than 104.5°

Answer: (a)

Solution:

 $\begin{array}{l} OF_2=x-2=0\\ x=+2 \end{array}$

Question: Number of lone pairs in IF₇, ICl₄⁻, XeF₂, XeF₆, ICl **Options:** (a) 21, 14, 9, 6, 19 (b) 14, 21, 9, 6, 19 (c) 19, 9, 21, 6, 14 (d) 21, 14, 9, 19, 6 Answer: (d) Solution: 21 IF₇, :Ċl: CI: :CI-:CI: ICl_4^- 14 :F:

XeF₂

......

9

:F:

Question: Which of the following reaction can be used to prepared LiAlH₄? **Options:**

(a) LiCl + AlCl₃
(b) LiH + Al(OH)₃
(c) LiH + Al₂Cl₆
(d) None of these
Answer: (c)
Solution: Lithium hydride is rather unreactive at moderate temperatures with O₂ or Cl₂. It is, therefore, used in the synthesis of other useful hydrides, e.g., 8LiH + Al₂Cl₆ → 2LiAlH₄ + 6LiCl

 $2\text{LiH} + \text{B}_2\text{H}_6 \rightarrow 2\text{LiBH}_4$

Question: Which coordination compound is used for the treatment of cancer? **Options:**

(a) Potassium sulphocyanide

(b) Cis-diamine dichloro platinum (II)

(c) Trans-dichlorodiammine platinum (II)

(d) $[Ag(NH_3)_2]NO_3$

Answer: (b)

Solution: Cisplatin $\{cis-[Pt(NH_3)_2Cl_2]\}$ is used in the treatment of cancer.

Question: Arrange the following in increasing order of Strength S^{2–}, Oxalate, CO, ethylenediamine

Options:

(a) S^{2-} < Oxalate < ethylenediamine < CO

(b) $S^{2-} < CO < ethylenediamine < Oxalate$

(c) ethylenediamine < CO < S²⁻< Oxalate

(d) ethylenediamine < Oxalate < S^{2-} < CO

Answer: (a)

Solution: In general, ligands can be arranged in a series in the order of increasing field strength as given below:

 $I^- < \bar{Br}^- < \bar{SCN}^- < Cl^- < \bar{S^{2-}} < \bar{F}^- < OH^- < C_2O_4{}^{2-} < H_2O < NCS^- < edta^{4-} < NH_3 < en < CN^- < CO$

Question: Permanganate $\xrightarrow{\text{Acidic}}$ Manganese oxide Change in oxidation number of Mn

Options:

(a) +6 to +4 (b) +4 to +6 (c) +4 to +5 (d) +7 to +4 **Answer: (d)**

Solution: Potassium permanganate KMnO₄

Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate.

 $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$

 $3MnO_4{}^{2-}+4H^+ \rightarrow 2MnO_4{}^-+MnO_2+2H_2O$

Question: Frequency = 2×10^{12} Hertz Calculate energy for one mole Options: (a) 737.04 (b) 797.04

(c) 812.04 (d) 997.14

Answer: (b)

Solution: The energy of one photon (E) = hv

```
Here, h = 6.626 \times 10^{34} js
```

 $v = 2 \times 10^{12}$ Hertz

 $E = 6.626 \times 10^{-34} \times 2 \times 10^{12} \times 6.02 \times 10^{23}$ = 797.04

Question: During the qualitative analysis of SO_3^{2-} using dilute H_2SO_4 , SO_2 gas evolved which turns $K_2Cr_2O_7$ solution

Options:

(a) Green

- (b) Black
- (c) Blue
- (d) Red

Answer: (a)

Solution: On treating sulphite with warm dil. H₂SO₄, SO₂ gas is evolved which is suffocating with the smell of burning sulphur.

 $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$

The gas turns potassium dichromate paper acidified with dil. H₂SO₄, green.

$$\mathrm{K_{2}Cr_{2}O_{7}+H_{2}SO_{4}+3SO_{2}\rightarrow K_{2}SO_{4}+Cr_{2}\left(SO_{4}\right)_{3}+H_{2}O_{Chromium sulphate (green)}}$$

Question:

Correct order of acidic strength of H_a , H_b , H_c , and H_d **Options:** (a) $H_b > H_a > H_c > H_d$ (b) $H_d > H_a > H_c > H_b$ (c) $H_c > H_a > H_d > H_b$ (d) $H_a > H_d > H_b > H_c$ **Answer:** (a) **Solution:** $H_b > H_a > H_c > H_d$

Question: Which of the following is water soluble? a) BeSO₄, b) MgSO₄, c) CaSO₄, d) SrSO₄, e) BaSO₄ **Options:**

- (a) Only a and b
- (b) Only a, b and c
- (c) Only d and e
- (d) Only a and e

Answer: (a)

Solution: Sulphates: The sulphates of the alkaline earth metals are all white solids and stable to heat. BeSO₄, and MgSO₄ are readily soluble in water; the solubility decreases from CaSO₄ to BaSO₄. The greater hydration enthalpies of Be²⁺ and Mg²⁺ ions overcome the lattice enthalpy factor and therefore their sulphates are soluble in water.

Question: Molarity of CO₂ in soft drink is 0.01 M. The volume of soft drink is 300 mL. Mass of CO₂ in soft drink is:

Options:

(a) 0.132 g
(b) 0.481 g
(c) 0.312 g
(d) 0.190 g
Answer: (a)
Solution:
0.01 mole in 1000 mL of solution In 300 mL CO₂ will be 0.003 mole

Mass of CO₂ in 0.003 mole = $0.003 \times 44 = 0.132$ g

Question: Match the following.

Atomic no (Column-I)	(Column-II)
(i) 52	(p) s block

(ii) 37	(q) p block
(iii) 64	(r) d block
(iv) 78	(s) f block

Options:

(a) (i) - q, (ii) - p, (iii) - s, (iv) - r (b) (i) - p, (ii) - q, (iii) - s, (iv) - r (c) (i) - s, (ii) - r, (iii) - p, (iv) - q (d) (i) - p, (ii) - r, (iii) - q, (iv) - s **Answer: (a)**

Solution:

s block	37
p block	52
d block	78
f block	64

JEE-Main-30-01-2023 (Memory Based) [Morning Shift]

Mathematics

Question: Let $S = \{1, 2, 3, 4, 5\}$. Find the number of one-one functions from S to P(S).

Answer: ${}^{32}C_5 \times 5!$ Solution: $f: S \to P(S)$ $S = \{1, 2, 3, 4, 5\}$ n(S) = 5 $n(P(S)) = 2^5 = 32$

Thus, number of one-one function = ${}^{32}C_5 \times 5!$

Question: If
$$z = 1 + i$$
 and $z_1 = \frac{i + \overline{z}(1 - i)}{\overline{z}(1 - z)}$, then $\frac{12}{\pi} \arg(z_1) = ?$

Answer: 3.00

Solution:

We have, z = 1 + i

And
$$z_1 = \frac{i + \overline{z} (1 - i)}{\overline{z} (1 - z)}$$
$$= \frac{i + (1 - i)(1 - i)}{(1 - i)(1 - 1 - i)}$$

$$= \frac{i + (1-i)^2}{(1-i)(-i)}$$

$$= \frac{-i}{-i(1-i)}$$

$$= \frac{1}{1-i}$$

$$= \frac{i+1}{2}$$

$$\therefore \arg(z_1) = \arg\left(\frac{1}{2} + \frac{1}{2}i\right) = \frac{\pi}{4}$$

$$\therefore \frac{12}{\pi}\arg(z_1) = \frac{12}{\pi} \times \frac{\pi}{4} = 3$$

Question: Find the number of 4 digits numbers divisible by 15 using 1, 2, 3, 5, given that repetition is allowed. Answer: 21.00

Solution:

Since required number is divisible by 15, so last digit will be 5.

$\underline{a} \ \underline{b} \ \underline{c} \ \underline{5}$

The number should also be divisible by 3.

So,
$$a+b+c+5=3k$$

 $\Rightarrow a + b + c = 3t + 1$

Case-1: a + b + c = 4

The digits can be filled by numbers (1, 1, 2) in 3 ways

Case-2: a + b + c = 7

The digits can be filled by numbers

(5, 1, 1) in 3 ways

(3, 3, 1) in 3 ways

(3, 2, 2) in 3 ways

Case-3: a + b + c = 10

The digits can be filled by numbers (5, 3, 2) in 6 ways.

Case-4: a + b = c = 13

The digits can be filled by numbers (5, 5, 3) in 3 ways

 \therefore Total number of ways = 3+3+3+3+6+3 = 21 ways

Question: The mean and variance of seven observations are 8 and 16 respectively. If observation 14 is omitted, the new mean and variance are 'a' and 'b'. Find a + 3b - 5. **Answer: 27**

Solution:

Mean = 8, Variance = 16

Thus, $\frac{\sum_{i=1}^{6} x_i + 14}{7} = 8$

$$\Rightarrow \sum_{i=1}^{6} x_i = 56 - 14 = 42$$

Now, new mean, $a = \frac{\sum x_i}{6} = \frac{42}{6} = 7$

Also,
$$\frac{\sum_{i=1}^{6} x_i^2 + 14^2}{7} - 8^2 = 16$$

$$\Rightarrow \sum_{i=1}^{6} x_i^2 = 560 - 196 = 364$$

New Variance
$$= b = \frac{\sum x_i^2}{6} - a^2$$

$$=\frac{364}{6} - 7^2 = \frac{25}{3}$$

∴ $a + 3b - 5 = 7 + 3 \times \frac{25}{3} - 5$
= $32 - 5 = 27$

Question:
$$\lim_{x\to 0} \frac{48}{x^4} \int_0^x \frac{t^3}{t^6+1} dt = ?$$

Answer: 12.00 Solution:

$$\lim_{x \to 0} \frac{48}{x^4} \int_{0}^{x} \frac{t^3}{t^6 + 1} dt$$

$$=\lim_{x\to 0}\frac{48\int_{0}^{x}\frac{t^{3}}{t^{6}+1}dt}{x^{4}}$$

$$\lim_{x \to 0} \frac{48 \times \frac{x^3}{(x^6 + 1)}}{4x^3}$$
$$= \lim_{x \to 0} \frac{12}{x^6 + 1}$$
$$= 12$$

Question: Coefficient of x^{15} in $\left(ax^3 + \frac{1}{bx^{\frac{1}{3}}}\right)^{15}$ and coefficient of x^{-15} in $\left(ax^{\frac{1}{3}} - \frac{1}{bx^{3}}\right)^{15}$ are

equal, find relation between a and b.

Answer: $(ab)^3 = 1$

Solution:

General term of
$$\left(ax^{3} + \frac{1}{bx^{\frac{1}{3}}}\right)^{13}$$
 is
 $T_{k+1} = {}^{15}C_{k} \left(ax^{3}\right)^{15-k} \left(\frac{1}{bx^{\frac{1}{3}}}\right)^{k}$

$$={}^{15}C_k \cdot a^{15-k} \cdot b^{-k} \cdot x^{45-3k-\frac{k}{3}}$$

For coefficient of x^{15} , we have

$$45 - 3k - \frac{k}{3} = 15$$
$$\Rightarrow \frac{10k}{3} = 30$$
$$\Rightarrow k = 9$$

General term of
$$\left(ax^{\frac{1}{3}} - \frac{1}{bx^{3}}\right)^{15}$$
 is
 $T_{k+1} = {}^{15}C_k \left(ax^{\frac{1}{3}}\right)^{15-k} \left(\frac{-1}{bx^{3}}\right)^k$

For coefficient of x^{-15} , we have

$$5 - \frac{k}{3} - 3k = -15$$
$$\Rightarrow \frac{10k}{3} = 20$$
$$\Rightarrow k = 6$$

According to Question

$$^{15}C_9 \frac{a^6}{b^9} = {}^{15}C_6 \cdot \frac{a^9}{b^6}$$
$$\Rightarrow (ab)^6 = (ab)^9$$
$$\Rightarrow (ab)^3 = 1$$

Question: A dice with numbers -2, -1, 0, 1, 2, 3, written on its faces is rolled 5 times. What is the probability that product of the numbers obtained is positive?

Answer: $\frac{521}{2592}$

Solution:

We have numbers -2, -1, 0, 1, 2, 3 on the dice.

$$\therefore$$
 P(positive numbers) $=\frac{3}{6}=\frac{1}{2}$

P(negative numbers) $=\frac{2}{6}=\frac{1}{3}$

Now, for the product of numbers to be positive, we may obtain 0 negative numbers, 2 negative numbers or 4 negative numbers.

Let X be number of times negative number is obtained.

$$\therefore P(X=0) = {}^{5}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{1}{2}\right)^{5} = \frac{1}{32}$$

$$P(X=2) = {}^{5}C_{2} \left(\frac{1}{3}\right)^{2} \left(\frac{1}{2}\right)^{3} = \frac{5}{36}$$

$$P(X=4) = {}^{5}C_{4} \left(\frac{1}{3}\right)^{4} \left(\frac{1}{2}\right) = \frac{5}{162}$$

Required probability = P(X=0) + P(X=2) + P(X=4)

$$=\frac{1}{32}+\frac{5}{36}+\frac{5}{162}=\frac{521}{2592}$$

Question: For a sequence, if $a_n = \frac{-2}{4n^2 - 16n + 15}$, then $a_1 + a_2 + ... + a_{25} =$ _____.

Answer: $\frac{50}{141}$ **Solution:** $a_n = \frac{-2}{4n^2 - 6n + 15}$

$$\Rightarrow a_{n} = \frac{-2}{(2n-3)(2n-5)}$$

$$\Rightarrow a_{n} = \frac{(2n-5)-(2n-3)}{(2n-3)(2n-5)}$$

$$\Rightarrow a_{n} = \frac{1}{2n-3} - \frac{1}{2n-5}$$

$$\therefore a_{1} = \frac{1}{-1} - \frac{1}{-3}$$

$$a_{2} = \frac{1}{1} - \frac{1}{-1}$$

$$a_{6} = \frac{1}{3} - \frac{1}{1}$$

$$\vdots$$

$$a_{25} = \frac{1}{47} - \frac{1}{45}$$

$$\therefore a_{1} + a_{2} + \dots + a_{25} = \frac{1}{3} + \frac{1}{47} = \frac{50}{141}$$

Question: The shortest distance between the line $\frac{x+4}{2} = \frac{y+6}{-1} = \frac{z}{2}$ and the line passing through (2, 6, 2) and perpendicular to the plane 2x-3y+z=0.

Answer: $\frac{46}{\sqrt{45}}$

Solution: We have,

 $L_1: \frac{x+4}{2} = \frac{y+6}{-1} = \frac{z}{2}$

 L_2 : Line passing through (2, 6, 2) and perpendicular to 2x-3y+z=0

 \therefore Shortest distance between $L_1 \& L_2$ is $\frac{a}{b}$.

Where
$$a = \begin{vmatrix} 6 & 12 & 2 \\ 2 & -1 & 2 \\ 2 & -3 & 1 \end{vmatrix} = 6(-1+6) - 12(2-4) + 2(-6+2)$$

= $6(5) - 12(-2) + 2(-4)$
= $30 + 24 - 8$
= 46

And
$$b = \text{magnitude of} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ 2 & -3 & 1 \end{vmatrix} = \text{magnitude of} \left(5\hat{i} + 2\hat{j} + 4\hat{k} \right)$$
$$= \sqrt{25 + 4 + 16} = \sqrt{45}$$
$$\therefore \text{ S.D. } = \frac{46}{\sqrt{45}}$$

Question: \vec{a}, \vec{b} and \vec{c} are three non-zero vectors such that $\hat{n} \perp \vec{c}, \vec{a} = \alpha \vec{b} - \hat{n}; a \neq 0$ and $\vec{b} \cdot \vec{c} = 12$, then $\left| \vec{c} \times \left(\vec{a} \times \vec{b} \right) \right| = ?$ **Options:** (a) 9 (b) 6 (c) 12 (d) 5 Answer: (c) Solution: We have, $\vec{a} = \alpha \vec{b} - \hat{n}$ $\Rightarrow \vec{a} + \hat{n} = \alpha \vec{b}$ $\Rightarrow \vec{a} \cdot \vec{c} + \hat{n} \cdot \vec{c} = \alpha \vec{b} \cdot \vec{c}$ $\Rightarrow \vec{a} \cdot \vec{c} = 12\alpha$ Now $\left| \vec{c} \times \left(\vec{a} \times \vec{b} \right) \right|$ $= \left| \left(\vec{c} \cdot \vec{b} \right) \vec{a} - \left(\vec{c} \cdot \vec{a} \right) \vec{b} \right|$ $= \left| 12\vec{a} - 12\alpha\vec{b} \right|$ $=12\left|\vec{a}-\alpha\vec{b}\right|$ $=12|-\hat{n}|$ = 12

Question: The coefficient of x^{301} in $(1+x)^{500} + x(1+x)^{499} + x^2(1+x)^{498} + ... + x^{500}$ is Answer: ${}^{501}C_{301}$ Solution: Let $S = (1+x)^{500} + x(1+x)^{499} + x^2(1+x)^{498} + ... + x^{500}$

This is a GP with $a = (1+x)^{500}$ and $r = \left(\frac{x}{1+x}\right)$

$$\therefore S = (1+x)^{500} \left[\frac{1 - \left(\frac{x}{1+x}\right)^{501}}{1 - \left(\frac{x}{1+x}\right)} \right]$$
$$= \frac{(1+x)^{500} \left[(1+x)^{501} - x^{501} \right]}{(1+x)^{501}} (1+x)$$
$$= (1+x)^{501} - x^{501}$$

Thus, the coefficient of x^{301} is given by ${}^{501}C_{301}$

Question: If $\sum_{n=0}^{\infty} \frac{n^3 \{(2n)!\} + (2n-1)n!}{n \times (2n)!} = ae + \frac{b}{c} + c$, where $e = \sum_{n=0}^{\infty} \frac{1}{n!}$, then find $a^2 - b + c$. Answer: 26.00 **Solution:** $\sum_{n=0}^{\infty} \frac{n^3(2n)!}{n!(2n)!} + \sum_{n=0}^{\infty} \frac{(2n-1)n!}{n!(2n)!}$ $\sum_{n=0}^{\infty} \frac{(2n-1)n!}{n!(2n)!}$ $\sum_{n=0}^{\infty} \frac{(2n) \times n!}{n! (2n)!} - \frac{n!}{n! (2n)!}$ $\sum_{n=0}^{\infty} \frac{1}{(2n-1)!} - \sum_{n=0}^{\infty} \frac{1}{(2n)!}$ $\frac{e^{x}-e^{-x}}{2} - \frac{e^{x}+e^{-x}}{2}$ $\sum_{n=0}^{\infty} \frac{n^3 (2n)!}{n! (2n)!} = \sum_{n=0}^{\infty} \frac{n^3}{n!}$ $n^{3} = an(n-1)(n-2)+b(n)(n-1)+cn+d$ $n = 1 \Longrightarrow 1 = C$ $n = 2 \Longrightarrow 8 = 2b + 2 \Longrightarrow b = 3$ $\sum_{n=0}^{\infty} \frac{n(n-1)(n-2) + 3(n)(n-1) + n}{n!}$

$$\sum_{n=3}^{\infty} \frac{1}{(n-3)!} + 3\sum_{n=2}^{\infty} \frac{1}{(n-2)} + \sum_{n=1}^{\infty} \frac{1}{(n-)!}$$
$$\sum_{n=0}^{\infty} \frac{n^3(2n)!}{n!(2n)!} + \sum_{n=0}^{\infty} \frac{(2n-1)n!}{n!(2n)!}$$
$$= 5e + \frac{e}{2} - \frac{1}{\frac{e}{2}} - \frac{e}{2} + \frac{1}{\frac{e}{2}}$$
$$= 5e - \frac{1}{e}$$
$$a = 5, b = -1, c = 0$$
Now, $a^2 - b + c = 25 - (-1+0) = 26$

Question: If y = x+1, 3y = 4x+3, 4y = 3x+6 are tangents of the circle $(x-h)^2 + (y-k)^2 = r^2$, then find (h+k). Answer: 3.00 Solution:

$$4x - 3y + 3 = 0; 2x - 4y + 6 = 0$$

Angle bisectors:

$$\frac{4x - 3y + 3}{5} = \pm \left(\frac{2x - 4y + 6}{5}\right) \quad \dots(i)$$

Taking '+' on RHS we get

20x - 15y + 15 = 15x - 20y + 30

 $\Rightarrow 5x + 5y - 15 = 0$ $\Rightarrow x + y - 3 = 0$

Now, this pass through centre (h,k)

 $\therefore h+k-3=0$ $\Rightarrow h+k=3$ On taking '-' on RHS of (i), we get 20x-15y+15=-15x+20y-30 $\Rightarrow 35x-35y+45=0$

Slope of above line is equal to the slope of third tangent, y = x + 2

Thus, this forms external angle bisector

So, we reject this case.

Question: If the bigger area in first quadrant bounded by the curve $y^2 = 8x$, and the lines y = x, and x = 2 is α , then the value of 3α is

Answer: 22.00 Solution:

On solving $y^2 = 8x$ and y = x, we get

$$x = 0, 8$$

Now, Shaded area = $\int_{2}^{8} (2\sqrt{2} \cdot \sqrt{x} - x) dx$

$$= 2\sqrt{2} \int_{2}^{8} \sqrt{x} dx - \int_{2}^{8} x dx$$
$$= \frac{4\sqrt{2}}{3} \left[x^{\frac{3}{2}} \right]_{2}^{8} - \frac{1}{2} \left[x^{2} \right]_{2}^{8}$$

$$=\frac{4\sqrt{2}}{3}\left[8^{\frac{3}{2}}-2^{\frac{3}{2}}\right]-\frac{1}{2}\left[8^{2}-2^{2}\right]$$
$$=\frac{4\sqrt{2}\times2\sqrt{2}}{3}\left[8-1\right]-\frac{1}{2}\times60$$
$$=\frac{8\times2\times7}{3}-30=\frac{22}{3}$$

Given that, shaded area = $\alpha = \frac{22}{3}$

$$\therefore 3\alpha = 22$$

Question: If $\tan 15^\circ + \frac{1}{\tan 75^\circ} + \frac{1}{\tan 105^\circ} + \tan 195^\circ = 2a$, then $a + \frac{1}{a}$ is equal to

Answer: Solution:

= 4

$$\Rightarrow \tan 13^\circ + \frac{1}{\cot 15^\circ} + \frac{1}{(-\cot 15^\circ)} + \tan 13^\circ =$$

$$\Rightarrow 2\tan 15^\circ = 2a$$

$$\Rightarrow \tan 15^\circ = a$$

Now, $a + \frac{1}{a} = \tan 15^\circ + \frac{1}{\tan 15^\circ}$
$$= 2 - \sqrt{3} + \frac{1}{2 - \sqrt{3}}$$

$$= 2 - \sqrt{3} + 2 + \sqrt{3}$$

Question: The minimum number of elements that must be added to the relation $R = \{(a,b), (b,c)\}$ defined on the set $\{a,b,c\}$ to make it symmetric and transitive is **Answer: 7.00 Solution:** Taking symmetric, transitive elements $\{(a,b), (b,c), (b,a), (c,b), (a,c), (a,a), (b,b), (c,c), (c,a)\}$

We have added 7 new elements

Question: If
$$5f(x+y) = f(x) \cdot f(y)$$
 and $f(2) = 3$, then $\sum_{n=0}^{5} f(n) = ?$

Answer: 6825.00 Solution: $5f(x+y) = f(x) \cdot f(y) \quad \dots (1)$ Put x = 1, y = 2 in (1) $5f(3) = f(1) \cdot f(2)$ $\Rightarrow f(1) \cdot f(2) = 5 \times 320 = 1600 \quad \dots(2)$ Put x = y = 1 in (1) $f(2) = \frac{(f(1))^2}{5}$(3) Using (2) and (3) $f(1) \cdot \frac{f(1)^2}{5} = 16000$ $\left(f\left(1\right)\right)^{3} = 80000$ f(1) = 20x = 1, y = 1 $5f(2) = (20)^2$ $f(2) = 20 \times 4 = 80$ x = 1, y = 2 $5f(3) = f(1) \times f(2)$ $f(3) = \frac{20 \times 80}{5} = 320$ x = 1, y = 3 $5f(4) = 20 \times 320$ f(4) = 1280x = 1, y = 4 $5f(5) = 20 \times 1280$ $f(5) = 4 \times 1280 = 5120$

So, total = 5 + 20 + 80 + 320 + 1280 + 5120 = 6825

Question: A line intercepts x and y-axes at A(a,0) and B(0,b). Area of triangle OAB is

 $\frac{98}{\sqrt{3}}$ and normal to line from origin makes angle 30° with y-axis. Find $a^2 - b^2$.

Answer: $\frac{392}{3}$ **Solution:** B(0, b) 60° A(a, 0) $\frac{1}{2}a \times b = \frac{98}{\sqrt{3}}$ Slope = $\frac{-b}{a} = -\frac{1}{\sqrt{3}}$ $a = \sqrt{3}b$ $\frac{1}{2}\sqrt{3}b^2 = \frac{98}{\sqrt{3}}$ $b^2 = \frac{196}{3}$ $a^2 = 3b^2$ $a^2 - b^2 = 3b^2 - b^2 = 2b^2$ $2b^2 = 2 \times \frac{196}{3} = \frac{392}{3}$

Question: A line has direction ratios $(\cos \alpha, \cos \beta, \cos \gamma), \beta \in (0, \frac{\pi}{2})$. If this line is perpendicular to 2x - 3y + z = 10, then α and γ belongs to _____. **Answer: Second Quadrant Solution:** Given line has direction ratios as $\langle \cos \alpha, \cos \beta, \cos \gamma \rangle$

This line is perpendicular to 2x - 3y + z = 10

Let $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ Then, $l\hat{i} + m\hat{j} + n\hat{k}$ is parallel to $2\hat{i} - 3\hat{j} + \hat{k}$ i.e., $l\hat{i} + m\hat{j} + n\hat{k} = \frac{\pm (2\hat{i} - 3\hat{j} + \hat{k})}{\sqrt{14}}$

Now,
$$\beta\left(0,\frac{\pi}{2}\right) \Rightarrow m > 0$$

$$\therefore \ l\hat{i} + m\hat{j} + n\hat{k} = \frac{-2\hat{i}}{\sqrt{14}} + \frac{3\hat{j}}{\sqrt{14}} - \frac{\hat{k}}{\sqrt{14}}$$

$$\Rightarrow \cos \alpha = \frac{-2}{\sqrt{14}}, \ \cos \gamma = \frac{-1}{\sqrt{14}}$$

 $\Rightarrow \alpha \& \gamma$ belongs to IInd quadrant.

Question: Evaluate: $I = 3\left(\frac{e-1}{e}\right)_{1}^{2} x^{2} \cdot e^{[x] + [x^{3}]} dx$ Answer: $e(e^{7} - 1)$ Solution: $\int_{1}^{2} x^{2} e^{1 + [x^{3}]} dx$ $e_{1}^{2} x^{2} \times e^{[x^{3}]} dx$ Put $x^{3} = t$ $3x^{2} dx = dt$ $\frac{e}{3}\int_{1}^{8} e^{[t]} dt$ $\frac{e}{3}\left[\int_{1}^{2} e^{1} + \int_{2}^{3} e^{2} + \int_{3}^{4} e^{3} + ... + \int_{7}^{8} e^{7}\right]$ $\frac{e}{3}\left[e + e^{2} + ... + e^{7}\right]$ $= \frac{e}{3} \times e\frac{(e^{7} - 1)}{(e - 1)}$

 $=e(e^7-1)$

Question: A line with Direction ratios (1, 4, 3) is perpendicular to the plane ax + by + cz = 1. If the point (1, 1, 2) lines in the plane, then find a - b + c. Answer: 0.00 Solution: Given (1, 4, 3) a + b + 2c = 1 $a,b,c \propto (1,4,3)$ a,b,c = t,4t,3t t + 4t + 6t = 1 11t = 1 $t = \frac{1}{11}$ $(a,b,c) = \left(\frac{1}{11}, \frac{4}{11}, \frac{3}{11}\right)$

a-b+c=0