## CSM - 52/17 Mathematics Paper - I

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section – A and Q. No. 5 from Section – B which are compulsory and three of the remaining questions selecting at least one from each Section.

## SECTION - A

- 1. Answer any five of the following:
  - (a) Prove that every subgroup of a cyclic groupis itself a cyclic group.
  - (b) Let S = {(x, y, z) / x + y + z = 0}, x, y, z being real. Prove that S is a subspace of R<sup>3</sup>. Find a basis of S.

(Turn over)

(c) State Caley-Hamilton theorem and use it to calculate the inverse of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}.$$
 12

(d) A variable plane is at a constant distance p from the origin O and meets the axes at A, B and C. Show that the locus of the centroid of the tetrahedron OABC is

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{16}{p^2}.$$

- (e) Show that the triangle formed by the straight lines ax² + 2hxy + by² = 0 and the straight line lx + my = 1 is right angled if (a + b)(al² + 2hlm + bm²) = 0.
- (f) Prove that a finite integral domain is a field.12
- 2. (a) If p be a prime and p is not a divisor of a, then  $a^{p-1} \equiv 1 \pmod{p}$ .
  - (b) If H is a cyclic normal subgroup of a group G, then show that every subgroup of H is normal in G
    15

- If Z is the set of integers then show that  $Z[\sqrt{-3}] = \{a + b \sqrt{-3} : a, b \in Z\}$  is not a unique factorization domain. 15
- (d) Let F be a field and let p(x) be an irreducible polynomial over F. Let  $\langle p(x) \rangle$  be the ideal generated by p(x). Prove that  $\langle p(x) \rangle$  is a maximal ideal. 15
- (a) Find a basis for R<sup>3</sup> that contains the vectors 3. (1, 2, 0) and (1, 3, 1). 15
  - (b) Let  $T: M_{2,1} \rightarrow M_{2,3}$  be a linear transformation defined by (with usual notations)  $T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3\\4 & 1 & 5 \end{pmatrix}, T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 0\\0 & 0 & 2 \end{pmatrix}$ . Find

$$T\begin{pmatrix} x \\ y \end{pmatrix}.$$
 15),  $(1)^{-1}(0 \ 0 \ 2)$ . Find

Obtain the normal form under congruence (c) and find the rank and signature of the

symmetric matrix 
$$\begin{pmatrix} 2 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 1 \end{pmatrix}$$
. 15

(d) Show that the eigen values of a real symmetric matrix are all real.

4

4. (a) If a point lies on the ellipse  $\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1$ , prove that its polar with respect to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, touches the ellipse

$$\frac{a'^2}{a^4}x^2 + \frac{b'^2}{b^4}y^2 = 1.$$
 15

- (b) Prove that the straight line  $\ell x + my + n = 0$  touches the parabola  $y^2 4ax + 4ab = 0$  if  $\ell^2b + \ell n = am^2$ .
- (c) Find the equation of the plane passing through the straight line 3x + y + 2z 7 = 0 = x + y z + 4 and perpendicular to the plane 2x + y + z = 5.
- (d) Show that the angle between the lines of section of the plane 3x + y + 5z = 0 and the

cone 6yz - 2zx + 5xy = 0 is 
$$\cos^{-1} \left( \frac{1}{6} \right)$$
. 15

BY - 52/5

(4)

Contd.

## SECTION - B

- 5. Answer any five of the following:
  - (a) Prove that a monotone increasing sequence, if bounded above, is convergent and the sequence converges to the upper bound.
  - (b) Find Laurent series for: 12
    - (i)  $\frac{e^{2z}}{(z-1)^3}$  about z=1
    - (ii)  $\frac{1}{z^2(z-3)^2}$  about z = 3
    - (c) By means of contour integration, evaluate  $\int_0^\infty \frac{(\log_e u)^2}{u^2 + 1} du$  12
    - (d) Examine the convergence of the series

$$1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots, x > 0.$$
 12

(e) An area bounded by a quadrant of a circle of radius a and the tangents at its extremities revolves about one of the tangent. Find the volume so generated. 12

- (f) Calculate the curvature at the point u of the curve given by the parametric equations  $x = a(3u u^3)$ ,  $y = 3au^2$ ,  $z = a(3u + u^2)$ . 12
- 6. (a) Let  $f(x) = \begin{cases} 0, & x \text{ is irrational} \\ 1, & x \text{ is rational} \end{cases}$ Show that f is not Riemann-integrable on [a, b].
  - (b) If  $\lim_{n\to\infty} a_n = \ell$ , then prove that  $\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \ell.$  15
  - (c) If  $u + v = \frac{2\sin 2x}{e^{2y} + e^{-2y} 2\cos 2x}$  and if z = u + iv is an analytic function of z = x + iy, find z = x + iy.
  - (d) Use the method of contour integration to prove that  $\int_0^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} = \frac{2\pi}{1-a^2}$ 0 < a < 1.
- 7. (a) Express  $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$  in terms of Gamma function and hence evaluate the integral  $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} dx$  15

BY -- 52/5

(6)

Contd.

## (b) Discuss the applicability of Rolle's theorem

on 
$$f(x) = e^{-x} (\cos x - \sin x)$$
 in  $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ .

15

(c) Find the area of the region bounded by the upper half of the circle  $x^2 + y^2 = 25$ , the x-axis and the ordinates x = -3 and x = 4.

15

(d) Find the surface of a sphere generated by the circle  $x^2 + y^2 = a^2$  about x-axis.

15

8. (a) Evaluate 
$$\overrightarrow{\nabla}$$
  $\left[r\overrightarrow{\nabla}\left(\frac{1}{r^3}\right)\right]$ , where 
$$r = \sqrt{x^2 + y^2 + z^2}$$
.

(b) Prove that if  $\int_{P_1}^{P_2} \overrightarrow{F} \cdot d\overrightarrow{r}$  is independent of the path joining any two points  $P_1$  and  $P_2$  in a given region, then  $\oint \overrightarrow{F} \cdot d\overrightarrow{r} = 0$  for all closed paths in the region and conversely.

15

- (c) Prove that  $\iiint_{V} \overrightarrow{\nabla} \phi \, dv = \iint_{S} \phi \, \overrightarrow{n} \, ds$ , where  $\overrightarrow{n}$  is unit normal vector to the surface S. 15
- (d) Using Green's theorem in the plane, show that the area bounded by a simple closed curve C is given by ½ (xdy ydx). Hence, find the area of the ellipse x = a cosθ, y = b sinθ.