BOARD QUESTION PAPER : JULY 2018 MATHEMATICS AND STATISTICS

Time: 3 Hours

Total Marks: 80

Note:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Graph of L.P.P. should be drawn on graph paper only.
- iv. Answer to every new question must be written on a new page.
- v. Answers to both sections should be written in the same answer book.
- vi. Use of logarithmic table is allowed.

SECTION – I

Q.1. (A) Select and write the appropriate answer from the given alternatives in each of the following sub-questions: (6)[12]

i. If the sum of the slopes of the lines represented by $x^2 + kxy - 3y^2 = 0$ is twice their product, then the value of 'k' is _____.

(A) 2 (B) 1 (C) -1 (D) -2

ii. If the vectors $\hat{i} - 2\hat{j} + \hat{k}$, $a\hat{i} - 5\hat{j} + 3\hat{k}$ and $5\hat{i} - 9\hat{j} + 4\hat{k}$ are coplanar, then the value of a is

(A)	3	(B)	-3
(C)	2	(D)	-2

iii. The acute angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x + 2y - 11z = 8 is

(A)
$$\sin^{-1}\left(\frac{8}{21}\right)$$
 (B) $\cos^{-1}\left(\frac{8}{21}\right)$
(C) $\sin^{-1}\left(\frac{1}{8}\right)$ (D) $\cos^{-1}\left(\frac{1}{8}\right)$

(B) Attempt any THREE of the following:

- Write the dual of each of the following statements :
 - a. $\sim p \land (q \lor c)$

i.

- b. "Shweta is a doctor or Seema is a teacher."
- ii. In \triangle ABC, prove that ac cos B bc cos A = $a^2 b^2$.
- iii. Show that the equation $2x^2 + xy y^2 + x + 4y 3 = 0$ represents a pair of straight lines.
- iv. If \overline{a} , \overline{b} , \overline{c} are the position vectors of the points A, B, C respectively such that $3\overline{a} + 5\overline{b} = 8\overline{c}$, then find the ratio in which C divides AB.
- v. If points A (5, 5, λ), B (-1, 3, 2) and C (-4, 2, -2) are collinear, then find the value of λ .

Q.2. (A) Attempt any TWO of the following:

 $(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$

ii. Find the inverse of the matrix A where $A = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ by using adjoint method.

(6) [14]

(6)

i.

iii. If the angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$ is equal to the angle between the lines $2x^2 - 5xy + 3y^2 = 0$, then show that $100 (h^2 - ab) = (a + b)^2$.

(B) Attempt any TWO of the following:

- i. Prove that three vectors \overline{a} , \overline{b} and \overline{c} are coplanar if and only if there exists non-zero linear combination $x \overline{a} + y \overline{b} + z \overline{c} = \overline{0}$.
- ii. Maximize z = 6x + 4y subject to constraints, $x \le 2$, $x + y \le 3$, $-2x + y \le 1$, $x, y \ge 0$. Also find the maximum value of 'z'.
- iii. Find the general solution of $\sin 2x + \sin 4x + \sin 6x = 0$.

Q.3. (A) Attempt any TWO of the following:

- i. Write the negations of the following statements:
 - a. If diagonals of a parallelogram are perpendicular, then it is a rhombus.
 - b. Mangoes are delicious, but expensive.
 - c. A person is rich if and only if he is a software engineer.
- ii. Express the following equations in matrix form and solve them by the method of reduction: x+y+z=6, 3x-y+3z=6 and 5x+5y-4z=3
- iii. Find the vector equation of the line passing through the point (-1, -1, 2) and parallel to the line 2x 2 = 3y + 1 = 6z 2.

(B) Attempt any TWO of the following:

- i. A plane meets the coordinate axes in A, B, C such that the centroid of the triangle ABC is the point (p, q, r). Show that the equation of the plane is $\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 3$.
- ii. If α , β , γ are direction angles of the line *l*, then prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. Hence deduce that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.
- iii. Using the Sine rule, prove the Cosine rule.

Q.4. (A) Select and write the appropriate answer from the given alternatives in each of the following sub-questions: (6)[12]

Equation of the tangent to the curve $2x^2 + 3y^2 - 5 = 0$ at (1, 1) is (A) 2x - 3y - 5 = 0 (B) 2x + 3y - 5 = 0(C) 2x + 3y + 5 = 0 (D) 3x + 2y + 5 = 0

ii. The order and the degree of the differential equation $\left(\frac{d^3y}{dx^3}\right)^{\frac{1}{6}} - \left(\frac{dy}{dx}\right)^{\frac{1}{3}} = 0$ are respectively

(A)	3, 2	(B)	2, 3
(C)	6, 3	(D)	3, 1

iii. Given $X \sim B(n, p)$. If p = 0.6, E(X) = 6, then the value of Var (X) is _____. (A) 2.4 (B) 2.6 (C) 2.5 (D) 2.3

(B) Attempt any THREE of the following:

i. The displacement s of a particle at time t is given by $s = t^3 - 4t^2 - 5t$. Find its velocity and acceleration at t = 2.

ii. If
$$y = \cos^{-1}(1 - 2\sin^2 x)$$
, find $\frac{dy}{dx}$.

iii. Evaluate :
$$\int \frac{1}{\sin x \cdot \cos^2 x} dx$$

(6)[14]

(8)

(8)

(6)

- iv. Solve the differential equation $x^2 \frac{dy}{dx} = x^2 + xy + y^2$
- v. Obtain the probability distribution of the number of sixes in two tosses of a fair die.
- Q.5. (A) Attempt any TWO of the following:

i

If
$$f(x) = \frac{1 - \sqrt{3} \tan x}{\pi - 6x}$$
, for $x \neq \frac{\pi}{6}$ is continuous at $x = \frac{\pi}{6}$, find $f\left(\frac{\pi}{6}\right)$.

ii. If
$$\sec^{-1}\left(\frac{x+y}{x-y}\right) = a^2$$
, show that $\frac{dy}{dx} = \frac{y}{x}$.

iii. Evaluate :
$$\int \frac{e^x}{(1+e^x)(2+e^x)} dx$$

(B) Attempt any TWO of the following:

- i. A stone is dropped into a pond. Waves in the form of circles are generated and the radius of the outermost ripple increases at the rate of 2 inch/sec. How fast will the area of the wave increase
 - a. when the radius is 5 inch?
 - b. after 5 seconds?

ii. Evaluate :
$$\int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} dx$$

iii. The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after $2\frac{1}{2}$ hours. [Take $\sqrt{2} = 1.414$]

Q.6. (A) Attempt any TWO of the following:

i. Discuss the continuity of the following function in its domain, where $f(x) = x^2 - 4$, for $0 \le x \le 2$

 $(x) = x^{2} - 4$, for $0 \le x \le 2$ = 2x + 3, for $2 < x \le 4$ = $x^{2} - 5$, for $4 < x \le 6$

ii. If y = f(u) is differentiable function of u, and u = g(x) is a differentiable function of x, then prove that y = f[g(x)] is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

iii. Suppose that 80% of all families own a television set. If 10 families are interviewed at random, find the probability that at most three families own a television set.

(B) Attempt any TWO of the following:

i. If u and v are integral functions of x, then show that $\int u \cdot v \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx$

Hence evaluate $\int \log x \, dx$.

ii. Prove that :

$$\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(2a - x) \, dx$$

iii. Find k if the function f(x) is defined by f(x) = kx(1-x), for 0 < x < 1= 0, otherwise,

is the probability density function (p.d.f.) of a random variable (r.v.) X. Also find $P\left(X < \frac{1}{2}\right)$

(6)[14]

(6)[14]

(8)

(8)