Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456
JEE Main 2023 (Memory based)
$1^{\text {st }}$ February 2023 - Shift 1
Answer \& Solutions

## PHYSICS

1. Statement 1: Value of acceleration due to gravity is same at all the points inside earth assuming it to be made up of uniform density.
Statement 2: Value of gravitational field increases as we go towards centre in a uniform spherical shell.
A. Both statement 1 and statement 2 are true.
B. Statement 1 is true but statement 2 is false.
C. Statement 1 is false but statement 2 is true.
D. Both statement 1 and statement 2 are false.

## Answer (D)

## Solution:

Value of acceleration due to gravity decreases as we go inside the earth.
Value of gravitational field does not change as we go towards centre in a uniform spherical shell.
2. An infinite wire is bent in the shape as shown. Find the magnetic field at point $C$.
A. $\frac{\mu_{0} i}{4 \pi r}(1+\pi)$
B. $\frac{\mu_{0} i}{4 \pi r}(2+\pi)$
C. $\frac{\mu_{0} i}{2 \pi r}(1+\pi)$
D. $\frac{\mu_{0} i}{4 r}$

Answer (A)


## Solution:

$B_{C}=\frac{\mu_{0} i}{4 \pi R}\left[\sin 90^{\circ}+\sin 0^{\circ}\right]+\frac{\mu_{0} i}{4 R}+0$
$=\frac{\mu_{0} i}{4 \pi R}[1+\pi]$
3. A force of 30 N is applied on a block of mass 5 kg . the block travels a distance of 50 m in 10 sec starting from rest. Find the coefficient of friction.
A. 0.5
B. 0.7
C. 0.3
D. 0.8


Answer (A)

## Solution:

Applying Newtons' second law,
$30-\mu m g=m a$
$\Rightarrow a=\left(\frac{30-50 \mu}{5}\right)$


As acceleration is uniform and block start from rest,
$S=\frac{1}{2} a t^{2}$
$\Rightarrow 50=\frac{1}{2}\left(\frac{30-50 \mu}{5}\right) 10^{2}$
$\Rightarrow 5=30-50 \mu$
$\Rightarrow \mu=\frac{25}{50}=0.5$
4. Which of the following is not the frequency of frequency modulated (FM) signal?
A. 90 MHz
B. 89 MHz
C. 106 MHz
D. 100 kHz

## Answer (D)

## Solution:

Frequency of FM signal is in MHz .
5. For a real gas the equation of gas is given by $\left(P+\frac{a n^{2}}{V^{2}}\right)(V-b n)=n R T$. If symbols have their usual meaning, then the dimensions of $\frac{V^{2}}{a n^{2}}$ is same as that of
A. Compressibility
B. Bulk modulus
C. Viscosity
D. Energy Density

## Answer (A)

## Solution:

$[P]=\left[\frac{a n^{2}}{V^{2}}\right]=$ dimension of bulk modulus
So, $\left[\frac{a n^{2}}{V^{2}}\right]$ has dimension of compressibility.
6. A stone is thrown vertically up with speed $v_{o}$ from a cliff of height $H$. Find the average speed of the ball till the moment it reaches ground. Given that $H=100 \mathrm{~m}, v_{o}=10 \mathrm{~m} / \mathrm{s}, \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. $\frac{64}{1+\sqrt{21}} \mathrm{~m} / \mathrm{s}$
B. $55 \mathrm{~m} / \mathrm{s}$
C. $110(1+\sqrt{21}) \mathrm{m} / \mathrm{s}$
D. $\frac{110}{1+\sqrt{21}} \mathrm{~m} / \mathrm{s}$

## Answer (D)

## Solution:

Total distance $=\frac{v_{o}^{2}}{2 g} \times 2+100=110 \mathrm{~m}$
Total time $=t_{0}$
$S=u t_{0}+\frac{1}{2} a t_{0}^{2}$
$\Rightarrow-100=10 t_{o}-\frac{1}{2} \times 10 \times t_{o}^{2}$
$\Rightarrow t_{o}=1+\sqrt{21} \mathrm{~s}$
$\Rightarrow$ Average speed $=\frac{110}{1+\sqrt{21}} \mathrm{~m} / \mathrm{s}$

7. In the circuit shown find the equivalent resistance between terminals $A$ and $B$.
A. $3 R / 2$
B. $2 R$
C. $4 R$
D. $R$

Answer (D)

## Solution:

Redrawing the structure, we will get the circuit as shown here:


It is a balanced Wheatstone bridge.
The equivalent resistance of circuit: $R_{e q}=R$
8. An object of height $h$ is placed in front of a convex mirror (radius of curvature $=20 \mathrm{~cm}$ ). Find the height of image.
A. $h / 2$
B. $h / 3$
C. $h / 6$
D. $h / 4$

Answer (B)


From mirror formula:
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \frac{1}{v}+\frac{1}{-20}=\frac{1}{10}$
$\Rightarrow \frac{1}{v}=\frac{3}{20} \Rightarrow v=\frac{20}{3}$
Magnification of mirror:
$m=-\frac{v}{u}=\frac{1}{3}=\frac{h_{i}}{h}$
$h_{i}=\frac{h}{3}$
9. A uniform solid cylinder of radius $R$, is released from a 600 m long ramp, inclined at $30^{\circ}$ from the horizontal. Find the time taken to reach the bottom of the ramp. (Consider sufficient friction for pure rolling)
A. 60 sec
B. $6 \sqrt{10} \mathrm{sec}$
C. $3 \sqrt{10} \mathrm{sec}$
D. 20 sec

## Answer (B)

## Solution:

$m g \sin \theta-f_{r}=m a$
Also,
$\frac{3}{2} m R^{2} \alpha=m g \sin \theta \times R$
$\Rightarrow \frac{3}{2} m a=m g \sin \theta$
$a=\frac{2}{3} g \sin 30^{\circ}=\frac{g}{3}=\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$


Ramp length, $s=600 \mathrm{~m}$
$t=\sqrt{\frac{2 s}{a}}=\sqrt{\frac{2 \times 600 \times 3}{10}}=6 \sqrt{10}$ seconds
10. A ball is thrown horizontally from height of 10 m with a speed of $5 \mathrm{~ms}^{-1}$ as shown. Find the speed with which it strikes the ground.
A. $15 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

## Answer (A)

## Solution:

$$
\begin{aligned}
& v^{2}=u^{2}+2 g h \\
& v^{2}=25+2 \times 10 \times 10 \\
& v=15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$


11. An ideal gas (adiabatic constant $=3 / 2$ ) undergoes an adiabatic expansion process where change in temperature is $-T$. If there are 2 moles of the gas, find the work done by the gas.
A. $3 R T$
B. $2 R T$
C. $4 R T$
D. $-R T$

## Answer (C)

## Solution:

Work done for adiabatic expansion can be given as:
$W=\frac{n R \Delta T}{1-\gamma}=\frac{2 \times R(-T)}{1-3 / 2}=4 R T$
12. A drop of Mercury is divided into 125 drops of equal radius $10^{-3} \mathrm{~m}$ each. If surface tension of Mercury is equal to $0.45 \mathrm{Nm}^{-1}$. Magnitude of change in surface energy is equal to nearly:
A. $1.14 \times 10^{-4} \mathrm{~J}$
B. $7.06 \times 10^{-4} \mathrm{~J}$
C. $8.47 \times 10^{-4} J$
D. $5.65 \times 10^{-4} \mathrm{~J}$

## Answer (D)

## Solution:



Let radius of bigger drop was $R$ So,
$\frac{4}{3} \pi R^{3}=125 \times \frac{4}{3} \pi\left(10^{-3}\right)^{3}$
$R=5 \times 10^{-3} \mathrm{~m}$
$U_{i}=4 \pi R^{2} \sigma=4 \pi\left(5 \times 10^{-3}\right)^{2} \times 0.45=1.41 \times 10^{-4} J$
$U_{f}=125 \times 4 \pi r^{2} \sigma=500 \times \pi\left(10^{-3}\right)^{2} \times 0.45=7.06 \times 10^{-4}$
So,
$\Delta U=U_{f}-U_{i}=5.65 \times 10^{-4} \mathrm{~J}$
13. A charged particle with charge $2 \times 10^{-6} \mathrm{C}$, at rest, is first accelerated through a potential difference of 100 V and then it is subjected to a transverse magnetic field of $4 m T$. In region of magnetic field it undergoes a circular path of radius 3 cm . Mass of the particle is equal to
A. $1.44 \times 10^{-16} \mathrm{~kg}$
B. $7.2 \times 10^{-16} \mathrm{~kg}$
C. $1.44 \times 10^{-10} \mathrm{~kg}$
D. $7.2 \times 10^{-10} \mathrm{~kg}$

## Answer (A)

## Solution:

Radius of circular path can be given as:
$R=\frac{\sqrt{2 m q V}}{q B}$
$3 \times 10^{-2}=\frac{\sqrt{2 m \times 100}}{\sqrt{2 \times 10^{-6}} \times 4 \times 10^{-3}} \Rightarrow m=1.44 \times 10^{-16} \mathrm{~kg}$
14. A string of mass per unit length equal to $7 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$ is subjected to a tension equal to 70 N . The speed of transverse wave on this string is equal to
A. $10 \mathrm{~m} / \mathrm{s}$
B. $50 \mathrm{~m} / \mathrm{s}$
C. $100 \mathrm{~m} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s}$

## Answer (C)

## Solution:

Velocity of transverse wave can be given as:
$v=\sqrt{\frac{T}{\mu}}==\sqrt{\frac{70}{7 \times 10^{-3}}}=100 \mathrm{~m} / \mathrm{s}$
15. Two thin insulating sheets (each having charge density $+\sigma$ ) are arranged as shown. Then find the net electric field magnitude in the 3 regions:
A. $E_{1}=\frac{\sigma}{\epsilon_{0}} ; E_{2}=0 ; E_{3}=\frac{\sigma}{\epsilon_{0}}$
B. $E_{1}=E_{2}=E_{3}=0$
C. $E_{1}=0 ; E_{2}=\frac{\sigma}{2 \epsilon_{0}} ; E_{3}=\frac{\sigma}{\epsilon_{0}}$
D. $E_{1}=\frac{\sigma}{\epsilon_{0}} ; E_{2}=0 ; E_{3}=\frac{\sigma}{2 \epsilon_{0}}$

## Answer (A)

## Solution:



Electric field in different zones can be written as:
$E_{I(1)}=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}$
$E_{I I(2)}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}}=0$
$E_{I I I(3)}=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}$
16. In a series LCR circuit connected across $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ supply. If the inductive reactance of the circuit is $79.6 \Omega$. If the power delivered in the circuit is maximum, the capacitance of the circuit is $x \mu F$. Find $x$.

## Answer (40)

## Solution:

For maximum power, LCR should be in resonance condition, $X_{L}=X_{C}$
$\Rightarrow 79.6=\frac{1}{\omega c}=\frac{1}{2 \pi f c}=\frac{1}{2 \pi \times 50 \times c}$
$\Rightarrow c=\frac{1}{79.6 \times 100 \pi}=40 \times 10^{-6} \mathrm{~F}=40 \mu \mathrm{~F}$
17. An alpha particle and a proton having same de - Broglie wavelengths will have kinetic energies in the ratio
$\qquad$ -.

## Answer (0.25)

## Solution:

charge on $\alpha$ particle $=2 \mathrm{e}$
mass of proton $=m$
mass of $\alpha$ particle $=4 \mathrm{~m}$
$\frac{\lambda_{P}}{\lambda_{\alpha}}=\frac{\left(P_{\alpha}\right)}{\left(P_{P}\right)}=\frac{\sqrt{2 K_{\alpha} m_{\alpha}}}{\sqrt{2 K_{P} m_{P}}}=1$
$\frac{K_{\alpha}}{\mathrm{K}_{\mathrm{P}}} \times\left(\frac{m_{\alpha}}{m_{P}}\right)=1$
$\frac{K_{\alpha}}{\mathrm{K}_{\mathrm{P}}} \times(4)=1$
$\frac{K_{\alpha}}{\mathrm{K}_{\mathrm{P}}}=\frac{1}{4}=0.25$
18. If mass of a planet is 9 times that of the earth and radius is 2 times that of the earth, then escape speed from this planet is $\frac{x v_{e}}{\sqrt{2}}$. Find $x$.
( $v_{e}$ is escape speed from the Earth.)
Answer (3)

## Solution:

Escape speed from earth, $\mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}}$
Escape speed from planet, $\mathrm{v}_{\mathrm{e}}^{\prime}=\sqrt{\frac{2 \mathrm{GM}^{\prime}}{\mathrm{R}^{\prime}}}=\sqrt{\frac{2 \mathrm{G} \times 9 \mathrm{M}_{\mathrm{e}}}{2 \mathrm{R}_{\mathrm{e}}}}=\mathrm{v}_{\mathrm{e}} \times \frac{3}{\sqrt{2}}$
19. There are $n$ number of polarizers arranged one after the other. Each polarizer pass axis is inclined at $45^{0}$ with respect to the previous polarizer. Unpolarized light of intensity $I_{0}$ is incident on this setup. Final transmitted light has intensity $\frac{I_{0}}{64}$. Find $n$

## Answer (6)

## Solution:

Intensity of light passing through $1^{\text {st }}$ polarizer will be $I_{0} / 2$ Intensity of light passing through $2^{\text {nd }}$ polarizer will be $\frac{I_{0}}{2} \times \cos ^{2} 45^{\circ}$ Intensity of light passing through $3^{r d}$ polarizer will be $\frac{I_{0}}{2} \times\left(\cos ^{2} 45^{\circ}\right)^{2}$
Similarly, for $n$ polarizers:
$I=\frac{I_{0}}{2} \times \cos ^{2} 45^{\circ} \times \cos ^{2} 45^{\circ} \times \ldots \ldots \ldots \ldots \quad$ (upto $n-1$ times)
$\Rightarrow \frac{I_{0}}{64}=\frac{I_{0}}{2} \times\left(\frac{1}{2}\right)^{n-1}$
$\Rightarrow n-1=5$ or $n=6$
20. Two-point charges each of magnitude $q$ is kept at a separation of $2 a$. The distance from mid point on perpendicular bisector where a point charge will experience maximum force is $\frac{a}{\sqrt{x}}$. Find the value of $x$.

## Answer (2)

## Solution:

$E$ due to one charge $=\frac{k q}{a^{2}+y^{2}}$
$E_{n e t}$ at point $P=2 E \cos \alpha$
$=\frac{2 K q}{a^{2}+y^{2}} \times \frac{y}{\left(a^{2}+y^{2}\right)^{\frac{1}{2}}}$
$=\frac{2 K q y}{\left(a^{2}+y^{2}\right)^{\frac{3}{2}}}$
Force $=q E_{\text {net }}$
$\frac{d F}{d y}=0$, for maximum force
On solving, $\frac{d F}{d y}=0$
$\Rightarrow y=\left(\frac{a}{\sqrt{2}}\right)$
So, $x=2$


