BOARD QUESTION PAPER : MARCH 2018

Note:

i.

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Graph of L.P.P. should be drawn on graph paper only.
- iv. Use of logarithmic table is allowed.
- v. Answers to the questions of Section I and Section II should be written in only one answer book.
- vi. Answer to every new question must be written on a new page.

SECTION – I

Q.1. (A) Select and write the appropriate answer from the given alternatives in each of the following sub-questions: (6) [12]

If $A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$, then adjoint of matrix A is	5	<u> </u>
$(A) \begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$	(B)	$\begin{bmatrix} 1 & -3 \\ -4 & 2 \end{bmatrix}$
$(C) \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$	(D)	$\begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix}$

ii. The principal solutions of sec
$$x = \frac{2}{\sqrt{3}}$$
 are

(A)
$$\frac{\pi}{3}, \frac{11\pi}{6}$$
 (B) $\frac{\pi}{6}, \frac{11\pi}{6}$
(C) $\frac{\pi}{4}, \frac{11\pi}{4}$ (D) $\frac{\pi}{6}, \frac{11\pi}{4}$

iii. The measure of acute angle between the lines whose direction ratios are 3, 2, 6 and -2, 1, 2 is

(A)
$$\cos^{-1}\left(\frac{1}{7}\right)$$
 (B) $\cos^{-1}\left(\frac{8}{15}\right)$
(C) $\cos^{-1}\left(\frac{1}{3}\right)$ (D) $\cos^{-1}\left(\frac{8}{21}\right)$

(B) Attempt any THREE of the following:

- i. Write the negations of the following statements:
 - a. All students of this college live in the hostel.
 - b. 6 is an even number or 36 is a perfect square.
- ii. If a line makes angles α , β , γ with the co-ordinate axes, prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$.
- iii. Find the distance of the point (1, 2, -1) from the plane x 2y + 4z 10 = 0.
- iv. Find the vector equation of the line which passes through the point with position vector $4\hat{i} \hat{j} + 2\hat{k}$ and is in the direction of $-2\hat{i} + \hat{j} + \hat{k}$.
- v. If $\bar{a}=3\hat{i}-2\hat{j}+7\hat{k}$, $\bar{b}=5\hat{i}+\hat{j}-2\hat{k}$ and $\bar{c}=\hat{i}+\hat{j}-\hat{k}$, then find $\bar{a}\cdot(\bar{b}\times\bar{c})$.

(6)

Std. XII : Perfect Maths - I

Q.2. (A) Attempt any TWO of the following:

- i. Using vector method prove that the medians of a triangle are concurrent.
- ii. Using the truth table, prove the following logical equivalence:

 $\mathbf{p} \leftrightarrow \mathbf{q} \equiv (\mathbf{p} \land \mathbf{q}) \lor (\sim \mathbf{p} \land \sim \mathbf{q}).$

iii. If the origin is the centroid of the triangle whose vertices are A(2, p, -3), B(q, -2, 5) and R(-5, 1, r), then find the values of p, q, r.

(B) Attempt any TWO of the following:

- i. Show that a homogeneous equation of degree two in x and y, i.e. $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin if $h^2 ab \ge 0$.
- ii. In $\triangle ABC$, prove that $\tan\left(\frac{C-A}{2}\right) = \left(\frac{c-a}{c+a}\right)\cot\frac{B}{2}$ iii. Find the inverse of the matrix, $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ using elementary row transformations.

Q.3. (A) Attempt any TWO of the following:

- i. Find the joint equation of the pair of lines passing through the origin, which are perpendicular to the lines represented by $5x^2 + 2xy 3y^2 = 0$.
- ii. Find the angle between the lines $\frac{x-1}{4} = \frac{y-3}{1} = \frac{z}{8}$ and $\frac{x-2}{2} = \frac{y+1}{2} = \frac{z-4}{1}$
- iii. Write converse, inverse and contrapositive of the following conditional statement: If an angle is a right angle then its measure is 90°.

(B) Attempt any TWO of the following:

i. Prove that:
$$\sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

- ii. Find the vector equation of the plane passing through the points A(1, 0, 1), B(1, -1, 1) and C(4, -3, 2).
- iii. Minimize Z = 7x + y subject to $5x + y \ge 5, x + y \ge 3, x \ge 0, y \ge 0$

(8)

(6)[14]

(8)

(6)[14]

T

BOARD QUESTION PAPER : MARCH 2018

Note:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Graph of L.P.P. should be drawn on graph paper only.
- iv. Use of logarithmic table is allowed.
- v. Answers to the questions of Section I and Section II should be written in only one answer book.
- vi. Answer to every new question must be written on a new page.

SECTION – II

- Q.4. (A) Select and write the appropriate answer from the given alternatives in each of the following sub-questions: (6)[12]
 - i. Let the p.m.f. of a random variable X be –

$$P(x) = \frac{3 - x}{10} \text{ for } x = -1, 0, 1, 2$$

= 0 otherwise
Then E(X) is _____.
(A) 1 (B) 2
(C) 0 (D) -1

ii. If
$$\int_{0}^{k} \frac{1}{2+8x^{2}} dx = \frac{\pi}{16}$$
, then the value of k is _____
(A) $\frac{1}{2}$ (B) $\frac{1}{3}$
(C) $\frac{1}{4}$ (D) $\frac{1}{5}$

iii. Integrating factor of the linear differential equation $x\frac{dy}{dx} + 2y = x^2 \log x$ is _____.

(A)
$$\frac{1}{x^2}$$
 (B) $\frac{1}{x}$
(C) x (D) x^2

(B) Attempt any THREE of the following:

i. Evaluate:
$$\int e^x \left[\frac{\cos x - \sin x}{\sin^2 x} \right] dx$$

- ii. If $y = \tan^2(\log x^3)$, find $\frac{dy}{dx}$.
- iii. Find the area of ellipse $\frac{x^2}{1} + \frac{y^2}{4} = 1$.
- iv. Obtain the differential equation by eliminating the arbitrary constants from the following equation: $y = c_1 e^{2x} + c_2 e^{-2x}$

v. Given
$$X \sim B(n, p)$$

If $n = 10$ and $p = 0.4$, find $E(X)$ and Var. (X).

(6)

Std. XII : Perfect Maths - II

Q.5. (A)

i.

ii.

iii.

Attempt any TWO of the following:

Examine the continuity of the function:

Evaluate: $\int \frac{1}{3 + 2\sin x + \cos x} dx$

If $x = a \cos^3 t$, $y = a \sin^3 t$,

show that $\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$

$$f(x) = \frac{\log 100 + \log(0.01 + x)}{3x}, \text{ for } x \neq 0$$

$$= \frac{100}{3} \qquad \text{for } x = 0; \text{ at } x = 0$$
(B) Attempt any TWO of the following:

1. Find the maximum and minimum value of the function:
$$f(x) = 2x^3 - 21x^2 + 36x - 20.$$

1. Prove that:
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

11. Show that:
$$\int \frac{1}{a^2 - x^2} dx = \frac{2}{3} f(x) dx, \text{ if } f(x) \text{ is an even function.}$$

$$= 0, \qquad \text{ if } f(x) \text{ is an odd function.}$$

O.6. (A) Attempt any TWO of the following:

1. If $f(x) = \frac{x^2 - 9}{x - 3} + \alpha$, for $x > 3$

$$= 5, \qquad \text{for } x > 3$$

$$= 5, \qquad \text{for } x > 3$$
is continuous at $x = 3$, find α and β .

12. Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{5x+1}{3-x-6x^2}\right)$

13. A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.

13. Verify Rolle's theorem for the following function:
$$f(x) = x^2 - 4x + 10 \text{ on } [0, 4]$$

14. Find the particular solution of the differential equation:
$$y(1 + \log x) \frac{dx}{dy} - x \log x = 0$$
when $y = e^2$ and $x = e$

15. Find the variance and standard deviation of the random variable X whose p distribution is given below:

$$\overline{\frac{1}{10(x - x)} \frac{1}{\frac{1}{x}} = \frac{3}{\frac{1}{x}} \frac{1}{\frac{1}{x}}}$$

(6)[14]

(8)

(6)[14]

(8)

X whose probability