JEE MAIN 2023 JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : $\mathbf{3 0 0}$

SUBJECT - PHYSICS

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance ?

Join

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM:
15 \& 29 MARCH'23

Unicoshoing Poteminal

PHYSICS

1. A charged particle of charge $2 \mu \mathrm{C}$ is accelerated through potential difference of 100 V and then passed through a uniform magnetic field of strength 4 mT which is perpendicular to plane of velocity. If the charged particle moves in a circle of radius 3 cm , the mass of the particle is $\mathrm{N} \times 10^{-18} \mathrm{Kg}$. Find the value of N .
Ans. 144
Sol. $\mathrm{r}=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{~km}}}{\mathrm{qB}}, \mathrm{m}=\frac{\mathrm{r}^{2} \mathrm{q}^{2} B^{2}}{2 \mathrm{k}}$

$\mathrm{m}=\frac{\frac{3}{100} \times \frac{3}{100} \times 2 \times 2 \times 4 \times 10^{-3} \times 4 \times 10^{-3} \times 10^{-12}}{2 \times(100)^{2} \times 10^{-6}}=144 \times 10^{-18} \mathrm{~kg}$
2. The magnetic field at point O in the figure shown is
(1) $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}(\pi+2)$
(2) $\frac{\mu_{0} \mathrm{I}}{4 \mathrm{R}}(\pi+1)$
(3) $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}(\pi+1)$
(4) $\frac{\mu_{0} \mathrm{I}}{4 \mathrm{R}}(\pi+2)$

Ans. (3)
Sol. $\quad B_{0}=\left(\frac{\mu_{0} I}{4 R}+\frac{\mu_{0} I}{4 \pi R}\right)=\frac{\mu_{0} I}{4 \pi R}(\pi+1)$

Uniesshing Poteminal
3. The de-Broglie wavelengths of a Proton and an Alpha particle are same. If the velocity of proton is $\frac{\mathrm{c}}{10}$. The ratio of kinetic energy of Proton to kinetic energy of the Alpha particle is :
(1) $1: 2$
(2) $2: 1$
(3) $4: 1$
(4) $1: 4$

Ans. (3)
Sol. $\lambda=\frac{\mathrm{h}}{\frac{\mathrm{mc}}{10}}=\frac{\mathrm{h}}{4 \mathrm{mv}^{\prime}}$

$$
\mathrm{v}^{\prime}=\frac{\mathrm{c}}{40}
$$

$\frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\alpha}}=\frac{\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{c}}{10}\right)^{2}}{\frac{1}{2} 4 \mathrm{~m}\left(\frac{\mathrm{c}}{40}\right)^{2}}=4: 1$
4. A particle is performing SHM about origin with amplitude 3 cm . Find the value of displacement (in cm) from mean position where kinetic energy is 25% more than the potential energy of the system.

Ans. 2
Sol. \quad K.E $=1.25$ P.E.
$\frac{1}{2} \mathrm{~m} \omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)=1.25 \frac{1}{2} \mathrm{kx}^{2}$
$\mathrm{A}^{2}-\mathrm{x}^{2}=\mathrm{x}^{2} \times \frac{5}{4}$
$\mathrm{A}^{2}=\frac{9}{4} \mathrm{x}^{2}$
$\mathrm{x}=\frac{2 \mathrm{~A}}{3}=2 \mathrm{~cm}$
5. A 5 kg block is at rest on rough horizontal surface. A force of 30 N starts acting on it horizontally. In 10 seconds its displacement is 50 m . Find the coefficient of friction between the block and the surface.
Ans. 0.5
Sol. $\quad \mathrm{F}-\mu \mathrm{mg}=\mathrm{ma}$
$S=u t+u t+\frac{1}{2} a t^{2}$
$50=0+\frac{1}{2} \times \mathrm{a} \times 100$
$\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}$
$30-\mu \times 50=5 \times 1$
$50 \mu=25$
$\mu=\frac{1}{2}$
6. Two non-conducting sheets having charge density σ on each plate are shown in figure. Sheets are parallel to yz plane. The Electric field at point $1,2,3$ respectively are :

(1) $\frac{-\sigma}{\varepsilon_{0}} \hat{\mathrm{i}}, 0, \frac{\sigma \hat{\mathrm{i}}}{\varepsilon_{0}}$
(2) $\frac{\sigma}{\varepsilon_{0}} \hat{i}, 0, \frac{\sigma}{\varepsilon_{0}} \hat{i}$
(3) $\frac{\sigma}{\varepsilon_{0}} \hat{i}, 0, \frac{-\sigma}{\varepsilon_{0}} \hat{i}$
(4) $\frac{-\sigma \hat{\mathrm{i}}}{\varepsilon_{0}}, \frac{\sigma \hat{\mathrm{i}}}{\varepsilon_{0}}, \frac{\sigma \hat{\mathrm{i}}}{\varepsilon_{0}}$

Ans. (1)
Sol. P
7. Two identical charged particles are placed at a distance 2 a from each other. The force exerted by the two charges on a point charge kept on the perpendicular bisector is maximum at distance $\frac{\mathrm{a}}{\sqrt{\mathrm{x}}}$ from the midpoint of the line joining the two charges. Find x.
Ans. 2
Sol. Graph of electric field

Field is maximum at $\frac{\mathrm{a}}{\sqrt{2}}$.
Hence $\mathrm{x}=2$

Uniesshing Poteminal
8. Consider a planet whose mass is $\frac{1}{9}$ th of mass of earth and radius of planet is half of earth's radius. If escape speed on the surface of planet is $V_{e} \frac{\sqrt{x}}{3}$ where V_{e} is escape speed on earth's surface, then chose the correct value of x :
(1) 18
(2) 2
(3) 1
(4) 3

Ans. (2)
Sol. $\quad \mathrm{V}_{\text {(escape)planet }}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}}}$
$=\sqrt{\frac{2 G\left(\frac{M_{e}}{9}\right)}{\left(\frac{R_{e}}{2}\right)}}=\frac{V_{e} \sqrt{2}}{3} \quad \therefore \quad x=2$
9. A body travels with uniform speed V_{1}, V_{2}, V_{3} in the region $A B, B C$ and $C D$ respectively. If $\mathrm{AB}=\mathrm{BC}$ and $\mathrm{AD}=3 \mathrm{AB}$ the average speed for the complete motion is

(1)

(2)
$\frac{v_{1} v_{2} v_{3}}{v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{1}}$
(3)
$\overline{3\left(v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{1}\right)}$
(4) None of these

Ans. (1)
Sol. $\mathrm{AB}=\mathrm{x}$
$\mathrm{BC}=\mathrm{x}$
$2 x+C D=3 x$

$$
C D=x
$$

$\langle\mathrm{v}\rangle=\frac{3 \mathrm{x}}{\frac{\mathrm{x}}{\mathrm{v}_{1}}+\frac{\mathrm{x}}{\mathrm{v}_{2}}+\frac{\mathrm{x}}{\mathrm{v}_{3}}}=\frac{3 \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3}}{\mathrm{v}_{2} \mathrm{v}_{3}+\mathrm{v}_{1} \mathrm{v}_{3}+\mathrm{v}_{1} \mathrm{v}_{2}}$
10. The tension in the string of linear mass density $7 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$ is 70 N . Speed of wave of the string is $\mathrm{x} \times 10^{2} \mathrm{~m} / \mathrm{s}$. Find x .
Ans. ($\mathrm{x}=1$)
Sol. $\quad v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{70}{70 \times 10^{-3}}}=1 \times 10^{2} \mathrm{~m} / \mathrm{s}$ $\mathrm{x}=1$

Uniceshing Potemina?
11. A solid cylinder is released from rest from top of a incline of length 60 cm of inclination 30°. Find speed of cylinder when it reaches bottom of incline, assuming it performs pure rolling $\left[\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$

Ans. 2
Sol. Applying C.O.M.E
$\operatorname{Mgh} \sin 30^{\circ}=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{m R^{2}}{2} \omega^{2}$
$\frac{\mathrm{gh}}{2}=\frac{\mathrm{v}^{2}}{2}+\frac{\mathrm{v}^{2}}{4}=\frac{3 \mathrm{v}^{2}}{4}$
$\frac{10 \times 0.6 \times 2}{3}=v^{2}$
$\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
12. Find the equivalent resistance between $A \& B$.
(1) $\frac{8}{3} R$

R

Uniesshing Poteminal
13. If adiabatic constant of ideal gas is $\frac{3}{2}$. If gas having number of moles ' n ' expand adiabatically from volume v to 2 v and change in temp is -T . Find the work done by gas.
(1) 3 nRT
(2) 2 nRT
(3) 4 nRT
(4) - nRT

Ans. (2)
Sol. $\quad \mathrm{W}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1}$
$\mathrm{W}=\frac{\mathrm{nR}(\Delta \mathrm{T})}{\gamma-1}=\frac{\mathrm{nR}\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{f}}\right)}{\gamma-1}$
$\mathrm{W}=\frac{-\mathrm{nR}(-\mathrm{T})}{\frac{3}{2}-1} \quad\left\{\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}=-\mathrm{T}\right\}$
$W=+2 n R T$
14. Match the column I with II

Column - I

(A) Intrinsic semiconductor
(B) n-type semiconductor
(C) p-type semiconductor
(D) Metal
(1) (A) $\rightarrow \mathrm{q},(\mathrm{B}) \rightarrow \mathrm{p},(\mathrm{C}) \rightarrow \mathrm{r},(\mathrm{D}) \rightarrow \mathrm{s}$
(2) (A) $\rightarrow \mathrm{p}$, (B) $\rightarrow \mathrm{q},(\mathrm{C}) \rightarrow \mathrm{r},(\mathrm{D}) \rightarrow \mathrm{s}$
(3) $(\mathrm{A}) \rightarrow \mathrm{r},(\mathrm{B}) \rightarrow \mathrm{p},(\mathrm{C}) \rightarrow \mathrm{q},(\mathrm{D}) \rightarrow \mathrm{s}$
(4) $(\mathrm{A}) \rightarrow \mathrm{s},(\mathrm{B}) \rightarrow \mathrm{p},(\mathrm{C}) \rightarrow \mathrm{r},(\mathrm{D}) \rightarrow \mathrm{q}$

Ans. (1)
Sol. Based on theory.
15. Which of the following frequency is not suitable for FM ?
(1) 68 MHz
(2) 88 MHz
(3) 99 MHz
(4) 108 MHz

Ans. (1)
Sol. FM broadcast range is 88 MHz to 108 MHz

Unicoshing Potential
16. A projectile is thrown horizontally with speed of $5 \mathrm{~m} / \mathrm{s}$ from a tower of height 10 m . Find speed of particle just before it hits the ground : $\left[\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
(1) $15 \mathrm{~m} / \mathrm{s}$
(2) $5 \mathrm{~m} / \mathrm{s}$
(3) $20 \mathrm{~m} / \mathrm{s}$
(4) $10 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=\sqrt{2}$ (t is time to fall on ground)
$\mathrm{V}_{\mathrm{y}}=0+\mathrm{g} \times \sqrt{2}$

$\mathrm{V}_{\mathrm{y}}=10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\text {net }}=\sqrt{5^{2}+200}=15 \mathrm{~m} / \mathrm{s}$
17. In potentiometer balance length is 60 cm for cell of e.m.f 1.5 volt. When this cell is replaced by another cell of e.m.f $\varepsilon_{2}=\frac{\mathrm{x}}{10}$ volt, balance length is increased by 40 cm , then the value of x is

Ans. 25
Sol. $\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{\varepsilon_{1}}{\varepsilon_{2}}$

$$
\begin{aligned}
& \frac{1.5}{\varepsilon_{2}}=\frac{60}{60+40}=\frac{6}{10}=\frac{3}{5} \\
& \varepsilon_{2}=\frac{5}{2}=\frac{x}{10} \\
& x=25
\end{aligned}
$$

18. A drop of radius $10^{-3} \mathrm{~m}$ having surface tension $\mathrm{S}=0.45 \mathrm{~N} / \mathrm{m}$ gets break into 125 drops. Find increase in its surface energy?
(1) $15.3 \times 10^{-6} \mathrm{~J}$
(2) $25.3 \times 10^{-6} \mathrm{~J}$
(3) $22.6 \times 10^{-6} \mathrm{~J}$
(4) $10^{-6} \mathrm{~J}$

Ans. (3)
Sol. Initial surface energy $=0.45 \times 4 \pi\left(10^{-3}\right)^{2}$
$\& \frac{4}{3} \pi\left(10^{-3}\right)^{3}=125 \times \frac{4 \pi}{3} R_{\text {new }}^{3}$
$\therefore 10^{-3}=5 \mathrm{R}_{\text {new }}$
$\therefore \mathrm{R}_{\text {new }}=\frac{10^{-3}}{5} \mathrm{~m}$
So, final surface energy $=0.45 \times 125 \times 4 \pi\left(\frac{10^{-3}}{5}\right)^{2}$
Increase in energy $=0.45 \times 4 \pi \times\left(10^{-3}\right)^{2}\left[\frac{125}{25}-1\right]$

$$
\begin{aligned}
& =4 \times 0.45 \times 4 \pi \times 10^{-6} \\
& =22.6 \times 10^{-6} \mathrm{~J}
\end{aligned}
$$

19. Average translational kinetic energy of an ideal gas molecule depends on which of the following.
(1) Nature of gas
(2) Temperature of gas
(3) Volume of gas
(4) Pressure of gas

Ans. (2)
Sol. Basic theory
Translational K.E on average of a molecule is $\frac{3}{2} \mathrm{KT}$ which is independent of nature, pressure and volume.
20. Vanderwall equation of a gas is given $a s\left(P+\frac{a}{b^{2}}\right)(v-b)=n R T$. Dimension of $\left(\frac{b^{2}}{a}\right)$ matches with?
(1) Modulus of rigidity
(2) Bulk modulus
(3) Compressibility
(4) Volume stress

Ans. (3)
Sol. $\left[\frac{\mathrm{a}}{\mathrm{b}^{2}}\right]=[\mathrm{P}]$
$\therefore \quad\left[\frac{\mathrm{b}^{2}}{\mathrm{a}}\right]=\frac{1}{[\mathrm{P}]}=\frac{1}{[\mathrm{~B}]}=[\mathrm{K}]$
21. A cylindrical wire of length 10 cm is placed along principle axis of concave mirror of focal length 20 cm . The mid-point of the wire is at a distance 40 cm from pole. Find length of image.
Ans. $\quad 10.67$ cm
Sol. $\quad \mathrm{U}_{\mathrm{A}}=35 \mathrm{~cm}$

$$
\frac{1}{\mathrm{~V}}+\frac{1}{\mathrm{U}}=\frac{1}{\mathrm{f}}
$$

$\mathrm{U}_{\mathrm{B}}=45 \mathrm{~cm}$

$$
\frac{1}{\mathrm{~V}_{\mathrm{A}}}+\frac{1}{-35}=\frac{1}{-20} \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{A}}=\frac{-140}{3} \mathrm{~cm}
$$

$$
\frac{1}{\mathrm{~V}_{\mathrm{B}}}+\frac{1}{-45}=\frac{1}{-20} \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{B}}=-36 \mathrm{~cm}
$$

Length of image $=V_{B}-V_{A}=-36-\left(\frac{-140}{3}\right)=\frac{32}{3} \mathrm{~cm}=10.67 \mathrm{~cm}$
22. An unpolarised light of intensity I_{0} is incident on polariser system in which the successive transmission axis are at an angle 45°. Find the number of polarisers, if final intensity is $\frac{\mathrm{I}_{0}}{64}$.

Ans. 6
Sol. $\quad \mathrm{I}_{1}=\frac{\mathrm{I}_{0}}{2}, \quad \mathrm{I}_{2}=\frac{\mathrm{I}_{0}}{2} \cos ^{2} 45^{\circ}=\frac{\mathrm{I}_{0}}{4}=\frac{\mathrm{I}_{0}}{2^{2}}$

$$
\mathrm{R}_{\mathrm{e}} \rightarrow \text { radius of earth }
$$

$$
\mathrm{I}_{\mathrm{N}}=\frac{\mathrm{I}_{0}}{64}=\frac{\mathrm{I}_{0}}{2^{6}}
$$

$\mathrm{N}=6$
23. Statement-1 : Acceleration due to gravity is different at different places on earth's surface.

Statement-2 : Acceleration due to gravity increases below earth's surface.
(1) Statement 1 is true, statement 2 is true
(2) Statement 1 is false, statement 2 is false
(3) Statement 1 is false, statement 2 is true
(4) Statement 1 is true, statement 2 is false

Ans. (4)
Sol. $g_{\text {eff }}=g-\omega^{2} R_{e} \sin ^{2} \theta$
$\theta \rightarrow$ co-latitude angle
$\mathrm{d} \rightarrow$ depth
$\mathrm{g}_{\text {eff }}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}_{\mathrm{e}}}\right)$
24. Match the list-I with list-II.

List-I

(P) AC Generator
(Q) Resonance phenomena
(R) Sharpness of resonance curve
(S) Transformer

Choose the correct option
(1) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 3$
(2) $\mathrm{P} \rightarrow 1, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 3, \mathrm{~S} \rightarrow 3$
(3) $\mathrm{P} \rightarrow 2, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 4$

Ans. (1)
25. Find Binding energy of Helium from given data;
$\mathrm{M}_{\mathrm{p}}=1.007276 \mathrm{amu}$
$\mathrm{m}_{\mathrm{N}}=1.008665 \mathrm{amu}$
$\mathrm{m}_{\mathrm{He}}=4.002603 \mathrm{amu}$
(1) 48 MeV
(2) 12 MeV
(3) 26 MeV
(4) 40 MeV

Ans. (3)
Sol. B.E of Helium $=\left(2 m_{\mathrm{P}}+2 \mathrm{~m}_{\mathrm{N}}-\mathrm{m}_{\mathrm{He}}+2 \mathrm{~m}_{\mathrm{e}}\right) \mathrm{c}^{2}$

$$
=26 \mathrm{MeV}
$$

\#\#l|Tkipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Scholarship up to $\mathbf{9 0 \%}$

Test on Every SUNDAY

