

Total No. of Questions-24

Total No. of Printed Pages-4 Regd. No.

Regd. No.

Part III

MATHEMATICS

Paper I-A

(English Version)

Time: 3 Hours

Max. Marks: 75

Note :- This question paper consists of THREE Sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- (I) Very short answer type questions :
 - (i) Answer ALL questions.
 - (ii) Each question carries TWO marks.
- 1. If A = $\{-2, -1, 0, 1, 2\}$ and $f : A \rightarrow B$ is a surjection defined by $f(x) = x^2 + x + 1$, then find B.
- 2. Find the domain of the real valued function $f(x) = \sqrt{4x x^2}$.
- 3. If $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$, then find A + A' and AA'.
- 4. Find the rank of the matrix $\begin{bmatrix} 1 & 4 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

- 5. If the position vectors of the points A, B and C are $-2\overline{i} + \overline{j} \overline{k}$, $-4\overline{i} + 2\overline{j} + 2\overline{k}$ and $6\overline{i} 3\overline{j} 13\overline{k}$ respectively and $\overline{AB} = \lambda \overline{AC}$, then find the value of λ .
- 6. Find the vector equation of the plane passing through the points $\overline{i} 2\overline{j} + 5\overline{k}$, $-5\overline{j} \overline{k}$ and $-3\overline{i} + 5\overline{j}$.
- 7. $\overline{a} = 2\overline{i} \overline{j} + \overline{k}$, $\overline{b} = \overline{i} 3\overline{j} 5\overline{k}$. Find the vector \overline{c} such that \overline{a} , \overline{b} and \overline{c} form the sides of a triangle.
- 8. Sketch the graph of the function $\sin 2x$ in the interval $(0, \pi)$.
- 9. Evaluate $\cos^2 52 \frac{1^{\circ}}{2} \sin^2 22 \frac{1^{\circ}}{2}$.
- 10. If $\sinh x = 3$, then show that $x = \log_e (3 + \sqrt{10})$.

SECTION B

 $5 \times 4 = 20$

- (II) Short answer type questions:
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries FOUR marks.
- 11. If $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is non-singular matrix, then A is invertible and

prove that $A^{-1} = \frac{Adj A}{\det A}$.

12. If \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors, prove that the following four points are co-planar $6\overline{a} + 2\overline{b} - \overline{c}$, $2\overline{a} - \overline{b} + 3\overline{c}$, $-\overline{a} + 2\overline{b} - 4\overline{c}$, $-12\overline{a} - \overline{b} - 3\overline{c}$.

166

- 13. If $\overline{a} + \overline{b} + \overline{c} = 0$, $|\overline{a}| = 3$, $|\overline{b}| = 5$ and $|\overline{c}| = 7$, then find the angle between \overline{a} and \overline{b} .
- 14. If a, b, c are non-zero real numbers and α , β are solutions of the equation $a\cos\theta + b\sin\theta = c$, then show that :

(i)
$$\sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2}$$

(ii)
$$\sin \alpha \cdot \sin \beta = \frac{c^2 - a^2}{a^2 + b^2},$$

- 15. Solve the equation $\cot^2 x \left(\sqrt{3} + 1\right) \cot x + \sqrt{3} = 0$; $0 < x < \frac{\pi}{2}$.
- 16. Prove that :

$$\tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{13} - \tan^{-1}\frac{2}{9} = 0$$
.

17. Prove that :

$$\frac{1 + \cos(A - B)\cos C}{1 + \cos(A - C)\cos B} = \frac{a^2 + b^2}{a^2 + c^2}.$$

SECTION C

5×7=35

- (III) Long answer type questions:
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries SEVEN marks.
- 18. Let $f: A \to B$, $g: B \to C$ be bijections, then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 19. Using mathematical induction, prove that :

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)....\left(1+\frac{2n+1}{n^2}\right)=\left(n+1\right)^2.$$

166

20. Find the value of x if
$$\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$$
.

21. Examine whether the equations are consistent or inconsistent and if consistent find the complete solution :

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x - y + 3z = 9$$

22. $\bar{a}, \bar{b}, \bar{c}$ are three vectors, then prove that :

$$\left(\overline{a}\times\overline{b}\right)\times\overline{c}=\left(\overline{a}\cdot\overline{c}\right)\overline{b}-\left(\overline{b}\cdot\overline{c}\right)\overline{a}.$$

23. If A, B, C are angles in a triangle, then prove that :

$$\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C.$$

24. In ΔABC, show that :

$$(r_1 + r_2) \sec^2 \frac{C}{2} = (r_2 + r_3) \sec^2 \frac{A}{2} = (r_3 + r_1) \sec^2 \frac{B}{2}$$