JEE MAIN 2023

JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - CHEMISTRY

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance?

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM :
15 \& 29 MARCH'23

Unleashing Potential

CHEMISTRY

1. In a nonpolar solvent arrangement of micelle can be shown by which of the following
(1)

(2)

(3)

(4)

Ans. (1)
(Surface chemistry)
2. Match the column

Shapes

(A) $\mathrm{NH}_{4}{ }^{+}$
(P) Square planar
(B) XeF_{4}
(Q) See-saw
(C) SF_{4}
(R) Tetrahedral
(D) BrCl_{3}
(S) T-shape
(Chemical Bonding)
Sol. $\mathrm{NH}_{4}{ }^{+}$: Tetrahedral
XeF_{4} : Square planar
SF_{4} : See-saw
BrCl_{3} : T-shape
3. $\mathrm{Cu}^{2+}+\mathrm{KI} \longrightarrow \mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C}$

B \& C are:

Sol. $\mathrm{Cu}^{2+}+\mathrm{KI} \longrightarrow \mathrm{CuI}_{2} \downarrow \longrightarrow \underset{(\mathrm{~B})}{\mathrm{Cu}_{2} \mathrm{I}_{2}+\underset{(\mathrm{C})}{\mathrm{I}_{2}}}$
4. Which transition in hydrogen atom will have the same wavelength as $4 \rightarrow 2$ transition in He^{+}ion spectrum?
Ans. $\quad \mathbf{2} \boldsymbol{1}$

(Atomic Structure)

Sol. $\quad \frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{3}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{4}}$
for He^{+}
$Z_{1}=2$
$\mathrm{n}_{1}=2$
$\mathrm{n}_{2}=4$
$\mathrm{H} \quad \mathrm{Z}_{2}=1$
$\mathrm{n}_{3}=$?
$\mathrm{n}_{4}=$?
$\frac{2}{1}=\frac{2}{\mathrm{n}_{3}}=\frac{4}{\mathrm{n}_{4}}$

$$
\begin{array}{ll}
\mathrm{n}_{3}=1 & \mathrm{n}_{4}=2 \\
\hline
\end{array}
$$

Unleashing Potential
5. $\quad \mathrm{Zn}+\underset{\text { excess }}{\mathrm{HCl}} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Find volume of H_{2} at STP
V_{m} at $\mathrm{STP}=22.7 \mathrm{~L}$,
Atomic mass of $\mathrm{Zn}=64.5$
Ans. $\mathbf{4 . 0 4 7} \mathbf{L}$
(Mole Concept)
Sol. $\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
Mole of $\mathrm{Zn}=\frac{11.5}{64.5}$
Mole of $\mathrm{H}_{2}=\frac{11.5}{64.5}$ mole
Volume of H_{2} at $\mathrm{STP}=\frac{11.5}{64.5} \times 22.7$

$$
=4.047 \mathrm{~L}
$$

6. Oxidation state of phosphorus in Hypophosphoric acid is \qquad
Ans. +4
(Chemical Bonding)
Sol. Hypophosphoric acid: $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
O.S. of $\mathrm{P} \Rightarrow+4$
7. Which of the following is/are not a method of concentration of ore?
(a) Hydraulic washing
(b) Froth Floatation
(c) Electrolysis
(d) Leaching
(e) Liquation

(Metallurgy)

Sol. Except electrolysis and liquation all other are methods of concentration of ore.
8. Lead storage battery contains $38 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass, then find the temperature at which liquid of battery will freeze? $\left(\mathrm{i}=2.67, \mathrm{~K}_{\mathrm{f}}\right.$ of water $\left.=1.86 \mathrm{k}-\mathrm{kg} / \mathrm{mole}\right)$.
Ans. $-31.05^{\circ} \mathrm{C}$
(Solution \& Colligative properties)
Sol. $\Delta T_{f}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$

$$
\begin{aligned}
&= 2.67 \times 1.86 \times \frac{38}{98} \times \frac{1000}{62} \\
&=31.05^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {solvent }}-\left(\mathrm{T}_{\mathrm{f}_{1}}\right)_{\text {solution }} \\
& 31.05=0-\left(\mathrm{T}_{\mathrm{f}_{1}}\right)_{\text {solution }} \\
&\left(\mathrm{T}_{\mathrm{f}_{\mathrm{f}}}\right)_{\text {solution }}=-31.05^{\circ} \mathrm{C}
\end{aligned}
$$

- IN

9. $\quad 0.6 \mathrm{~g} \times$ gas $(M W=20 \mathrm{~g})$ and $0.45 \mathrm{~g} \mathbf{y}$ gas $(\mathrm{MW}=45 \mathrm{~g})$ are mix together in non-reacting mixture. If total pressure is 740 mm of Hg , then calculate partial pressure of \mathbf{x} gas in mixture.
Ans. 555
(Solution \& Colligative properties)
Sol. $\mathrm{n}_{\mathrm{x}}=\frac{0.6}{20}=0.03 \mathrm{~mole}$
$\mathrm{n}_{\mathrm{y}}=\frac{0.45}{45}=0.01 \mathrm{~mole}$
Total mole $=0.03+0.01=0.04$ mole

$$
\begin{aligned}
\mathrm{P}_{\mathrm{x}}= & \frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{n}_{\text {total }}} \times 740 \\
& =\frac{0.03}{.04} \times 740 \\
& =\frac{3}{4} \times 740 \\
& =555
\end{aligned}
$$

10. $\quad \mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{~V}_{2} \mathrm{O}_{3}, \mathrm{~V}_{2} \mathrm{O}_{4}$ basicity order :

Ans. $\mathrm{V}_{2} \mathrm{O}_{5}<\mathrm{V}_{2} \mathrm{O}_{4}<\mathrm{V}_{2} \mathrm{O}_{3}$ (basic strength)
Sol. $\quad \mathrm{V}_{2} \mathrm{O}_{5}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{3}$
As oxidation number increasing acidic strength increases.
11. The electronic configuration of Nd^{2+} is given as :
(1) $4 f^{2}$
(2) $4 f^{3}$
(3) $4 f^{4}$
(4) $4 f^{5}$
(d- \& f-Block Elements)

Ans. (3)
Sol. Neodynium for $\mathrm{Nd}^{2+}(\mathrm{Z}=60)$: $[\mathrm{Xe}] 4 \mathrm{f}^{4}$ as $\mathrm{Nd}:[\mathrm{Xe}] 4 \mathrm{f}^{4} 6 \mathrm{~s}^{2}$
12. 2.56 g of a non-electrolyte solute is dissolved in one litre of a solution, it has osmotic pressure equal to 4 bar at 300 K temperature. Then find the molar mass of the compound.
Given $\mathrm{R}=0.083$ bar, round off to the nearest integer.
Ans. 16 gm/mole
(Solution \& Colligative properties)
Sol. $\pi=\mathrm{iCST}$

$$
\begin{aligned}
4 & =1 \times \frac{2.56}{M} \times 0.083 \times 300 \\
M & =\frac{2.56 \times 0.083 \times 300}{4} \\
& =15.936 \approx 16 \mathrm{gm} / \mathrm{mole}
\end{aligned}
$$

-INSTITUE
13. Arrange the following isoelectronic species in order of their radius :

$$
\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}
$$

(Periodic Table)

Sol. $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
$16 \mathrm{p} \quad 17 \mathrm{p} \quad 19 \mathrm{p} \quad 20 \mathrm{p}$
$18 \mathrm{e}^{-} \quad 18 \mathrm{e}^{-} \quad 18 \mathrm{e}^{-} \quad 18 \mathrm{e}^{-}$
14. $\quad \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{T}=27^{\circ} \mathrm{C}$

If $K_{C}=5 \times 10^{-12}$ and $K_{P}=x \times 10^{-12}$, then find out value of x.
$\left(\mathrm{R}=\frac{1}{12} \mathrm{~atm}\right.$ litre mole $\left.^{-1} \mathrm{~K}^{-1}\right)$
Ans. 1

(Chemical Equilibrium)

Sol. $\quad \Delta \mathrm{n}_{\mathrm{g}}=1-(1+1 / 2)=-1 / 2$
$K_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
$\mathrm{x} \times 10^{-12}=5 \times 10^{-12} \times\left(\frac{1}{12} \times 300\right)^{-1 / 2}=5 \times 10^{-12} \times\left(\frac{1}{5}\right)$
$\mathrm{x}=1$
15. Determine $\Delta \mathrm{H}_{\mathrm{r}}^{\circ}$ for $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cl}^{-}$(aq)

Given Bond enthalpy of $\mathrm{Cl}-\mathrm{Cl}=240 \mathrm{~kJ} /$ mole
Electron gain enthalpy of $\mathrm{Cl}(\mathrm{g})=-350 \mathrm{~kJ} / \mathrm{mole}$
Hydration enthalpy of $\mathrm{Cl}^{-}(\mathrm{g})=-360 \mathrm{~kJ} /$ mole

Sol.

$$
\Delta \mathrm{H}_{\mathrm{r}}^{\mathrm{o}}=\frac{1}{2} \times 240+(-350)+(-360)=-590 \mathrm{~kJ} / \mathrm{mole}
$$

16. A compound of Co^{2+} on dissolution in water gives pink coloured octahedral compound (X), which on reaction with Cl^{-}gives blue coloured compound (Y) of shape ' Z '. $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ are
(Coordination Compounds)
Sol. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CoCl}_{4}{ }^{2-}$
Pink Blue, sp^{3} tetrahedral

Unleashing Potential
17. The correct order of melting point of following compound is
[Haloalkanes \& Haloarence]

(I)

(II)

(III)
(1) I $>$ II $>$ III
(2) III $>$ I $>$ II
(3) III $>$ II $>$ I
(4) I $>$ II $>$ III

Ans. (2)

Sol.

M.P. $=256 \mathrm{~K} \quad$ M.P. $=249 \mathrm{~K} \quad$ M.P. $=323 \mathrm{~K}$
18. Choose correct option for following conversion
[Haloalkanes \& Haloarence Part-2]

(1) $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$, alc. KOH followed by $\mathrm{NaNH}_{2} / \Delta, \mathrm{Na}^{2} / \mathrm{NH}_{3}($ l)
(2) $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$, alc. KOH followed by $\mathrm{NaNH}_{2} / \Delta, \mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(3) $\mathrm{Br}_{2} / \mathrm{CCl}_{4}, \mathrm{Na} / \mathrm{NH}_{3}(\ell), \mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(4) $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$, alc. $\mathrm{KOH} / \Delta, \mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$

Ans. (1)
19. Which artificial sugar have highest sweetness yalue in comparison to cane sugar ?
[Chemistry in every day life]
(1) Aspartame
(2) Saccharin
(3) Sucralose
(4) Alitame

Ans. (4)

Sol. Artificial sweetener
Aspartame
Saccharin
Sweetness value in comparison to cane sugar 100

Sucralose 550

Alitame6002000

Unleashing Potential
20. In how many of the following reactions aromatic amine is formed?
[Aromatic compounds]
(a)

(b)

(c)

(d)

Ans. (2)
21. Propanal + Methanal $\xrightarrow{\mathrm{NaOH}} \xrightarrow{\Delta} \xrightarrow{\mathrm{NaCN}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$Final product
[Aldehydes and ketones]
(1) Final product is optically active.
(2) Final product is racemic mixture and releases gas with NaHCO_{3}.
(3) Final product is racemic mixture and gives ppt with Lucas reagent.
(4) Final product is achiral.

Ans. (2)

Sol.

22. A protein with molecular mass 70000 u on hydrolysis gives amino acids. Which amino acid will be obtained from the followings?
[Biomolecules]
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(2)

(3)

(4)

Ans. (2)
Sol. Only one of the given amino acids is α-amino acid.

\#\#llikipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Test on Every SUNDAY

Scholarship up to $\mathbf{9 0 \%}$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com f reliablekota © reliablekota © reliableinstitutekota © reliable_kota in reliablekota

