Total No. of Questions - 24

Total No. of Printed Pages - 3

Regd.

Part – III MATHEMATICS, Paper – I(A) (English Version)

Time: 3 Hours

[Max. Marks: 75

Note: This question paper consists of three Sections - A, B and C.

SECTION-A

 $10 \times 2 = 20$

- I. Very Short Answer Type questions:
 - (i) Answer all the questions.
 - (ii) Each question carries two marks.
 - 1. If $f: R \{\pm 1\} \to R$ is defined by $f(x) = \log \left| \frac{1+x}{1-x} \right|$, then show that $f\left(\frac{2x}{1+x^2}\right) = 2 f(x).$
 - 2. Find the domain of the real valued function $f(x) = \sqrt{x^2 25}$.
 - 3. If $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$, then find $A + A^{T}$ and AA^{T} .
 - 4. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
 - 5. Let $\overline{a} = \overline{i} + 2\overline{j} + 3\overline{k}$ and $\overline{b} = 3\overline{i} + \overline{j}$. Find the unit vector in the direction of $\overline{a} + \overline{b}$.
 - 6. Find the vector equation of the plane passing through the points (0, 0, 0), (0, 5, 0) and (2, 0, 1).

- 7. If $\overline{a} = \overline{i} + 2\overline{j} 3\overline{k}$ and $\overline{b} = 3\overline{i} \overline{j} + 2\overline{k}$, then show that $\overline{a} + \overline{b}$ and $\overline{a} \overline{b}$ are perpendicular to each other.
- 8. If $\sec \theta + \tan \theta = \frac{2}{3}$, find the value of $\sin \theta$.
- 9. If A is not an integral multiple of $\frac{\pi}{2}$, prove that $\tan A + \cot A = 2 \csc 2A$.
- 10. If $\cosh x = \frac{5}{2}$, find the values of (i) $\cosh (2x)$ and (ii) $\sinh (2x)$.

SECTION - B

 $5 \times 4 = 20$

- II. Short Answer Type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries four marks.
 - 11. If $\theta \phi = \frac{\pi}{2}$, then show that

$$\begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix} \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix} = 0.$$

- 12. Let ABCDEF be a regular hexagon with centre 'O'. Then show that $\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$.
- 13. Let $\overline{a} = 4\overline{i} + 5\overline{j} \overline{k}$, $\overline{b} = \overline{i} 4\overline{j} + 5\overline{k}$ and $\overline{c} = 3\overline{i} + \overline{j} \overline{k}$. Find vector $\overline{\alpha}$ which is perpendicular to both \overline{a} and \overline{b} and $\overline{\alpha} \cdot \overline{c} = 21$.
- 14. Prove that $\cos^2 76^\circ + \cos^2 16^\circ \cos 76^\circ \cos 16^\circ = \frac{3}{4}$.
- 15. Solve $\sqrt{2} (\sin x + \cos x) = \sqrt{3}$.
- 16. Prove that $\cos \left(2 \tan^{-1} \frac{1}{7}\right) = \sin \left(2 \tan^{-1} \frac{3}{4}\right)$.
- 17. Show that $a^2 \cot A + b^2 \cot B + c^2 \cot C = \frac{abc}{R}$ in a triangle.

- III. Long Answer Type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries seven marks.
 - 18. Let f: A → B be a function. Then f is a bijection if and only if there exists a function g: B → A such that fog = I_B and gof = I_A and, in this case, g = f⁻¹.
 - 19. Using mathematical induction, prove that : $3.5^{2n+1} + 2^{3n+1} \text{ is divisible by 17, for all } n \in N.$
 - 20. Show that

$$\det \begin{bmatrix} a+b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{bmatrix} = (a+b+c)^3.$$

21. Solve the following equations by Gauss-Jordan Method:

$$x + y + z = 1$$
, $2x + 2y + 3z = 6$ and $x + 4y + 9z = 3$.

- 22. If $\overline{a} = \overline{i} 2\overline{j} 3\overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} \overline{k}$ and $\overline{c} = \overline{i} + 3\overline{j} 2\overline{k}$, verify that $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$.
- 23. If A, B, C are angles of a triangle, then prove that

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2} = 1 - 2 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$$

24. Show that $r + r_3 + r_1 - r_2 = 4R \cos B$, in $\triangle ABC$.