COMPUTER BASED TEST (CBT) Memory Based Questions & Solutions Date: 31 January, 2023 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m) Duration: 3 Hours | Max. Marks: 300 #### SUBJECT: PHYSICS #### Resonance Eduventures Ltd. Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 This solution was download from Resonance JEE (MAIN) 2023 Solution po Resonance* | JEE (MAIN) 2023 | DATE: 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS #### PART: PHYSICS 1. In He+ atom a photon emits due to transition of electron from orbit n = 4 to n = 1. Find corresponding transition in H-atom for same photon. $$(4)$$ 5 \rightarrow 3 Ans. (2) **Sol.** $$E = -\frac{13.6 \text{ eV}}{n^2} z^2$$ $$\Delta E = -13.6 \left(\frac{1}{4} - \frac{1}{16} \right) 2^2 = 13.6 \left[1 - \frac{1}{4} \right] = 13.6 \left[\frac{3}{4} \right] = 10.2 \text{ eV}$$ For $$n = 2$$ $E_2 = \frac{-13.6}{4} = -3.4$ $$E_1 - E_2 = -10.2 \text{ eV}$$ So corresponding transition is from n = 2 to n = 1 2. Find the Normal reaction on the given sphere of mass 70 kg: (1) 800N (2) 1000N (3) 1500N (4) 1400N Ans. (1) Sol. N = 200sin30° + 700 N = 800 Newton ### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Tall Free: 1800 258 5555 7340010333 tooleas conflescenceds with the conflescence of conflesce This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#1 ## Resonance* | JEE (MAIN) 2023 | DATE : 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS - 3. Find the value of x (distance of point from centre inside the earth) if gravity at x is 4 times of gravity at 4R (difference from centre of its earth) (R is radius of the earth) - (1) R/4 - (2) R/8 - (3) 2R/3 - (4) 2R/3 Ans. (1) Sol. 4R A x O $$4g_B = g_A$$ $$4 \cdot \frac{GM}{(4R)^2} = \frac{GM}{R^3}$$ $$\frac{1}{4R^2} = \frac{r}{R^3}$$ $$r = \frac{R}{4}$$ 4. In given figure mass is 490 gm, then find number of oscillations in $t = 14\pi$ sec. Ans. (2) (1)22 Sol. $$T = 2\pi \sqrt{\frac{M}{K_{eq}}}$$ = $\frac{2\pi}{4} \sqrt{\frac{0.49}{4}} = \frac{22}{7} \times 0.7 = 0.7 \pi$ No. of oscillations = $$\frac{14\pi}{0.7\pi}$$ = 20 ### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#2 ## Resonance* | JEE (MAIN) 2023 | DATE: 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS - Speed of light in air is v. in another medium It is V_{med} = 0.2 V find refractive index of medium - (1)7 - (2)12 - (3) 8 - (4) 5 Ans. (4 **Sol.** $$\mu_{med} = \frac{C}{V} = \frac{V}{0.2V} = 5$$ - 6. If two batteries are connected is series and then parallel, the current in the circuit is same in both the cases then internal resistance of battery is: (external resistance is R) - (1) R - (2) R/2 - (3) 3R - (4) R/4 Ans. (1) Sol. Let r is the internal resistance of battery. In series In parallel $$\varepsilon_{\text{eq}} = \frac{\varepsilon \times r + \varepsilon \times r}{r + r} = \varepsilon, \ r_{\text{eq}} = \frac{r \times r}{r + r} = \frac{r}{2}$$ $$l_2 = \frac{\varepsilon}{R + \frac{r}{2}} = \frac{2\varepsilon}{2R + r} \qquad ...(ii)$$ From equation (1) and (2) Given i₁ = i₂ $$\frac{2\epsilon}{2r+R} = \frac{2\epsilon}{2R+r}$$ $$2r + R = 2R + r$$ #### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 T tootook oun flesconanced. This solution was download from Resonance JEE (MAIN) 2023 Solution portal ## RESONANCE | JEE (MAIN) 2023 | DATE: 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS - On increasing the temperature of a semiconductor: - (i) Number density of free charge carrier will increase - (ii) Number density of free charge carrier will decrease - (iii) Resistivity of the semiconductor will increase - (iv) Resistivity of the semiconductor will decrease The correct statements will be: (1) only (iv) (2) only (i) (3) (i) and (iv) (4) (ii) and (iv) Ans. If the temperature of a semiconductor is increased, number density of free charge carriers increases & Sol. resistivity decreases. 8. Find work required to rotate a magnet slowly from $\theta = 0$ to $\theta = 180^{\circ}$ in an uniform magnetic field B. magnetic moment of magnet is m. (1) 2 MB Ans. (1) $\theta = 0 \rightarrow \theta = 180^{\circ}$ Sol. $W_{is} = U \uparrow = U_f - U_i = (-MBcos180^\circ) - (-MBcos0)$ Wis = 2MB - In a LCR alternating series circuit, the reactance of the capacitor and inductor are respectively Xc and XL then which quantity will be non-dimensional - (2) √X_CX_L (4) 2/3 MB Ans. Sol. Dimensions of both R & X are same so ratio of both will give dimension less quantity. - A lift is moving downwards with a = 2 m/s² & u = 2 m/s. Find the kinetic energy of lift after it covers a distance of 6 m. Given, mass of light = 500 kg. - (1) 2 kJ - (2) 4 kJ $a = 2m/s^2$ - (3) 7 kJ - (4) 9 kJ Ans. (3) Sol. V = 2 m/s $V^2 = u^2 + 2$ as $V = \sqrt{4 + 2 \times 2 \times 6}$ $V = \sqrt{28}$ Then KE = $\frac{1}{2}$ mv² $=\frac{1}{2}\times500\times(28)^2=\frac{1}{2}\times500\times28=500\times14=7000\text{ J}$ K.E. = 7 kJ #### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Tall Free : 1800 258 5555 📵 7340010333 📝 bootook oom/Respiranceful 💟 twitter sam/Respiranceful 🔝 www.youtube.com/respiratory 🕒 biog respirance.ac.it - 11. Elastic balls each of mass m are falling from a height h and colliding with the surface at the rate of 200 balls/sec. The average force acting on the roof will be: - (1) 200m√2g - (2) 400m√2gh - (3) 100m√2gh - (4) 300m√2gh Ans. (2 Sol. Total momentum given to the roof will be = n (2 mV) $$F = \frac{dp}{dt} = (2mV)\frac{dn}{dt} = 200$$ - $F = 2m\sqrt{2gh} \times 200 = 400m\sqrt{2gh}$ - 12. A solid sphere of mass = 1kg is rolling (pure) with velocity v . If it's kinetic energy is $k = 7 \times 10^{-3}$ Joule. Find 'v'? - (1) 15 cm/s - (2) 18 cm/s - (3) 10 cm/s - (4) 5 cm/s Ans. (3) Sol. $$\frac{1}{\text{K.E.}} = \frac{1}{2}\text{I}\omega^2 + \frac{1}{2}\text{m}v^2 = \frac{1}{2}\left(\frac{2}{5}\right)\text{MR}^2\omega^2 + \frac{1}{2}\text{m}v^2$$ K.E. = $$\frac{1}{5}$$ mv² + $\frac{1}{2}$ mv² (:: v = R ω) $$\frac{(2+5)mv^2}{10} = KE \implies \frac{7}{10} \times 1 \times v^2 = 7 \times 10^{-9} \implies v^2 = \sqrt{10^{-2}} \implies v = \frac{1}{10} \text{ m/s} \implies v = 10 \text{ cm/s}$$ 13. In Amplitude modulation, $A_C = 15 \sin (1000 \pi t)$, $A_m = 10 \sin (4 \pi t)$. Determine the Range of frequency ? (1) 178Hz - 195Hz (2) 498Hz - 502Hz (3) 408Hz - 402Hz (4) 200Hz - 302Hz Ans. (2) **Sol.** $m_c = 1000 \, \pi$ $$f_c = \frac{\omega_c}{2\pi} = \frac{1000\pi}{2\pi} = 500Hz$$ $$f_m = \frac{4\pi}{2\pi} = 2Hz$$ Range = 498Hz - 502Hz ### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#5 ## RESONANCE® | JEE (MAIN) 2023 | DATE : 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS - 14. A particle is projected from ground with speed u at highest point of its Path speed is $\frac{\sqrt{3}u}{2}$. Find time of flight of the particle : - (1) u - (2) √3u - $(3) \frac{u}{2g}$ - $(4) \; \frac{\mathsf{u}}{\sqrt{3}\mathsf{g}}$ Ans. (1) Sol. Velocity of particle at the highest point $$u\cos\theta = \frac{\sqrt{3}}{2}u$$ $$\cos \theta = \frac{\sqrt{3}}{2}$$ θ = 30° $$T = \frac{2u\sin\theta}{g} \Rightarrow$$ $$T = \frac{2u\sin 30}{g} \Rightarrow T = \frac{u}{g}$$ - 15. A source emits light of power 15 kW. Number of photons ejected per sec. from the source is 10¹⁶. Find nature of emitted light: - (1) Ultra violet rays - (2) X-rays - (3) Infra rays - (4) gamma rays Ans. (Sol. $$E = \frac{hc}{\lambda}$$ $$E = \frac{\text{nhc}}{\lambda} = 15\text{kW}$$ $$\frac{\text{nhc}}{\lambda} = 15 \times 10^{3} \implies \frac{10^{16} \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda} = 15 \times 10^{3} \implies \lambda = \frac{6.63}{4} \times 10^{-13}$$ $$= 1.32 \times 10^{-13} = 1.32 \times 10^{-8} \, \mu\text{m}$$ 16. Ratio of CP and Cy depends upon temperatures according to the following relation : (1) y ∝ T Ans. (4 Sol. $$\gamma = \frac{C_P}{C_V}$$ ## Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contract@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1808 258 5555 S 7340010333 treatesk own/Reconancelation of the contract for the conflict of the contract for the contract for the conflict of the conflict of the contract for t This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#6 ## Resonance | JEE (MAIN) 2023 | DATE : 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS 17. A wire has length 1 m at temperature 210°C. If the temperature of wire is reduced to 160° the wire get compressed. Now, If a block of mass 'm' gets hang to this wire then its length again extend to initial length. Find mass of block. given, Area of wire = 3 × 10-6 m2; Young modulus = 2 × 1011 N/m2 $$\alpha = 2 \times 10^{-5} / {\rm °C}$$ Ans. (2) $$\frac{\Delta \ell}{\ell} = \alpha \Delta T \Rightarrow \frac{\Delta \ell}{\ell} = 2 \times 10^{-5} \times (210 - 160)$$ $$\frac{\Delta \ell}{\ell} = 2 \times 10^{-5} \times 50 = 10^{-3}$$ as young modulus $$y = \frac{F}{A} \times \frac{\ell}{\Delta \ell}$$ so, $$2 \times 10^{11} = \frac{\text{mg}}{3 \times 10^{-6}} \times 10^3 \Rightarrow$$ $$\frac{2 \times 10^{11} \times 3 \times 10^{-6} \times 10^{-3}}{10} = m \implies m = 60 \text{ kg}$$ **18.** Which of the flowing best represent the potential of isolated charged spherical conductor as a function of r, where r is the radial distance: ### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 | 7340010333 | feoretic contract. | CIN: U80302RJ2007PLC024029 U80302PLC024029 | CIN: U80302PLC024029 | CIN: U80302PLC024029 | CIN: U80302PLC024029 This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#7 ## Resonance* | JEE (MAIN) 2023 | DATE : 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS 19. If drift velocity of electron inside a wire is V_d, what will the new drift velocity if area of cross-section is doubled keeping the current constant? (2) $$\frac{V_{d}}{4}$$ (3) $$\frac{V_0}{2}$$ $$(4) \frac{V_d}{\sqrt{2}}$$ Ans. (3) Sol. I = neAVd. $neAV_d = ne(2A)V'$ $$\Rightarrow$$ V' = $\frac{V_d}{2}$ 20. Electric field in a region is 4000 x^2 i N/c. the flux through the cube shown in figure is $\frac{P}{5}$ nm²/C. Find P? (1) 32 (2) 60 (3) 15 (4) 100 Ans. (1) Sol. $E = 4000 \times (0.2)^2$ E = 160 N/c $\phi = \vec{E}\vec{A} = 160 \times (0.2)^2$ $\phi = EA$ $\phi = 6.4$ P/5 = 6.4 P = 6.4 × 5 = 32 21. What will be the effect in resistance of semiconductor on increasing the temperature? (1) increase - (2) decrease - (3) constant (4) None of these Ans. (2 Sol. Resistance will decrease Temp. ↑ R ↓ 22. Assertion: Wave nature of electron explains interference and diffraction. Reason: Davission and Germer experiment explain the wave nature of electron. - (1) Both (A) and (R) are true and (R) is the correct explanation of (A) - (2) Both (A) and (R) true but (R) is NOT the correct explanation of (A) - (3) (A) is true but (R) is false. - (4) (A) is false but (R) is true. Ans. (1) Sol. Both are correct #### Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🚳 7340010333 🌃 toolook com/ResonanceEdu 💆 witter zom/ResonanceEdu 🛅 www.youtule.com/resonance 🖎 🛅 biog reswance.ac. n This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE#8 Resonance* | JEE (MAIN) 2023 | DATE : 31-01-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS 23. A man can swim with a speed of 4km/hr in still water. He tries to cross a river flowing with a speed of V_r in the shortest possible time and drifts 750 m away as shown. The width of river is 1000 m. Find Vr (1) 2/5 km/hr (2) 2 km/hr (3) 3 km/hr (4) 3/2 km/hr Ans. $V_r = 3 \text{ km/hr}$ Surface tension of water drop of radius r = 1 mm is 0.07 N/m. 1000 similar drops are combined to form a 24. bigger drop. If u₁ is the surface energy of 1000 similar drops and u₂ is the surface energy of bigger drop. Find change in energy. (1) 590 µJ (2) 672 µJ (3) 792 uJ (4) 829 µJ Ans. (3) Sol. Using volume conservation $$1000 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3$$ R = 10 r $R = 10 \times 1 \text{ mm} = 10 \text{ mm}$ as surface energy $U = S(4\pi r^2)$ when S is surface energy & r is radius $U_1 = 0.07 (4\pi \times (1 \times 10^{-3})^2) \times 1000$ $U_1 - U_2 = 0.07 \times 4\pi [10^{-6} \times 10^3 - 10^{-4}]$ $$0.07 \times 4\pi \left[10^{-3} - 10^{-4}\right] = 0.01 \times 4 \times \frac{22}{7} \times 10^{-3} \left[1 - \frac{1}{10}\right]$$ $= 0.01 \times 4 \times 22 \times 10^{-3} \times \frac{9}{10} = 792 \times 10^{-6} \text{ J} = 792 \mu\text{J}$ - 25. A free neutron decays to a proton but a free proton does not decay to a neutron. This is because - (1) neutron is a composite particle made of a proton and an electron whereas proton is fundamental $U_2 = 0.07 (4\pi (10 \times 10^{-3})^2)$ - (2) neutron is an uncharged particle whereas proton is a charged particle - (3) neutron has larger rest mass than the proton - (4) weak forces can operate in a neutron but not in a proton. (3)Ans. ## Resonance Eduventures Ltd. Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🐚 7340010333 🌃 tookook our Resonancedo 💟 twitter com/Resonancedo 🛅 www.youtude.com/resonance.co.in This solution was download from Resonance JEE (MAIN) 2023 Solution portal