

SUBJECT: PHYSICS

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 3 7340010333 1 scelenk com/

| JEE (MAIN) 2023 | DATE : 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Two objects O1 & O2 are placed on principal axis of concave mirror as shown. Find out the separation between images of both objects:

(1) 120 cm

(2) 40 cm

(3) 160 cm

(4) 60 cm

(3) Ans.

Sol.

$$\frac{1}{V} + \frac{1}{u} = \frac{1}{f}$$

From O₁

$$u = -15$$
 cm, $f = -20$ cm

$$\frac{1}{V_1} - \frac{1}{15} = -\frac{1}{20} \Rightarrow \frac{1}{V_1} = \frac{1}{15} - \frac{1}{20} = \frac{4-3}{60} = \frac{1}{60}$$

V₁ 60 cm (virtual image)

For O₂

$$u = -25$$
 cm, $f = -20$ cm

$$\frac{1}{V_2} - \frac{1}{25} = -\frac{1}{20} \Rightarrow \frac{1}{V_2} = \frac{1}{25} - \frac{1}{20} = \frac{4-5}{100} = \frac{1}{100}$$

V₂ = - 100 cm (real image)

Separation = 160

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39157222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in| E-mail: contact@resonance.ac.in| CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
tolterk contribution flucture contribution flucture contribution flucture contribution for the contribution flucture contribution for the contribution for the contribution for the contribution flucture contribution for the c

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

- 2. If $F = (3y^2 + y)N$ force acting on a particle along y direction then work done by force from y = 2 to y = 5:
 - (1) 200J
- (2)300J
- (3) 127.5J

| JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

(4) 100J

PAGE#1

Ans. (3)

Ans.

w =

$$= [125 + -8 - 2] = 115 + = 127.5 J$$

- A stone is projected from ground at some angle, at highest point of its path -
 - (1) Vertical component of velocity is maximum (2) Horizontal component of velocity is zero.

 - (3) Gravitational potential energy is maximum (4) Kinetic energy is half of maximum possible value.

-1

Sol.

Ans.

Sol.

(1)

mmm m

At maximum height

 $V_y = 0$

 $V_X = ucos\theta$

potential energy = mgH_{max}

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

7340010333

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#2

| JEE (MAIN) 2023 | DATE : 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS Find $\frac{I_1 + I_3}{I_1}$ from given electrical circuit : 10V 20V 13 10Ω (1)2(2) 4(3) 6 (4) 1 Ans. Sol. 10V VCS $I_2 = 1A$ $I_1 = IA$ $L_3 = 3A$ 0.25J energy is stored in a spring when it is stretched by 10 cm then find spring constant (N/m) (1) 50 (2)70(4) 100

$$\Rightarrow \frac{1}{2}Kx^2 = 0.25$$

$$\Rightarrow \frac{1}{2} \times k \times (0.1)^2 = 0.25$$

$$k = \frac{0.5}{0.1 \times 0.1} = 50 \text{N/m}$$

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Toutien conflesonanced with a swift production of the conflesonanced with a swift produ

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#3

| JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- 6. A train moving with speed 20m/s applies brakes to stop at a station when train is 500m away from the station. Another train moving with same speed applies brakes with same retardation as previous train. If the train is at a distance of 250 m from station when breaks are applied then velocity of train with which it crosses station will be?
 - (1) 16 m/s
- (2) 10 m/s
- (3) 14 m/s
- (4) 12 m/s

Ans. (3)

Sol. $V^2 - u^2 = 2as$

$$0 - (20)^2 = 2 \times a \times 500$$

$$-\frac{400}{1000} = a \Rightarrow a = -0.4 \text{m/s}^2$$

(-ve sing tells that direction of acceleration is opposite to direction of velocity)

For train -2

$$V^2 - u^2 = 2as$$

$$V^2 - (20)^2 = 2 \times (-0.4) \times 250$$

$$v^2 = 400 - 200 = 200$$

- 7. Two planets A and B have radius in the ratio 1:3 and ratio of their escape speed from surface is 1:2, find the ratio of acceleration due to gravity at their surface:
 - (1) 5/6
- (2) 3/4
- (3) 2/3
- (4) 1/3

Ans. (2

Sol.
$$V_{\theta} = \sqrt{2gR_{\theta}}$$

$$\frac{v_{e_1}}{v_{e_2}} = \sqrt{\frac{g_1 R_1}{g_2 R_2}}$$

$$\frac{1}{2} = \sqrt{\frac{g_1}{g_2} \left(\frac{1}{3}\right)}$$

$$\frac{1}{4} = \frac{g_1}{g_2} \times \frac{1}{3}$$

$$\frac{g_1}{g_2} = \frac{3}{4}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

| JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

8. Find the minimum value of force so that block of mass 10 kg can move

(1) 25 N

(2) 25.23 N

(3) 35.5 N

(4) 20 N

Ans. (1)

Sol. FBD of the block

F/2

30°

μN

mg

N = mg - F/2

$$f = \mu N = 0.25 \left[100 - \frac{F}{2} \right]$$

Condition so that block can slide

F cos 30°≥f

$$\frac{\sqrt{3}F}{2} \ge 0.25 \left[100 - \frac{F}{2}\right]$$

$$F = \frac{200}{4\sqrt{3} + 1}$$

F = 25.23 N

Statement-1: A metallic hollow and a metallic solid sphere of same radius charged to a same potential gains different charge.

Statement-2: Capacitance of a sphere depends upon the radius.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True

Ans. (4)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Tall Free: 1800 258 5555
7340010333
volume contact@resonance.ac.in | in the contact of the contact of

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#5

| JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- 10. Statement-1 : A voltmeter of resistance 400 Ω is much better than the voltmeter of resistance 100 Ω . Statement-2: Current passing through 400Ω voltmeter is lesser as compare to voltmeter of resistance
 - (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (3) Statement-1 is True, Statement-2 is False
 - (4) Statement-1 is False, Statement-2 is True

Ans. (1)

Find the magnetic field at the centre of semi-circular ring of radius ${\rm _{10}}$ m when current is 3A : 11.

(1)
$$30 \times 10^{-7} \text{ T}$$

Ans. (1)

(2)
$$25 \times 10^{-7} \text{ T}$$

(3)
$$45 \times 10^{-7} \, \text{T}$$

(4)
$$77 \times 10^{-7}$$
 T

$$B = \frac{\mu_0}{4} \frac{i}{R}$$

$$=\frac{\mu_0}{4}\times\frac{3\times10}{5}$$

$$B = 30 \times 10^{-7} T$$

12. A tank has hole at bottom. The area of the hole is 500 mm². The tank is filled with water upto height h. The water comes out through hole with speed 30 cm/s. Area of cross-section of tank is 750 cm2 (shown in figure) then the rate of change at height h of water level in tank is $x \times 10^{-3}$ m/s then x will be :

(1) 4

(2) 3

(3)2

(4) 1

Ans.

Sol. Using continuity equation

$$A_1V_1 = A_2 V_2$$

$$750 \text{ cm}^2 \times \frac{dh}{dt} = 500 \times 10^{-2} \text{ cm}^2 \times 30 \text{ cm/s}$$

$$\frac{dh}{dt} = \frac{150}{750} \text{ cm/s} = \frac{1}{5} \text{ cm/s} = 0.2 \text{ cm/s}$$

$$\frac{dh}{dt} = 2 \times 10^{-3} \,\text{m/s}$$

so
$$x = 2$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 $\textbf{Ph. No.:} + 91\text{-}744\text{-}27777777, \ 27777700 \ | \ \textbf{FAX No.:} + 91\text{-}022\text{-}39167222$

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail:contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 evelow conflexonacetds w with the conflexonacet state of the confresonation of the confresonation

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

| JEE (MAIN) 2023 | DATE : 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Calculate the dimensional formula of mass in terms of G, h and C where G is gravitational constant, h is 13. Plank's constant and C is the speed of light:

(1) [G]1/2 [h]1/3 [C]1/4

(2) [G]-1/2 [h]1/2 [C]1/2 (3) [G]1/2 [h]1/2 [C]1/2

(4) [G] [h] [C]

Ans.

Sol. $[M] = [G]^a [h]^b [C]^c$

 $[G] = [M^{-1} \ L^3 \ T^{-2}] \ ; \ [h] = [ML^2 \ T^{-1}]$

 $[C] = [LT^{-1}]$

 $[M] = [M-1L^3 T-2]a [ML^2T-1]b [LT-1]c$

= M-a+b L3a+2b+c T-2a-b-c

-a + b = 1

3a + 2b + c = 0

-2a-b-c=0

b = 1/2

 $c = 1/2 \implies [M] = [G]^{-1/2} [h]^{1/2} [c]^{1/2}$

14. Find equivalent resistance between adjacent edges of n sides polygon if each side is having a resistance R.

(1) R
$$\begin{bmatrix} 1 - i \\ n \end{bmatrix}$$
 (2) R (2n - 1) (3) R $\begin{bmatrix} i - 1 \\ n \end{bmatrix}$ (4) R (n - 1)

Ans.

Sol.

$$R_{AB} = \frac{R(n-1)R}{R(n-1) + R} = \frac{R(n-1)}{n}$$
$$= R\left(1 - \frac{1}{n}\right) \Omega$$

- 15. In a Carnot engine temperature of source is 99°C & efficiency 1/3. If the temperature of sink increased by x then efficiency becomes 1/6 then x is:
- (1) 42k (2) 62k (3) 36k (4) 28k

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in| E-mail: contact@resonance.ac.in| CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Twotek conflectioneddi* www.youtube.com/resovate**

Dispressioneddi*

Twitter.con/flectioneddi*

Twitter.con/flectioneddi*

Twitter.con/flectioneddi*

Twitter.con/flectioneddi*

Twitter.con/flectioneddi

*

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#7

| JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.

Let
$$T_2$$
 is the temperature of sink then
$$\eta_1=1-\frac{T_2}{T_1}=1-\frac{T_2}{(372)}=1-\frac{T_2}{372}$$

given
$$\eta_1 = \frac{1}{3}$$

given
$$\eta_1 = \frac{1}{3}$$

So $\frac{1}{3} = 1 - \frac{T_2}{372} \Rightarrow \frac{T_2}{372} = 1 - \frac{1}{3} = \frac{2}{3}$
 $T_2 = 248$

Now this sink temperature $T_2 = 248$ Kn is increased by x & efficiency become $\frac{1}{8}$

$$\eta_2 = 1 - \frac{T_2 + x}{T_1} \Rightarrow \frac{1}{6} = 1 - \frac{248 + x}{372}$$

$$\frac{248 + x}{372} = 1 - \frac{1}{6} = \frac{5}{6}$$

- A block is hanging from a fixed support on a different planet where gravity is 4 times lesser than earth's 16. gravity. The rod by which block is hanging has length of 6m, cross sectional area of 3mm2 and young modulus is 2×10^{11} N/m². Calculate the elongation in the rod if mass of bock is 4 kg. (g on earth = 10 m/s²)
 - (1) 0.2 mm
- (3) 0.1mm
- (4) 2 mm

Ans. (3)

Sol. Stress =
$$\frac{F}{A} = \frac{4 \times \frac{10}{4}}{2 \times 10^6} = \frac{10}{2} \times 10^8 \text{ N/m}^2$$

$$\frac{\text{stress}}{y} = \frac{\Delta \ell}{\ell} \Rightarrow \Delta \ell = \frac{\ell \times \sigma}{y}$$

6m

 $A = 3 \text{ mm}^2$

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail:contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
sected conflictoracedul www.resonance.ac.in | E-mail:contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#8

RESONANCE | JEE (MAIN) 2023 | DATE: 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Pressure temperature graph is plotted for three ideal gases A, B, C with almost same density (least density varies). Then temperature at point P shown in graph will be :

- (1) -273°C
- (2) -100°C
- (3) -80°C
- (4) 0°C

Ans.

- When temperature goes to -273°C, all constituent particles get freeze and pressure goes to zero Sol. irrespective of the density of gas.
- 18. Which of the following graph is correct between T^2 and ℓ for a simple pendulum :

Ans.

Sol.
$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T^2 = 4\pi^2 \frac{\ell}{g} \Rightarrow T^2 \propto \ell$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 toeleek oun/fleconacetd. v toll-tenzan/fleconacetd. www.yuzuke.com/meowata

Which of the graph represent maximum impulse?

(3)Ans.

Sol. Impulse (I) = ∫F.dt

So impulse is area under curve between F & t

For option (1)

Area =
$$\frac{1}{2} \times 0.1 \times 0.5 = \frac{0.05}{2} = 0.025 \text{ N.s}$$

For option (2)

Area = 0.5 × 0.1 = 0.05 N.s

 $I_B = 0.05 N.s$

For option (3)

Area = 1/2 × 0.5 × 0.5 = 0.125 N.s.

Ic = 0.125 N.s

For option (4)

Area = $1/2 \times 0.2 \times 0.75 = 0.075$ N.s

 $I_D = 0.075 \text{ N.s}$

- A coil is placed perpendicular to the magnetic field. Magnetic flux (ϕ_B) through the coil changes when : 20.
 - (a) Area of coil will change
- (b) Direction of magnetic field will change
- (c) strength of magnetic field will change
- (d) moving the coil along the magnetic field.

- (1) c & d
- (2) b, c & d

(4) All of the above

Ans. (3)

Resonance Eduventures Ltd.

(3) a, b, c

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 📓 7340010333 🔣 Scotook com/Reconscellul 💟 twitter.com/Reconscellul 🛅 www.youtube.com/r

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE#10

RESONANCE | JEE (MAIN) 2023 | DATE : 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- For a hydrogen like atom whose atomic number is 4 an electron jumps from It's 4th excited state to 2nd 21. excited state energy level. Calculate the energy of the photon emitted in the process :
- (1) 57. 57 eV (2)
- (2) 15.5 eV
- (3) 41, 29 eV
- (4) 27. 27 eV

- Ans.
- $E_1 = -13.6 \times \frac{(4)^2}{(5)^2}$

$$E_2 = 13.6 \times \frac{(4)^2}{(3)^2}$$

$$E_1 - E_2 = -13.6 (4^2) \left[\frac{1}{25} - \frac{1}{9} \right] = -13.6 \times 16 \times \left[\frac{9 - 25}{25 \times 9} \right]$$

 $\Delta E = 15.5 \text{ eV}$

22. The moment of inertia of a disc about its diameter is MR²/4. Find out moment of inertia of disc about an axis normal to the edge of disc:

(1)
$$\frac{3MR^2}{4}$$

(2)
$$\frac{5MR^2}{4}$$

(3)
$$\frac{3MR^2}{2}$$

(4) MR²

Ans. (3)

Sol. Using perpendicular axis theorem

$$I_z = I_x + I_y$$

by symmetry
$$I_x = I_y = \frac{MR^2}{4}$$

$$I_z = I_{com} = \frac{MR^2}{4} + \frac{MR^2}{4} = \frac{MR^2}{2}$$

using parallel axis theorem

$$I_{AB} = \frac{MR^2}{2} + MR^2 = \frac{3}{2}MR^2$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail:contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Toolteik conflections related to with the conflection conflection conflection conflection.

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE # 11

RESONANCE* | JEE (MAIN) 2023 | DATE : 01-02-2023 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

23. If f₀ is the threshold frequency for a metal. If a light of frequency 2f₀ is incident on metal plate, the velocity of photoelectron is observed to be V₁ and if a light of frequency 5f₀ is incident on metal plate the velocity of photoelectron is observed to be V₂ Find the ration of V₁ & V₂

(1) 2/1

Ans. (2)
 Sol. When h is the plank's constant & f is the incident frequency for threshold frequency of metal & KE is the kinetic energy of photoelectron

For $2f_0$ $h(2f_0) = hf_0 + KE_1 \Rightarrow KE_1 = hf_0$

For 5to

$$h(5f_0) = hf_0 + KE_2 \Rightarrow KE_2 = 4hf_0$$
(II)

divide (I) by (II)

$$\frac{KE_1}{KE_2} = \frac{\frac{1}{2}m{v_1}^2}{\frac{1}{2}m{v_2}^2} = \frac{hf_0}{4hf_0} \Rightarrow \frac{{v_1}^2}{{v_2}^2} = \frac{1}{4} \Rightarrow \frac{v_1}{v_2} = \frac{1}{2}$$

- 24. Which of the following statement is true about Zener diode?
 - (1) Used in reverse biased mode as voltage regulator.
 - (2) Used in forward biased mode as voltage regulator.
 - (3) it is not used as voltage regulator.
 - (4) Used in forward and reverse biased mode as voltage regulator.

Ans. (1)

25. A cube is imagined as shown If $\vec{E} = E_0 x i$ N/c exists in the region where $E_0 = 4 \times 10^4$ N/c and $E_0 = 9 \times 10^{-12}$ Nm²/c², $E_0 = 1$ cm, and the charge enclosed in the cube is $E_0 = 10^{-12}$ N m²/c², $E_0 = 10^{-12}$ N m

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail:contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
volteix contilectoring features ac. in | Section | S

This solution was download from Resonance JEE (MAIN) 2023 Solution portal

PAGE # 12

© Resonance Eduventures Limited | Toll-Free 1800-258-5555 | (0)744 2777777, 2777700 | contact@resonance.ac.in | CIN - U80302RJ2007PLC024029