

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

JEE Main 2023 (Memory based)

1st February 2023 - Shift 1

Answer & Solutions

PHYSICS

1. Statement 1: Value of acceleration due to gravity is same at all the points inside earth assuming it to be made up of uniform density.

Statement 2: Value of gravitational field increases as we go towards centre in a uniform spherical shell.

- A. Both statement 1 and statement 2 are true.
- B. Statement 1 is true but statement 2 is false.
- C. Statement 1 is false but statement 2 is true.
- D. Both statement 1 and statement 2 are false.

Answer (D)

Solution:

Value of acceleration due to gravity decreases as we go inside the earth.

Value of gravitational field does not change as we go towards centre in a uniform spherical shell.

- **2.** An infinite wire is bent in the shape as shown. Find the magnetic field at point C.
 - A. $\frac{\mu_0 i}{4\pi r} (1 + \pi)$
 - B. $\frac{\mu_0 i}{4\pi r} (2 + \pi)$
 - C. $\frac{\mu_0 i}{2\pi r} (1 + \pi)$
 - D. $\frac{2\pi r}{\mu_0 i}$

Answer (A)

Solution:

$$\begin{split} B_C &= \frac{\mu_0 i}{4\pi R} \left[\sin 90^\circ + \sin 0^\circ \right] + \frac{\mu_0 i}{4R} + 0 \\ &= \frac{\mu_0 i}{4\pi R} \left[1 + \pi \right] \end{split}$$

- **3.** A force of 30 N is applied on a block of mass 5 kg. the block travels a distance of 50 m in 10 sec starting from rest. Find the coefficient of friction.
 - A. 0.5
 - B. 0.7
 - C. 0.3
 - D. 0.8

Answer (A)

Solution:

Applying Newtons' second law,

$$30 - \mu mg = ma$$

$$\Rightarrow a = \left(\frac{30 - 50\mu}{5}\right)$$

As acceleration is uniform and block start from rest,

$$S = \frac{1}{2}at^2$$

$$\Rightarrow 50 = \frac{1}{2} \left(\frac{30 - 50\mu}{5} \right) 10^2$$

$$\Rightarrow 5 = 30 - 50\mu$$

$$\Rightarrow \mu = \frac{25}{50} = 0.5$$

Which of the following is not the frequency of frequency modulated (FM) signal?

Answer (D)

Solution:

Frequency of FM signal is in MHz.

5. For a real gas the equation of gas is given by $\left(P + \frac{an^2}{V^2}\right)(V - bn) = nRT$. If symbols have their usual meaning, BRIUS then the dimensions of $\frac{V^2}{an^2}$ is same as that of

5 kg

 μmg

▶30 N

Rough

Answer (A)

Solution:

$$[P] = \left[\frac{an^2}{V^2}\right] = dimension of bulk modulus$$

So,
$$\left|\frac{an^2}{V^2}\right|$$
 has dimension of compressibility.

6. A stone is thrown vertically up with speed v_o from a cliff of height H. Find the average speed of the ball till the moment it reaches ground. Given that $H = 100 \, m$, $v_0 = 10 \, m/s$, $g = 10 \, m/s^2$.

A.
$$\frac{64}{1+\sqrt{21}} \, m/s$$

C.
$$110(1 + \sqrt{21}) m/s$$

D.
$$\frac{110}{1+\sqrt{21}} \ m/s$$

Answer (D)

Solution:

$$\begin{aligned} & \text{Total distance} = \frac{v_o^2}{2g} \times 2 + 100 = 110 \ m \\ & \text{Total time} = t_0 \\ & S = ut_0 + \frac{1}{2}at_0^2 \\ & \Rightarrow -100 = 10 \ t_o - \frac{1}{2} \times 10 \times t_o^2 \\ & \Rightarrow t_o = 1 + \sqrt{21} \ s \\ & \Rightarrow \text{Average speed} \ = \frac{110}{1 + \sqrt{21}} \ m/s \end{aligned}$$

- **7.** In the circuit shown find the equivalent resistance between terminals *A* and *B*.
 - A. 3R/2
 - B. 2*R*
 - C. 4R
 - D. R

Answer (D)

Solution:

Redrawing the structure, we will get the circuit as shown here:

It is a balanced Wheatstone bridge.

The equivalent resistance of circuit: $R_{eq} = R$

- **8.** An object of height h is placed in front of a convex mirror (radius of curvature = 20 cm). Find the height of image.
 - A. h/2
 - B. h/3
 - C. h/6
 - D. h/4

Solution:

From mirror formula:

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{v} + \frac{1}{-20} = \frac{1}{10}$$

$$\Rightarrow \frac{1}{v} = \frac{3}{20} \Rightarrow v = \frac{20}{3}$$

Magnification of mirror:

$$m = -\frac{v}{u} = \frac{1}{3} = \frac{h_i}{h}$$

$$h_i = \frac{h}{3}$$

- **9.** A uniform solid cylinder of radius R, is released from a 600 m long ramp, inclined at 30° from the horizontal. Find the time taken to reach the bottom of the ramp. (Consider sufficient friction for pure rolling)
 - A. 60 sec
 - B. $6\sqrt{10}$ sec
 - C. $3\sqrt{10}$ sec
 - D. 20 sec

Answer (B)

Solution:

$$mg \sin \theta - f_r = ma$$
 Also,

$$\frac{3}{2}mR^{2}\alpha = mg\sin\theta \times R$$

$$\Rightarrow \frac{3}{2}ma = mg\sin\theta$$

$$a = \frac{2}{3}g\sin 30^{\circ} = \frac{g}{3} = \frac{10}{3}m/s^{2}$$

Ramp length,
$$s = 600 m$$

$$t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2 \times 600 \times 3}{10}} = 6\sqrt{10} \text{ seconds}$$

- **10.** A ball is thrown horizontally from height of 10 m with a speed of $5 ms^{-1}$ as shown. Find the speed with which it strikes the ground.
 - A. $15 \, m/s$
 - B. 5 m/s
 - C. $10 \, m/s$
 - D. 20 m/s

Answer (A)

Solution:

$$v^{2} = u^{2} + 2gh$$

 $v^{2} = 25 + 2 \times 10 \times 10$
 $v = 15 m/s$

- **11.** An ideal gas ($adiabatic\ constant = 3/2$) undergoes an adiabatic expansion process where change in temperature is -T. If there are $2\ moles$ of the gas, find the work done by the gas.
 - A. 3*RT*

B. 2RT

C. 4RT

D. -RT

Answer (C)

Solution:

Work done for adiabatic expansion can be given as:

$$W = \frac{nR\Delta T}{1 - \gamma} = \frac{2 \times R(-T)}{1 - 3/2} = 4RT$$

12. A drop of *Mercury* is divided into 125 drops of equal radius 10^{-3} m each. If surface tension of *Mercury* is equal to $0.45 \, Nm^{-1}$. Magnitude of change in surface energy is equal to nearly:

A. $1.14 \times 10^{-4} I$

B. $7.06 \times 10^{-4} J$

C. $8.47 \times 10^{-4} J$

D. $5.65 \times 10^{-4} J$

Answer (D)

Solution:

Let radius of bigger drop was R So,

Let radius of bigger drop was
$$R$$
 So,
$$\frac{4}{3}\pi R^3 = 125 \times \frac{4}{3}\pi (10^{-3})^3$$

$$R = 5 \times 10^{-3} \ m$$

$$U_i = 4\pi R^2 \sigma = 4\pi (5 \times 10^{-3})^2 \times 0.45 = 1.41 \times 10^{-4} \ J$$

$$U_f = 125 \times 4\pi r^2 \sigma = 500 \times \pi (10^{-3})^2 \times 0.45 = 7.06 \times 10^{-4} \ J$$
 So,
$$\Delta U = U_f - U_i = 5.65 \times 10^{-4} \ J$$

13. A charged particle with charge 2×10^{-6} C, at rest, is first accelerated through a potential difference of 100 V and then it is subjected to a transverse magnetic field of 4mT. In region of magnetic field it undergoes a circular path of radius 3 cm. Mass of the particle is equal to

A. $1.44 \times 10^{-16} \, kg$

B. $7.2 \times 10^{-16} \, kg$

C. $1.44 \times 10^{-10} \, kg$

D. $7.2 \times 10^{-10} \, kg$

Answer (A)

Solution:

Radius of circular path can be given as:

$$R = \frac{\sqrt{2mqV}}{qB}$$

$$3 \times 10^{-2} = \frac{\sqrt{2m \times 100}}{\sqrt{2 \times 10^{-6} \times 4 \times 10^{-3}}} \Rightarrow m = 1.44 \times 10^{-16} \, kg$$

- **14.** A string of mass per unit length equal to $7 \times 10^{-3} \, kg/m$ is subjected to a tension equal to 70 N. The speed of transverse wave on this string is equal to
 - A. 10 m/s
 - B. 50 m/s
 - C. 100 m/s
 - D. $200 \, m/s$

Answer (C)

Solution:

Velocity of transverse wave can be given as:

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{70}{7 \times 10^{-3}}} = 100 \text{ m/s}$$

15. Two thin insulating sheets (each having charge density $+\sigma$) are arranged as shown. Then find the net electric field magnitude in the 3 regions:

A.
$$E_1 = \frac{\sigma}{\epsilon_0}$$
; $E_2 = 0$; $E_3 = \frac{\sigma}{\epsilon_0}$

B.
$$E_1 = E_2 = E_3 = 0$$

B.
$$E_1 = E_2 = E_3 = 0$$

C. $E_1 = 0; E_2 = \frac{\sigma}{2\epsilon_0}; E_3 = \frac{\sigma}{\epsilon_0}$

D.
$$E_1 = \frac{\sigma}{\epsilon_0}$$
; $E_2 = 0$; $E_3 = \frac{\sigma}{2\epsilon_0}$

Answer (A)

Solution:

Electric field in different zones can be written as:

$$E_{I(1)} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

$$E_{II(2)} = \frac{\sigma}{2\varepsilon_0} - \frac{\sigma}{2\varepsilon_0} = 0$$

$$E_{III(3)} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

16. In a series LCR circuit connected across 220 V, 50 Hz AC supply. If the inductive reactance of the circuit is 79.6 Ω . If the power delivered in the circuit is maximum, the capacitance of the circuit is $x \mu F$. Find x.

Answer (40)

Solution:

For maximum power, LCR should be in resonance condition, $X_L = X_C$

$$\Rightarrow 79.6 = \frac{1}{\omega c} = \frac{1}{2\pi f c} = \frac{1}{2\pi \times 50 \times c}$$

$$\Rightarrow c = \frac{1}{79.6 \times 100\pi} = 40 \times 10^{-6} F = 40 \ \mu F$$

17. An alpha particle and a proton having same de-Broglie wavelengths will have kinetic energies in the ratio

Answer (0.25)

Solution:

charge on α particle = 2e mass of proton = m mass of α particle = 4m

$$\frac{\lambda_P}{\lambda_\alpha} = \frac{(P_\alpha)}{(P_P)} = \frac{\sqrt{2K_\alpha m_\alpha}}{\sqrt{2K_P m_P}} = 1$$

$$\frac{K_{\alpha}}{K_{P}} \times \left(\frac{m_{\alpha}}{m_{P}}\right) = 1$$

$$\frac{K_{\alpha}}{K_{P}} \times (4) = 1$$

$$\frac{K_{\alpha}}{K_{P}} = \frac{1}{4} = 0.25$$

18. If mass of a planet is 9 times that of the earth and radius is 2 times that of the earth, then escape speed from this planet is $\frac{xv_e}{\sqrt{2}}$. Find x.

 $(v_e$ is escape speed from the Earth.)

Answer (3)

Solution:

Escape speed from earth, $v_e = \sqrt{\frac{2GM_e}{R_e}}$ Escape speed from planet, $v_e' = \sqrt{\frac{2GM'}{R'}} = \sqrt{\frac{2G \times 9M_e}{2R_e}} = v_e \times \frac{3}{\sqrt{2}}$

19. There are n number of polarizers arranged one after the other. Each polarizer pass axis is inclined at 45° with respect to the previous polarizer. Unpolarized light of intensity I_0 is incident on this setup. Final transmitted light has intensity $\frac{I_0}{64}$. Find n

Answer (6)

Solution:

$$\Rightarrow \frac{I_0}{64} = \frac{I_0}{2} \times \left(\frac{1}{2}\right)^{n-1}$$
$$\Rightarrow n - 1 = 5 \text{ or } n = 6$$

20. Two-point charges each of magnitude q is kept at a separation of 2a. The distance from mid point on perpendicular bisector where a point charge will experience maximum force is $\frac{a}{\sqrt{x}}$. Find the value of x.

Answer (2)

Solution:

E due to one charge
$$=\frac{kq}{a^2+y^2}$$

$$E_{net} \text{ at point } P = 2E \cos \alpha$$

$$=\frac{2Kq}{a^2+y^2} \times \frac{y}{(a^2+y^2)^{\frac{1}{2}}}$$

$$=\frac{2Kqy}{(a^2+y^2)^{\frac{3}{2}}}$$

$$Force = qE_{net}$$

$$\frac{dF}{dy} = 0, \text{ for maximum force}$$

$$\text{On solving, } \frac{dF}{dy} = 0$$

$$\Rightarrow y = \left(\frac{a}{\sqrt{2}}\right)$$

$$\text{So, } x = 2$$

BAJUS