JEE-Main-30-01-2023 (Memory Based) [Evening Shift]

Physics

Question: A person covers 4 km by $3 \mathrm{~km} / \mathrm{h}$ and another 4 km by $5 \mathrm{~km} / \mathrm{h}$. Find $V_{\text {avg }}$.
Options:
(a) $4 \mathrm{~km} / \mathrm{h}$
(b) $3.75 \mathrm{~km} / \mathrm{h}$
(c) $5 \mathrm{~km} / \mathrm{h}$
(d) $8 \mathrm{~km} / \mathrm{h}$

Answer: (b)
Solution:
$V_{\text {avg }}=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{4+4}{\frac{4}{3}+\frac{4}{5}}=\frac{8}{\frac{32}{15}}=\frac{15}{4}=3.75 \mathrm{~km} / \mathrm{h}$

Question: A prism has $A=6^{\circ}, u_{1}=1.54$ Another inverted prism has $u_{2}=1.72$. Fiind A_{2} for dispersion without deviation.

Options:

(a) 4.5°
(b) 2.5°
(c) 1.5°
(d) 5.5°

Answer: (a)

Solution: $\delta=\left(\mu_{1}-1\right) A_{1}-\left(\mu_{2}-1\right) A_{2}=0$
$0.54 \times 6^{\circ}-0.72 \times A_{2}=0$
$\Rightarrow A_{2}=4.5^{\circ}$

Question: Match the columns

a. Pressure gradient	p. $K g \mathrm{Ks}^{-1}$
b. Impulse	q. $K g \mathrm{~K}^{-2}$
c. Viscosity	r. $K g \mathrm{Km}^{-2} \mathrm{~s}^{-2}$
d. Surface tension	s. $K g \mathrm{Km}^{-1} \mathrm{~s}^{-1}$

Options:

(a) $a-p, b-r, c-q, d-s$
(b) $a-r, b-p, c-s, d-q$
(c) $a-p, b-s, c-q, d-r$
(d) $a-q, b-r, c-p, d-s$

Answer: (b)
Solution: Pressure gradient $=\frac{\Delta P}{\Delta x}=K g m^{-2} s^{-2}$
Impulse $\Delta \vec{P}=\mathrm{Kg} \mathrm{ms}^{-1}$
Viscosity $\frac{F}{6 \pi r v}=K g m-s$
Surface tension $=\frac{F}{L}$

Question: Find the equivalent resistance between A and B.

Options:

(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) $\frac{4}{3}$
(d) $\frac{3}{4}$

Answer: (b)
Solution: The given circuit can be reduced to

$\frac{1}{R}=\frac{1}{4}+\frac{7}{12}+\frac{2}{3}=\frac{3+7+8}{12}=\frac{3}{2}$
$R=\frac{2}{3}$

Question: A stone of mass 1 kg tied to a string of length 180 cm is whirled in a horizontal circle with angular speed $w=1 \mathrm{rad} / \mathrm{sec}$. The centripetal acceleration of the stone is about-
Options:
(a) $0.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.9 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.6 \mathrm{~m} / \mathrm{s}^{2}$

Answer: (c)
Solution: $l=180 \times 10^{-2}=1.8 \mathrm{~m}$
$\omega=1 \mathrm{rad} / \mathrm{s}$
$a=\omega^{2} l$
$=(1)^{2}(1.8)=1.8 \mathrm{~m} / \mathrm{s}^{2}$

Question: If potential difference across B and D is zero then find the value of x

Options:
(a) 1
(b) 2.5
(c) 5
(d) 7.5

Answer: (b)
Solution: \because PD across B and D is 0 , so this must be a balanced WSB

$\Rightarrow \frac{\frac{6}{7}}{3}=\frac{\frac{x}{x+1}}{x}$
$\Rightarrow \frac{2}{7}=\frac{1}{x+1}$
$\Rightarrow 2 x+2=7$
$\Rightarrow x=2.5$

Question: An object of mass M is released from distance R from the surface of Earth of mass M. R is the radius of Earth. Find the speed with which it strikes the earth.

Options:
(a) $\sqrt{\frac{G M}{R}}$
(b) $\sqrt{\frac{G M}{2 R}}$
(c) $\sqrt{\frac{G M}{4 R}}$
(d) $\sqrt{\frac{G M}{8 R}}$

Answer: (a)
Solution: By energy conservation
$-\frac{G M m}{2 R}=-\frac{G M m}{R}+\frac{1}{2} m v^{2}$
$\frac{G M m}{2 R}=\frac{1}{2} m v^{2}$
$v=\sqrt{\frac{G M}{R}}$

Question: A man of mass 10 kg shoots bullets of 0.02 kg at 180 bullets per sec at $100 \mathrm{~m} / \mathrm{s}$. Find impulse imparted to gun.
Options:
(a) $320 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) $200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $360 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $180 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer: (c)
Solution: Impulse $=\Delta P$
$=n(m v)$
$=180 \times 0.02 \times 100=360 \mathrm{kgm} / \mathrm{s}$
Question: A particle performs SHM and its velocity and displacement from equilibrium are related by the equation $4 V^{2}=50-x^{2}$. Find the time period of SHM
Options:
(a) π seconds
(b) 2π seconds
(c) 4π seconds
(d) 8π seconds

Answer: (c)
Solution: Comparing with $V^{2}=\omega^{2}\left(A^{2}-x^{2}\right)$
$V^{2}=\frac{1}{4}\left(50-x^{2}\right)$
$\Rightarrow \omega=\frac{1}{2}$
$\Rightarrow T=\frac{2 \pi}{\omega}=\frac{2 \pi}{V_{2}}=4 \pi$ seconds

Question: $X_{L}=200 \Omega, X_{C}=100 \Omega, R=100 \Omega, V_{r m s}=200 \sqrt{2} V$. Find $i_{r m s}$

Options:

(a) 2 A
(b) 3 A
(c) 5 A
(d) 7 A

Answer: (a)

Solution:

$z=\sqrt{100^{2}+(200-100)^{2}}=100 \sqrt{2}$
$i_{r m}=\frac{V_{r m}}{z}=\frac{200 \sqrt{2}}{100 \sqrt{2}}=2 \mathrm{~A}$

Question: A current 2A is flowing through the sides of an equilateral triangle loop of side $4 \sqrt{3} m$ as shown. Find the magnetic field induction at the centroid of the triangle.

Options:
(a) $3 \sqrt{3} \times 10^{-7} \mathrm{~T}$
(b) $\sqrt{3} \times 10^{-7} \mathrm{~T}$
(c) $2 \sqrt{3} \times 10^{-7} \mathrm{~T}$
(d) $5 \sqrt{3} \times 10^{-7} \mathrm{~T}$

Answer: (a)
Solution: $B=3\left[\frac{\mu_{0} i}{4 \pi r}(\sin \alpha+\sin \beta)\right]$
$B=3\left[\frac{\mu_{0} i}{4 \pi r}\left(\sin 60^{\circ}+\sin 60^{\circ}\right)\right]$
$B=3\left[\frac{\mu_{0} i}{4 \pi r} \times \sqrt{3}\right] r=\frac{a}{2 \sqrt{3}}$
$B=3\left[\frac{2 \mu_{0} i \times 3}{4 \pi a}\right]=\frac{9 \mu_{0} i}{2 \pi a}$
Putting the values, we get
$B=3 \sqrt{3} \times 10^{-7}$

Question: A faulty scale reads $5^{\circ} \mathrm{C}$ at melting point and 95° at steam point. Find original temperature if this faulty scale reads $41^{\circ} \mathrm{C}$

Options:

(a) $40^{\circ} \mathrm{C}$
(b) $41^{\circ} \mathrm{C}$
(c) $36^{\circ} \mathrm{C}$
(d) $45^{\circ} \mathrm{C}$

Answer: (a)
Solution: $\frac{X^{\circ} C-0}{100-0}=\frac{41-5}{95-5}$
$X^{\circ} \mathrm{C}=100 \times \frac{36}{90}=40^{\circ} \mathrm{C}$

Question: A circular coil of 100 turns and area $14 \times 10^{-2} \mathrm{~m}^{2}$ is initially held in a plane perpendicular to magnetic field B_{0}. It is rotated about its diameter at an angular velocity of 28 revolutions/min. Find max. EMF induced

Options:

(a) $\frac{11 B_{0}}{15}$
(b) $\frac{22 B_{0}}{15}$
(c) $\frac{44 B_{0}}{15}$
(d) $\frac{20 B_{0}}{15}$

Answer: (b)

Solution:

$\phi=N A B_{0} \cos \omega t$
$e=\left|\frac{d \phi}{d t}\right|$
$e=N A B_{0} \omega \sin \omega t$
$e_{\max }=N A B_{0} \omega$
$=100 \times 14 \times 10^{-2} \times B_{0} \times \frac{28 \times 2 \pi}{60}$
$=\frac{2 \times B_{0} \times 28 \times 2 \times 22}{60}=\frac{22 B_{0}}{15}$

Question: Statement 1: The efficiency of heat engine is maximum at $-273^{\circ} \mathrm{C}$
Statement 2: Efficiency of heat engine is $\eta=\frac{1-T_{2}}{T_{1}}$

Options:

(a) S 1 is correct, S 2 is incorrect
(b) S1 and S2 both are correct
(c) $S 1$ is incorrect, S 2 is correct.
(d) Both are incorrect

Answer: (b)
Solution: Conceptual

JEE-Main-30-01-2023 (Memory Based) [Evening Shift]

Chemistry

Question: BOD of water is 4 ppm , then which of the following is correct?
Options:
(a) Highly polluted
(b) Slightly polluted
(c) Safe for drink
(d) None of these

Answer: (c)
Solution: Thus, the amount of oxygen required by bacteria to break down the organic matter present in a certain volume of a sample of water, is called Biochemical Oxygen Demand (BOD). The amount of BOD in the water is a measure of the amount of organic material in the water, in terms of how much oxygen will be required to break it down biologically. Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

Question: Assertion: Antihistamines does not affect secretion of acid in stomach.
Reason: Antiallergic and antacids attack on different receptors

Options:

(a) Assertion and Reason both are correct and is the correct explanation
(b) Both Assertion and Reason are correct
(c) Assertion is incorrect but Reason is correct
(d) Assertion and Reason both are incorrect

Answer: (a)
Solution: NCERT says
Now the question that arises is, "Why do above mentioned antihistamines not affect the secretion of acid in stomach?". The reason is that antiallergic and antacid drugs work on different receptors.

Question: Group $16 \mathrm{H}_{2} \mathrm{E}$ bond dissociation energy.
Options:
(a) Increases down the group
(b) Decreases down the group
(c) First increase then decreases
(d) First decreases then increase

Answer: (b)
Solution: $\mathrm{H}_{2} \mathrm{O}=463 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{H}_{2} \mathrm{~S}=347 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{H}_{2} \mathrm{Se}=276 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{H}_{2} \mathrm{Te}=238 \mathrm{~kJ} \mathrm{~mol}^{-}$ 1

Question: Bond angle in $\mathrm{Ma}_{3} \mathrm{~b}_{3}$ type isomer
Options:
(a) $90 \& 90$
(b) $90 \& 120$
(c) $120 \& 90$
(d) $180 \& 180$

Answer: (a)

Solution:

Question: Chloride of which metal is soluble in organic solvent Options:
(a) Mg
(b) Ca
(c) K
(d) Be

Answer: (d)
Solution: Beryllium halides are essentially covalent and soluble in organic solvents.

Question: Density $=4 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{a}=0.5 \AA, \mathrm{FeO}$ find Z .
Options:
(a) 4
(b) 2
(c) 1
(d) 6

Answer: (a)

Solution: Density $=\frac{Z \times M}{a^{3} \times N_{A}}$
Question: In freundlich isotherm
Slope is 45°, intercept $=0.6020$, Pressure $=0.4 \mathrm{~atm}$ find x / m.

Freundlich isotherm

Options:

(a) 1.6
(b) 1.5
(c) 2.6
(d) 1.8

Answer: (a)

Solution:
$\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{\frac{1}{n}} \because$ Slope $=\frac{1}{\mathrm{n}}=1\left(\tan 45^{\circ}\right)$
$\operatorname{logk}=0.6020$
$\mathrm{k}=4$
$\therefore \frac{\mathrm{x}}{\mathrm{m}}=4 \times(0.4)^{1}=1.6$

Question: Product Formed on heating lithium nitrate
Options:
(a) $\mathrm{Li}_{2} \mathrm{O}$
(b) $\mathrm{Li}\left(\mathrm{NO}_{2}\right)$
(c) LiO
(d) $\mathrm{Li}_{3} \mathrm{~N}$

Answer: (a)

Solution: Lithium nitrate when heated gives lithium oxide, $\mathrm{Li}_{2} \mathrm{O}$, whereas other alkali metal nitrates decompose to give the corresponding nitrite.
$4 \mathrm{LiNO}_{3} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Question: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \quad \Delta \mathrm{H}=-190 \mathrm{~kJ} / \mathrm{mol}$
A. Increasing temperature
B. Increasing pressure
C. Increasing SO_{2}
D. Increasing O_{2}
E. Adding catalyst

How many factors are responsible for getting more product?
Options:
(a) 3
(b) 4
(c) 5
(d) 2

Answer: (a)
Solution: For exothermic reaction, increases in temperature retards reaction catalyst has no effect on product formation.

Question: The maximum no of electrons in $n=4$ shell Options:
(a) 72
(b) 50
(c) 16
(d) 32

Answer: (d)
Solution: $2 \mathrm{n}^{2}=2 \times(4)^{2}=32$

Question: Statement 1: A mixture of chloroform and aniline can be separated by simple distillation.
Statement 2: When separating aniline from a mixture of aniline and water by steam distillation aniline boils below its boiling point.

Options:

(a) Statement I and II are correct
(b) Statement I is correct
(c) Statement II is correct
(d) Both Statement are incorrect

Answer: (a)

Solution:

Distillation: This important method is used to separate (i) volatile liquids from nonvolatile impurities and (ii) the liquids having sufficient difference in their boiling points. Liquids having different boiling points vaporise at different temperatures. The vapours are cooled and the liquids so formed are collected separately. Chloroform (b.p 334 K) and aniline (b.p. 457 K) are easily separated by the technique of distillation.

Question: Order of $\mathrm{S}_{\mathrm{N}} 1$ reactivity is

(a)

(b)

(c)

Options:

(a) $c>a>b$
(b) $\mathrm{c}>\mathrm{b}>\mathrm{a}$
(c) a $>c>b$
(d) $a>b>c$

Answer: (a)
Solution: $\mathrm{S}_{\mathrm{N}} 1$ occur's via carbocation stability.

Question: Formula of Nessler's reagent?
Options:
(a) $\mathrm{K}_{2}\left[\mathrm{HgI}_{4}\right]$
(b) $\mathrm{K}_{3}\left[\mathrm{HgI}_{5}\right]$
(c) $\mathrm{K}_{4}\left[\mathrm{HgI}_{6}\right]$
(d) $\mathrm{KI} . \mathrm{HgI}_{2}$

Answer: (a)
Solution: $\mathrm{K}_{2} \mathrm{HgI}_{4}$

Question: Statement-1:

Statement-2: $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ will convert $\mathrm{C}=\mathrm{O}$ into CH_{2}.
Options:
(a) Statement I is correct
(b) Statement I and II are correct
(c) Statement I is incorrect
(d) Statement II is incorrect

Answer: (c)

Solution:

Question: For a first order reaction half life is 540 s, then calculate time required for 90% decomposition?
Options:
(a) 987 sec
(b) 678 sec
(c) 1281 sec
(d) 1740 sec

Answer: (d)
Solution: 1740 sec

Question: Order of acidic Strength is

(A)

(B)

(C)

(D)

Options:

(a) $\mathrm{C}>\mathrm{A}>\mathrm{B}>\mathrm{D}$
(b) $\mathrm{C}>$ B $>$ A $>$ D
(c) A $>$ C $>$ B $>$ D
(d) A $>$ B $>$ C $>$ D

Answer: (a)
Solution: C > A > B > D

Question: Lead storage battery have $38 \%(w / w) \mathrm{H}_{2} \mathrm{SO}_{4}$. find the temperature at which the liquid of battery will freeze $\left(\mathrm{i}=2.67 ; \mathrm{k}_{\mathrm{f}}\right.$ of water $\left.=1.86 \mathrm{~K} . \mathrm{kg} / \mathrm{mol}\right)$

Options:

(a) $-3.1^{\circ} \mathrm{C}$
(b) $-31^{\circ} \mathrm{C}$
(c) $-0.31^{\circ} \mathrm{C}$
(d) $-0.031^{\circ} \mathrm{C}$

Answer: (b)

Solution:

$\mathrm{m}=\frac{38}{98} \times \frac{1000}{62}=6.254$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}=1.86 \times 2.67 \times 6.25=31.059$
or $\mathrm{T}_{\mathrm{f}}=-31.059{ }^{\circ} \mathrm{C}$

Question: The option containing the correct match is given as :

List - I	List - II
A. $\mathrm{Ni}(\mathrm{CO})_{4}$	(i) sp^{3}
B. $[\mathrm{Ni}(\mathrm{CN} 4)]^{2-}$	(ii) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(iii) $\mathrm{d}^{2} \mathrm{sp}^{3}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	(iv) dsp^{2}

Options:

(a) (A) - (i), (B) - (iv), (C) - (ii), (D) - (iii)
(b) (A) - (iii), (B) - (ii), (C) - (iv), (D) - (i)
(c) (A) - (ii), (B) - (iii), (C) - (iv), (D) - (i)
(d) (A) - (vi), (B) - (ii), (C) - (i), (D) - (iii)

Answer: (a)

Solution:

A. $\mathrm{Ni}(\mathrm{CO})_{4}$	(i) sp^{3}
B. $[\mathrm{Ni}(\mathrm{CN} 4)]^{2-}$	(ii) dsp^{2}
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(iii) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	(iv) $\mathrm{d}^{2} \mathrm{sp}^{3}$

JEE-Main-30-01-2023 (Memory Based)
[Evening Shift]

Mathematics

Question: Range of $y=\sqrt{2+x}+\sqrt{3-x}$ is
Answer: $[\sqrt{5}, \sqrt{10}]$

Solution:

$y=\sqrt{2+x}+\sqrt{3-x}$
$y=\sqrt{x-(-2)}+\sqrt{3-x}$

\therefore Minimum value $=\sqrt{5}$
Maximum value $=\sqrt{\frac{5}{2}}+\sqrt{\frac{5}{2}}=\sqrt{10}$
Thus, range $=[\sqrt{5}, \sqrt{10}]$

Question: If $a_{1}, a_{2}, a_{3}, . ., a_{k}$ be an AP with $a_{1}=1$ and $d=1$, find

$$
\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right) .
$$

Answer: $\frac{\pi}{4}-\cot ^{-1} 2022$

Solution:

$$
\begin{equation*}
\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right) \tag{i}
\end{equation*}
$$

Given that $a_{1}, a_{2}, a_{3}, . ., a_{k}$ are in AP with first term $=1 \&$ common difference $=1$
\therefore (i) can be written as
$\tan ^{-1}\left(\frac{a_{2}-a_{1}}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{a_{3}-a_{2}}{1+a_{2} a_{3}}\right)+\ldots+\tan ^{-1}\left(\frac{a_{2022}-a_{2021}}{1+a_{2021} a_{2022}}\right)$

$$
\begin{aligned}
& =\tan ^{-1} a_{2}-\tan ^{-1} a_{1}+\tan ^{-1} a_{3}-\tan ^{-1} a_{2}+\ldots+\tan ^{-1} a_{2022}-\tan ^{-1} a_{2021} \\
& =\tan ^{-1} a_{2022}-\tan ^{-1} a_{1} \\
& =\tan ^{-1} a_{2022}-\tan ^{-1} 1 \\
& =\tan ^{-1} a_{2022}-\frac{\pi}{4} \\
& =\tan ^{-1} 2022-\frac{\pi}{4} \\
& =\frac{\pi}{2}-\cot ^{-1} 2022-\frac{\pi}{4} \\
& =\frac{\pi}{4}-\cot ^{-1} 2022
\end{aligned}
$$

Question: How many 7-digit odd numbers can be formed using the digits $1,2,2,2,3,3,5$?

Answer: 240.00

Solution:

Given digits are $1,2,2,2,3,3,5$
For 7-digit odd numbers, we have the following cases
Case-I:

- - - - - 1

Number of numbers $=\frac{6!}{3!2!}=60$
Case-II:

- - - - - 3

Number of numbers $=\frac{6!}{3!2!}=60$
Case-III:
$-----\frac{5}{}$
Number of numbers $=\frac{6!}{3!}=120$
\therefore Total number of 7-digit numbers $=60+60+120=240$

Question: \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$ and $\vec{c}=(\vec{a} \times \vec{b})-3 \vec{b}$.
Find $\vec{b} . \vec{c}$.
Answer: -48

Solution:

Given that: $|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$
And, $\vec{c}=(\vec{a} \times \vec{b})-3 \vec{b}$

$$
\begin{aligned}
\vec{b} \cdot \vec{c} & =\vec{b} \cdot\{(\vec{a} \times \vec{b})-3 \vec{b}\} \\
& =(\vec{a} \times \vec{b}) \cdot \vec{b}-3|\vec{b}|^{2} \\
& =0-3(4)^{2} \\
& =0-48 \\
& =-48
\end{aligned}
$$

Question: Find the $8^{\text {th }}$ common term in the following sequences:
$3,7,11, \ldots$ and $1,6,11, \ldots$.

Answer: 151.00

Solution:

Given sequences are
$3,7,11,15, \ldots \rightarrow d_{1}=4$
$1,6,11,16, \ldots . \rightarrow d_{2}=5$
\therefore Common difference of the AP of the common terms of above two series is given by LCM
$\left(d_{1}, d_{2}\right)$
i.e., $\operatorname{LCM}(4,5)$

Thus, $d=20$
The first common term is, $a=11$
$\therefore a_{8}=a+7 d=11+7(20)=11+140=151$

Question: P is a 3×3 matrix such that $P^{T}=A P-(a-1) I$, then

Options:

(a) $|\operatorname{adj} P|=1$
(b) P is a singular matrix
(c) $|\operatorname{adj} P|>\frac{1}{2}$
(d) $|\operatorname{adj} P|>1$

Answer: (a)

Solution:

$P^{T}=A P-(a-1) I$
Taking transpose on both sides

$$
\begin{aligned}
& P=a P^{T}-(a-1) I \\
& \Rightarrow P=a(a P-(a-1) I)-(a-1) I \\
& \Rightarrow P=a^{2} P-a(a-1) I-(a-1) I
\end{aligned}
$$

$\Rightarrow\left(1-a^{2}\right) P=-I\left(a^{2}-a+a-1\right)$
$\Rightarrow\left(1-a^{2}\right) P=-I\left(a^{2}-1\right)$
$\Rightarrow\left(1-a^{2}\right)(P-I)=0$
$\Rightarrow a^{2}=1$ or $P=I$
$a^{2}=1$ is neglected as $a \neq 1$ or -1
$\therefore P=I$
$|P|=1$
$\therefore|\operatorname{adj} P|=|P|^{2}=1$

Question: Find the area of the region bounded by $y \geq x^{2}, y \geq(1-x)^{2}$ and $y \leq-2 x^{2}+2 x$.
Answer: $\frac{5}{108}$

Solution:

We have, $y \geq x^{2}, y \geq(1-x)^{2}$ and $y \leq-2 x^{2}+2 x$

Solving $y=(1-x)^{2} \& y=-2 x^{2}+2 x$, we get
$1+x^{2}-2 x=-2 x^{2}+2 x$
$3 x^{2}-4 x+1=0$
$3 x^{2}-3 x-x+1=0$
$3 x(x-1)-1(x-1)=0$
$(3 x-1)(x-1)=0$
$3 x=1$ or $x=1$
$\Rightarrow x=\frac{1}{3}$ or $x=1$
\therefore Required Area $=2 \int_{\frac{1}{3}}^{\frac{1}{2}}\left[\left(-2 x^{2}+2 x\right)-\left(1-x^{2}\right)\right] d x$
$=2 \int_{\frac{1}{3}}^{\frac{1}{2}}\left(-3 x^{2}+4 x-1\right) d x$
$=2\left[-x^{3}+2 x^{2}-x\right]_{\frac{1}{3}}^{\frac{1}{2}}$
$=2\left[\frac{-1}{8}+\frac{1}{2}-\frac{1}{2}-\left(\frac{1}{27}+\frac{2}{9}-\frac{1}{3}\right)\right]$
$=2\left[\frac{-1}{8}+\frac{4}{27}\right]$
$=\frac{5}{108}$
Question: If $\frac{d y}{d x}=-\frac{\left(x^{2}+3 y^{2}\right)}{\left(3 x^{2}+y^{2}\right)} ; y(1)=0$, then
Answer: $\ln (x+y)=\frac{-2 x y}{(x+y)^{2}}$
Solution:
We have, $\frac{d y}{d x}=-\frac{\left(x^{2}+3 y^{2}\right)}{\left(3 x^{2}+y^{2}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(1+\frac{3 y^{2}}{x^{2}}\right)}{3+\frac{y^{2}}{x^{2}}}$
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
\therefore (1) becomes
$v+x \frac{d v}{d x}=\frac{-\left(1-3 v^{2}\right)}{3+v^{2}}$
$x \frac{d v}{d x}=\frac{-1-3 v^{2}-3 v-v^{3}}{3+v^{2}}$
$\frac{\left(3+v^{2}\right) d v}{(1+v)^{3}}=\frac{-d x}{x}$
Integrating both sides, we get
$\int \frac{\left(3+v^{2}\right)}{\left(1+v^{3}\right)} d v=-\int \frac{d x}{x}$

Put $v+1=t \Rightarrow d v=d t$
Now (2) becomes
$\int \frac{3+(t-1)^{2}}{(t)^{3}} d t=-\ln x+C$
$\Rightarrow \int \frac{\left(4+t^{2}-2 t\right)}{t^{3}} d t=-\ln x+C$
$\Rightarrow \int \frac{4}{t^{3}} d t+\int \frac{1}{t} d t-2 \int \frac{1}{t^{2}} d t=-\ln x+C$
$\Rightarrow \frac{-2}{t^{2}}+\ln t+\frac{2}{t}=-\ln x+C$
$\Rightarrow \frac{-2}{(1+v)^{2}}+\ln (1+v)+\frac{2}{(1+v)}=-\ln x+C$
$\Rightarrow \frac{-2}{\left(1+\frac{y}{x}\right)^{2}}+\ln \left(1+\frac{y}{x}\right)+\frac{2}{\left(1+\frac{y}{x}\right)}=-\ln x+C$
Now given that $y(1)=0$
$\therefore \frac{-2}{(1+0)^{2}}+\ln (1+0)+\frac{2}{(1+0)}=-\ln 1+C$
$\Rightarrow-2+0+2=0+C$
$\Rightarrow C=0$
Thus, (3) becomes
$\frac{-2 x^{2}}{(x+y)^{2}}+\ln (x+y)-\ln x+\frac{2 x}{x+y}+\ln x=0$
$\Rightarrow \ln (x+y)=\frac{2 x^{2}-2 x(x+y)}{(x+y)^{2}}$
$\Rightarrow \ln (x+y)=\frac{-2 x y}{(x+y)^{2}}$
Question: Consider the circle $x^{2}+y^{2}=8$ and parabola $y^{2}=16 x$. Common tangents are drawn from a point A on x-axis, which touches circle and parabola at $P \& Q$. Then $(P Q)^{2}=$?
Answer: 72.00

Solution:

We have $x^{2}+y^{2}=8$
And parabola, $y^{2}=16 x$
Tangent to parabola is given by
$t y=x+4 t^{2}$
Also, it is tangent to circle
$\frac{4 t^{2}}{\sqrt{1+t^{2}}}=2 \sqrt{2}$
$\Rightarrow 4 t^{4}=2+2 t^{2}$
$\Rightarrow 2 t^{4}-t^{2}-1=0$
Let $t^{2}=u$
$\therefore 2 u^{2}-u-1=0$
$\Rightarrow u=\frac{-1}{2}, 1$
$\Rightarrow u=1\left(\right.$ as $\left.u=t^{2} \neq \frac{-1}{2}\right)$
$\Rightarrow t^{2}=1$
$\Rightarrow t= \pm 1$
Now, $Q \equiv(4,8)$
$P Q=$ length of tangent of circle from $Q=\sqrt{S_{1}}$
$=\sqrt{16+64-8}=\sqrt{72}$
$\therefore(P Q)^{2}=72$

Question: a^{3}, b^{3}, c^{3} are in AP and $\log _{a} b, \log _{b} c, \log _{c} a$ are in GP.
$a_{1}=\frac{a+4 b+c}{3}, d=\frac{a-8 b+c}{10}$. Sum of first 20 terms is -444. Find $a b c$.
Answer: 216.00

Solution:

a^{3}, b^{3}, c^{3} are in AP
$\Rightarrow 2 b^{3}=a^{3}+c^{3}$
$\log _{a} b, \log _{b} c, \log _{c} a$ are in GP
$\left(\log _{b} c\right)^{2}=\log _{a} b \times \log _{c} a$
$\Rightarrow\left(\log _{b} c\right)^{2}=\log _{c} b$
$\Rightarrow\left(\log _{b} c\right)^{3}=1$
$\Rightarrow \log _{b} c=1 \Rightarrow b=c$
From (1) \& (2)
$a=b=c$
$a_{1}=\frac{a+4 b+c}{3}=\frac{6 a}{3}=2 a$
$d=\frac{a-8 b+c}{10}=\frac{-3 a}{5}$
$S_{20}=\frac{20}{2}\left[2(2 a)+19\left(\frac{-3 a}{5}\right)\right]$
$\Rightarrow-444=10\left[4 a-\frac{57 a}{5}\right]$
$\Rightarrow-444=\frac{10}{5}[20 a-57 a]$
$\Rightarrow-444=2[-37 a]$
$\Rightarrow 74 a=444$
$\Rightarrow a=6$
$\therefore a b c=a^{3}=6^{3}=216$

Question: If $x=(8 \sqrt{3}+13)^{13}, y=(6 \sqrt{2}+9)^{9}$, then tell whether $[x]$ and $[y]$ are even or odd.
Answer: $[x]$ is even, $[y]$ is odd

Solution:

$$
x=(8 \sqrt{3}+13)^{13}
$$

We know, $R=I+f$
Let $R=(8 \sqrt{3}+13)^{13}$
and $G=(8 \sqrt{3}-13)^{13}$
$R-G=2 k$
$\Rightarrow f=G$
$I+f-G=2 k$
$I=2 k$
I is even
i.e. $[x]$ is even

Now, $y=(6 \sqrt{2}+9)^{9}$
Let $R=(6 \sqrt{2}+9)^{9}$
$G=(9-6 \sqrt{2})^{9}$
$R+G=2 k$
$\Rightarrow f+G=1$
Thus, $I+f+G=2 k$
$I+1=2 k$
$\Rightarrow I=2 k-1$
$\Rightarrow I$ is odd
$\Rightarrow[y]$ is odd.
Question: $f(x)=\left\{\begin{array}{ccc}\frac{x}{|x|} & ; \quad x \neq 0 \\ 1 & ; & x=0\end{array}, g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{x+1} & ; x \neq-1 \\ 1 & ; x=-1\end{array}, h(x)=2[x]-f[x]\right.\right.$, then $\lim _{x \rightarrow 1} g(h(x-1))=$?

Answer: 1.00

Solution:

$f(x)=\left\{\begin{array}{ccc}\frac{x}{|x|} & ; & x \neq 0 \\ 1 & ; & x=0\end{array}, g(x)=\left\{\begin{array}{cl}\frac{\sin (x+1)}{x+1} & ; x \neq-1 \\ 1 & ; x=-1\end{array}, h(x)=2[x]-f[x]\right.\right.$,
$\lim _{x \rightarrow 1^{+}} g(h(x-1))=g(-1)=1$
$\lim _{x \rightarrow 1^{-}} g(h(x-1))=g(-1)=1$
$\therefore \lim _{x \rightarrow 1} g(h(x-1))=1$

Question: The curve $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x+f y=0$ intersect at $y=1$, where a, b, c are in GP. Find the relation in d, e, f, a, b, c.
Answer: $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in AP

Solution:

Given curves $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x+f y=0$
Let the curves intersect at $(\alpha, 1)$
$\therefore a x^{2}+2 b x+c y=0$
$d x^{2}+2 e x+f y=0$
α is the common root
Now, given that a, b, c are in GP
$\Rightarrow b^{2}=a c$
From (i)
$x=\frac{-2 b \pm \sqrt{4 b^{2}-4 a c}}{2 a}$
$x=\frac{-b}{a}$
\therefore Common root, $\alpha=\frac{-b}{a}$
Substituting in (ii), we get
$d\left(\frac{b^{2}}{a^{2}}\right)-2 e\left(\frac{b}{a}\right)+f=0$
$d\left(\frac{a c}{a^{2}}\right)-2 e\left(\frac{\sqrt{a c}}{a}\right)+f=0$
$d \frac{c}{a}-2 e \sqrt{\frac{c}{a}}+f=0$
$\Rightarrow \frac{d}{a}-\frac{2 e}{\sqrt{a c}}+\frac{f}{c}=0$
$\Rightarrow \frac{d}{a}+\frac{f}{c}=\frac{2 e}{b}$
$\Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in AP

Question: If the points $(2, k, 0),(1, k,-1)$ and $(1,1,2)$ lie in a plane which is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$. Then $\frac{2 k^{2}+1}{(k-1)(k-2)}=$?

Answer: 18.00

Solution:

Let $A(2, k, 0), B(1, k,-1)$ and $C(1,1,2)$ lie in the plane which is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$
Now $\overrightarrow{A B} \& \overrightarrow{A C}$ will lie in the same plane
Since the plane is parallel to line (i)
$\therefore \overrightarrow{A B} \times \overrightarrow{A C}$ will be parallel to line (i)

$\Rightarrow(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot(\hat{i}+\hat{j}-\hat{k})=0$
$\left|\begin{array}{ccc}-1 & 0 & -1 \\ -1 & 1-k & 2 \\ 1 & 1 & -1\end{array}\right|=0$
$\Rightarrow-1(k-1-2)-1(-1+k-1)=0$
$\Rightarrow 3-k+2-k=0$
$\Rightarrow 2 k=5$
$\Rightarrow k=\frac{5}{2}$
$\therefore \frac{2 k^{2}+1}{(k-1)(k-2)}=\frac{2\left(\frac{25}{4}\right)+1}{\left(\frac{3}{2}\right) \times\left(\frac{1}{2}\right)}=\frac{27 \times 4}{2 \times 3}=18$

Question: Line is parallel to the line $x+y-2 z-2=0$ and $x-3 y+2 z=0$, passes through $(5,2,3)$. If α is the distance of this line from $(4,3,8)$, then $3 \alpha^{2}=$?

Answer: 56.00

Solution:

Required lines is passing through $(5,2,3)$
And is parallel to the lines $x+y-2 z-2=0$ and $x-3 y+2 z=0$
Now line of intersection of $x+y-2 z-2=0$ and $x-3 y+2 z=0$ is given by $(\hat{i}+\hat{j}-2 \hat{k}) \times(\hat{i}-3 \hat{j}+2 \hat{k})=\hat{i}+\hat{j}+\hat{k}$
Thus, the equation of the required line is
$\frac{x-5}{1}=\frac{y-2}{1}=\frac{z-3}{1}$
Now, $\overrightarrow{A B}=\hat{i}-\hat{j}-5 \hat{k}$

$\Rightarrow|\overrightarrow{A B}|=\sqrt{1^{2}+1^{2}+25}=\sqrt{27}$
And $|\overrightarrow{A C}|=\left|(\hat{i}-\hat{j}-5 \hat{k}) \cdot \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}\right|$
$=\left|\frac{1}{\sqrt{3}}(-5)\right|=\left|\frac{-5}{\sqrt{3}}\right|$
$|\overrightarrow{A C}|=\frac{5}{\sqrt{3}}$
$|\overrightarrow{B C}|=\sqrt{27-\frac{25}{3}}=\sqrt{\frac{56}{3}}$
$\Rightarrow \alpha=\sqrt{\frac{56}{3}}$
$\Rightarrow 3 \alpha^{2}=56$

Question: $\lim _{n \rightarrow \infty} \frac{3}{n}\left(4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\left(2+\frac{3}{n}\right)^{2}+\ldots .+\left(3-\frac{1}{n}\right)^{2}\right)=$?
Answer: 19.00

Solution:

$\lim _{n \rightarrow \infty} \frac{3}{n}\left(4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\left(2+\frac{3}{n}\right)^{2}+\ldots .+\left(3-\frac{1}{n}\right)^{2}\right)$
$3\left\{\frac{4}{n}+\left[\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2} \ldots .+\left(2+\frac{n-1}{n}\right)^{2}\right] \frac{1}{n}\right\}$
$=3\left[\frac{4}{n}+\sum_{r=1}^{n-1}\left(2+\frac{r}{n}\right)^{2} \cdot \frac{1}{n}\right]\left[\begin{array}{l}\frac{r}{n}=x \\ \frac{1}{n}=d x\end{array}\right]$
$=3\left[\int_{0}^{1}(2+x)^{2} d x\right]$
$=\left.3 \frac{(x+2)^{3}}{3}\right|_{0} ^{1}=27-8=19$

Question: p: I have fever; q: I will not take medicine; r: I will take rest. "If I have fever then I will take medicine and I will take rest" is given by
Answer: $p \rightarrow \sim q \wedge r$

Solution:

Given, p: I have fever
q : I will not take medicine
r: I will take rest
So, "If I have fever then I will take medicine and I will take rest" is written as $p \rightarrow \sim q \wedge r$

Question: The $50^{\text {th }}$ root of x and y is 12 and 18 respectively. Find the remainder when $x+y$ is divided by 5 .

Answer: $\mathbf{3 . 0 0}$

Solution:

Given that
$x^{\frac{1}{50}}=12 \Rightarrow x=12^{50}$
And $y^{\frac{1}{50}}=18 \Rightarrow y=18^{50}$
Now $12^{50}=(144)^{25}=(145-1)^{25}$
On expanding we will get remainder as -1
Similarly $18^{50}=(324)^{25}=(325-1)^{25}$
On expanding we will get remainder as -1
Thus when $x+y$ is divided by 5 , we will get remainder as -2 i.e. 3

Question: $p \in[0,10], q=$ maximum value of p such that $x^{2}-p x-\frac{5}{4} p=0$ has rational roots. Find area bounded by $0 \leq x \leq q, 0 \leq y \leq(x-q)^{2}$.
Answer: 243.00

Solution:

Given that $q=$ maximum value of p such that $x^{2}-p x-\frac{5}{4} p=0$ has rational roots, where $p \in[0,10]$
Now, $x^{2}-p x-\frac{5}{4} p=0$ has rational roots
$\Rightarrow p^{2}-5 p$ should be perfect square
$\Rightarrow p(p-5)$ should be perfect square
Now $p \in[0,10]$
$\Rightarrow p=9$
$\therefore q=9$

\therefore Required area $=\frac{1}{3} \times 9 \times 81=243$

Question: Consider $A=\{2,4,6, \ldots, 100\}$ and $B=\{1,3,5, \ldots, 99\} . a+b$ leaves remainder 2
when divided by 23 , where $a \in A, b \in B$. Number of ordered pairs (a, b) are
Answer: 108.00

Solution:

Given, $A=\{2,4,6, \ldots, 100\}$ and $B=\{1,3,5, \ldots, 99\}$
$a+b$ leaves remainder 2 when divided by 23
$a+b=23 k+2$
$k=1 \Rightarrow a+b=25 \rightarrow 12$ pairs
$k=3 \Rightarrow a+b=71 \rightarrow 35$ pairs
$k=5 \Rightarrow a+b=117 \rightarrow 42$ pairs
$k=7 \Rightarrow a+b=163 \rightarrow 19$ pairs
Number of ordered pairs (a, b) are
$12+35+42+19=108$

