JEE MAIN 2023 JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS \& SOLUTIONS
Reproduced from Memory Retention
藟 31 JANUARY, 2023
(C) 9:00 AM to 12:00 Noon

Maximum Marks : $\mathbf{3 0 0}$

SUBJECT - PHYSICS

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance?

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM:
15 \& 29 MARCH'23

Unleashing Potential

PHYSICS

1. A particle is projected with velocity ' v ' and at the top most point has velocity $\sqrt{3} \frac{v}{2}$, then find the time of flight of particle.
(1) $\frac{\mathrm{v}}{\mathrm{g}}$
(2) $\frac{2 v}{g}$
(3) $\frac{3 v}{g}$
(4) $\frac{\mathrm{v}}{2 \mathrm{~g}}$

Ans. (1)

Sol.

$\mathrm{v} \cos \theta=\frac{\sqrt{3}}{2} \mathrm{v}$
$\cos \theta=\frac{\sqrt{3}}{2}$
$\theta=30^{\circ}$
$\mathrm{T}=\frac{2 \mathrm{v} \sin 30^{\circ}}{\mathrm{g}}=\frac{\mathrm{v}}{\mathrm{g}}$
2. If we increase temperature of semi-conductor material then effect on resistance and number of electron in conduction band, then
(1) Resistance increases and number of electrons also increases.
(2) Resistance decreases and number of electrons ingreases.
(3) Resistance increases and number of electrons decreases.
(4) Resistance and number of electrons do not change.

Ans. (2)
Sol. Basic theory.
3. 1000 identical liquid drops of radius 1 mm and surface tension $0.07 \mathrm{~N} / \mathrm{m}$ are combined to form a single drop and then heat released during the process is
(1) $250 \mu \mathrm{~J}$
(2) $264 \mu \mathrm{~J}$
(3) $270 \mu \mathrm{~J}$
(4) $300 \mu \mathrm{~J}$

Ans. (2)
Sol. $\quad \Delta \mathrm{U}=\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{f}}=\mathrm{T}\left(\mathrm{A}_{\mathrm{i}}-\mathrm{A}_{\mathrm{f}}\right)$
Using volume conservation, $\mathrm{R}=10 \mathrm{r}$
$10^{3} \times \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\Delta \mathrm{U}=0.07 \times \frac{4}{3} \times \frac{22}{7}\left[10^{3} \times 10^{-6}-10^{2} \times 10^{-6}\right]$
$10^{-2} \times \frac{4}{3} \times 22\left[10^{3}-10^{-4}\right]=10^{-5} \times \frac{4}{3} \times 22 \times 0.9=264 \mu \mathrm{~J}$

Unleashing Potential
4. If a particle is performing SHM of amplitude A and the maximum potential energy of a particle is 25 J , then find the kinetic energy at $\mathrm{x}=\frac{\mathbf{A}}{\mathbf{2}}$.
(1) 20 J
(2) 18.75 J
(3) 16.75 J
(4) 18 J

Ans. (2)
Sol. Maximum P.E $=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}=25$

$$
\frac{3}{4} \times 25=18.75
$$

5. At height $h=3 R$ from the earth surface value of acceleration due to gravity is g_{1} and at depth ' d ' acceleration due to gravity is g_{2}. If $g_{2}=4 g_{1}$. Find depth d (Given : radius of earth $=6400 \mathrm{~km}$)
(1) 3600 km
(2) 4800 km
(3) 1200 km
(4) 3200 km

Ans. (2)
Sol. $\quad \mathrm{g}_{\mathrm{n}}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{GM}}{(4 \mathrm{R})^{2}}=\frac{\mathrm{g}_{\mathrm{s}}}{16}=\mathrm{g}_{1}$
$\mathrm{g}_{2}=\mathrm{g}_{\mathrm{d}}=\mathrm{g}_{\mathrm{s}}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right) ; \mathrm{g}_{2}=4 \mathrm{~g}_{1}=\frac{\mathrm{g}_{\mathrm{s}}}{4}$
$\frac{\mathrm{g}_{\mathrm{s}}}{4}=\mathrm{g}_{\mathrm{s}}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
$\frac{\mathrm{d}}{\mathrm{R}}=\frac{3}{4}$
$\mathrm{d}=\frac{3 \mathrm{R}}{4}=\frac{3}{4} \times 6400=4800 \mathrm{~km}$
6. The relation between $\gamma=\frac{C_{p}}{C_{v}}$ and temperature is?
(1) γ is proportional to T^{0}
(2) γ is proportional to $\frac{1}{\mathrm{~T}}$
(3) γ is proportional to $\frac{1}{\sqrt{T}}$
(4) γ is proportional to T

Ans. (1)
Sol. $\quad \gamma$ is independent of temperature.

Unleashing Potential
7. Two identical cells are first connected in series and then connected in parallel to external load of 5Ω. If the current through load in each case is same. Find internal resistance r (in ohm)?
Ans. 5

Sol.

$\mathrm{i}=\frac{2 \mathrm{E}}{5+2 \mathrm{r}}=\frac{\mathrm{E}}{5+\frac{\mathrm{r}}{2}}$

$i=\frac{E}{5+\frac{r}{2}}$
$10+r=5+2 r$
$5 \Omega=r$
8. If a cube of side $a=20 \mathrm{~cm}$ is placed as shown and $E=400 x^{2} \hat{i} \mathrm{~N} / \mathrm{C}$, then find the flux ϕ $\left(\right.$ in $\left.\frac{\mathrm{N}-\mathrm{m}^{2}}{\mathrm{C}}\right)$ through the cube.

Ans. 0.64

Sol.

$$
\begin{aligned}
& \mathrm{a}=20 \mathrm{~cm}=0.2 \mathrm{~m} \\
& \phi_{\mathrm{ABCD}}=\mathrm{Ea}^{2}=400 \times(0.2)^{2} \times(0.2)^{2} \\
&=0.64 \frac{\mathrm{~N}-\mathrm{m}^{2}}{\mathrm{C}}
\end{aligned}
$$

Flux through all surface except ABCD is zero
$\phi_{\text {total }}=0.64$ weber

Unleashing Potential
9. A message wave $x_{m}(t)=10 \sin 4 \pi t$ is superimposed on carrier wave $x_{c}(t)=15 \sin (1000 \pi t)$ then frequency of modulated wave is :
(a) 500 Hz
(b) 502 Hz
(c) 498 Hz
(d) 2 Hz
(1) a, b, d
(2) a, c, d
(3) a, b, c
(4) b, c, d

Ans. (3)
Sol. $\omega_{c}=1000 \pi=2 \pi f_{c}$
$\mathrm{f}_{\mathrm{c}}=500 \mathrm{~Hz}$
$\omega_{\mathrm{m}}=4 \pi=2 \pi \mathrm{f}_{\mathrm{m}}$
$\mathrm{f}_{\mathrm{m}}=2 \mathrm{~Hz}$
10. Neutron will break into proton but proton will not break into neutron, because?
(1) Neutron is composed of proton and electron.
(2) Rest mass of neutron is greater than rest mass of proton.
(3) Neutron is neutral
(4) Proton is positively charged.

Ans. (2)
Sol. Basic theory
11. An electron of H-atom makes transition from $n=3$ to $n=1$ emits photon of wavelength λ_{1} and for transition from $n=2$ to $n=1$ it is λ_{2}. If $\frac{\lambda_{1}}{\lambda_{2}}=\frac{x}{32}$. Find $x=$?

Ans. 27
Sol. $\quad \frac{1}{\lambda_{1}}=\mathrm{R} \times 1^{2}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)$
$\lambda_{1}=\frac{9}{8 R}$
$\frac{1}{\lambda_{2}}=\mathrm{R} \times 1^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
$\lambda_{2}=\frac{4}{3 \mathrm{R}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{27}{32}$
$\mathrm{x}=27$

Unleashing Potential
12. A magnetic dipole of magnetic moment $5 \mathrm{Am}^{2}$ is parallel to uniform magnetic field of 0.4 T . If it is rotated slowly by 180°. Find out work done by external agent.
(1) 0 J
(2) 2 J
(3) 4 J
(4) 8 J

Ans. (3)
Sol. $\quad \mathrm{W}_{\mathrm{ext}}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}$
$\mathrm{U}=-\mathrm{MB} \cos \theta$
$\mathrm{W}_{\text {ext }}=-\mathrm{MB} \cos 180^{\circ}+\mathrm{MB} \cos 0^{\circ}$
$\mathrm{W}_{\text {ext }}=2 \mathrm{MB}$
$=2 \times 5 \times 0.4=4 \mathrm{~J}$
13. A conducting sphere of radius R is charged with charge Q. It's potential with distance from centre is best represented by :
(1)

(2)

Ans. (3)
Sol. Electric field inside a conducting sphere is 0 . Hence potential remains constant inside the sphere.
14. Two conductors are made up of same material and has equal lengths. But area of the conductor is A and that of $2^{\text {nd }}$ conductor is 2 A . If drift velocity of electron is V_{d} in first conductor, then find drift velocity of electron in $2^{\text {nd }}$ conductor is?
(1) $\frac{V_{d}}{2}$
(2) $2 \mathrm{~V}_{\mathrm{d}}$
(3) V_{d}
(4) None of these

Ans. (3)
Sol. $\quad \mathrm{V}_{\mathrm{d}}=\frac{\mathrm{eE} \tau}{\mathrm{m}}=\frac{\mathrm{e} \tau}{\mathrm{m}} \frac{\Delta \mathrm{V}}{\ell}$
Independent of area.
So $\mathrm{V}_{\mathrm{d}_{2}}=\mathrm{V}_{\mathrm{d}_{1}}=\mathrm{V}_{\mathrm{d}}$

Unleashing Potential
15. Speed of light in air is v. If its speed is 0.2 v in given medium, then refractive index of given medium is
Ans. 5
Sol. $\mu=\frac{\mathrm{c}}{\mathrm{v}}=\frac{\mathrm{v}}{0.2 \mathrm{v}}=5$
16. 100 balls of mass ' m ' collide elastically on floor with speed v, if collision lasts for $t \sec$. Find force applied by floor.
(1) $\frac{200 \mathrm{mv}}{\mathrm{t}}$
(2) $\frac{100 \mathrm{mv}}{\mathrm{t}}$
(3) 0
(4) $\frac{50 \mathrm{mv}}{\mathrm{t}}$

Ans. (1)
Sol. Force on 1 ball $=\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}$
Force on 100 balls $=100 \frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}$

$$
=\frac{100(2 \mathrm{mv})}{\mathrm{t}}
$$

17. If kinetic energy of solid sphere in pure rolling is 7000 J . If Mass of sphere lis 1 kg , then calculate velocity of centre of mass?
Ans. 100
Sol. K.E $=\frac{1}{2} \times \frac{7}{5} \mathrm{mv}^{2}=7000$ $\mathrm{v}=100 \mathrm{~m} / \mathrm{s}$
18. In the shown $P-V$ graph, if gas do not absofb or release the heat throughout the process, then find change in internal energy $(\Delta \mathrm{U})$.

(1) 6 J
(2) 0
(3) -4.5 J
(4) 4.5 J

Ans. (4)
Sol. Area $=150 \times 10^{-6} \times 10^{4}+\frac{1}{2}\left(150 \times 10^{-6}\right)\left(40 \times 10^{3}\right)=1.5+3=4.5$
work $=-4.5 \mathrm{~J}$
$\Delta \mathrm{Q}=0, \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \Rightarrow \Delta \mathrm{U}=4.5 \mathrm{~J}$

Unleashing Potential

If $\mathrm{k}=2 \mathrm{~N} / \mathrm{m}, \mathrm{m}=490 \mathrm{gm}$, then find the number of complete oscillations in $14 \pi \mathrm{sec}$.
Ans. 20
Sol. $\quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{~K}}}$

$$
=2 \pi \sqrt{\frac{490}{1000 \times 2 \times 2}}=\frac{14 \pi}{20} \mathrm{sec}
$$

No. of complete oscillations $=\frac{14 \pi}{\mathrm{~T}}=\frac{14 \pi}{14 \pi} \times 20=20$
20. In L-C-R series circuit current and voltage are in same phase. Resistance of circuit is 20Ω. Potential difference of A.C. source is 220 volt. Current in circuit is $\sqrt{x} A$. The value of ' x ' is
Ans. 121
Sol. $\mathrm{z}=\mathrm{R}$
i $=\frac{\mathrm{v}}{\mathrm{z}}=\frac{220}{20}=11 \mathrm{~A}$
$\mathrm{x}=121$
21. Statement-I: Beam of electron contains wave nature.

Statement-II : The above fact is discovered by davission-Germar
(1) S-I is false, S-H is true
(2) S-I is true, S-II is false
(3) $\mathrm{S}-\mathrm{I}$ is true, S-II is true
(4) S-I is false, S-II is false

Ans. (3)
Sol. Basic theory
22. Which of the following is dimensionless quantity. Given ' R ' resistance, x_{L} is inductive reactance and x_{C} is capacitive reactance
(1) $\frac{R}{\sqrt{x_{L} x_{C}}}$
(2) $\frac{R}{x_{L} x_{C}}$
(3) $\frac{R x_{C}}{x_{L}}$
(4) $R \sqrt{x_{L} x_{C}}$

Ans. (1)
Sol. $\quad[R]=\left[X_{L}\right]=\left[X_{C}\right]$

Unleashing Potential
23. Unpolarised light of intensity I_{0} is incident on polaroid combination $\mathrm{A}, \mathrm{C} \& \mathrm{~B}$ such that transmission axis of A and B are perpendicular and ' C ' is at angle bisector of $\mathrm{A} \& \mathrm{~B}$. Choose the intensity of final light coming out.
(1) $\frac{I_{0}}{8}$
(2) $\frac{I_{0}}{4}$
(3) $\frac{I_{0}}{2}$
(4) $\frac{I_{0}}{16}$

Ans. (1)
Sol. $\mathrm{I}_{\mathrm{A}}=\frac{\mathrm{I}_{0}}{2}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{A}} \cos ^{2}\left(45^{\circ}\right)=\frac{\mathrm{I}_{0}}{2} \times \frac{1}{2}=\frac{\mathrm{I}_{0}}{4}$.
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} \cos ^{2}\left(45^{\circ}\right)=\frac{\mathrm{I}_{0}}{8}$
24. Find normal reaction between ground \& roller. If force on roller is passing through centre as shown. Given mass of roller is 70 kg

Ans. (1)

Sol.

Fsin $30^{\circ} 700 \mathrm{~N}$
$\mathrm{N}=700+200 \times \frac{1}{2}$
$\mathrm{N}=800 \mathrm{~N}$

Unleashing Potential
25. A non - conducting and a conducting balls are released from same height from the earth surface, (air resistance is neglected) then choose the correct option:
(1) Metal ball will reach first
(2) Both will reach simultaneously
(3) Non- conducting will reaches first.
(4) Time is independent of material used

Ans. (3)
Sol. Due to earth's magnetic field there will be eddy current generation in the conducting ball due to which the motion will be damped for conducting ball. Hence, non-conducting ball will reach first.
26. A source of power 1.6 KW emits 10^{17} photons/sec then emitted wave is.
(1) x-ray
(2) Ultraviolet ray
(3) Infrared ray
(4) Microwave

Ans. (1)
Sol. $\frac{\mathrm{N}}{\tau}=\frac{\mathrm{P}}{\varepsilon}$
$\mathrm{E}=\frac{1.6 \times 10^{3}}{10^{17}}=1.6 \times 10^{-14} \mathrm{~J}$
$\mathrm{E}=\frac{1.6 \times 10^{-14}}{1.6 \times 10^{-19}} \mathrm{eV}=10^{5} \mathrm{eV}$
$\lambda=\frac{12400}{10^{5}} \AA=0.124 \AA$

\#\#llikipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Test on Every SUNDAY

Scholarship up to $\mathbf{9 0 \%}$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com f reliablekota © reliablekota © reliableinstitutekota © reliable_kota in reliablekota

