

Total No. of Questions – 24
Total No. of Printed Pages - 4

12					
		_			

Part – III MATHEMATICS, Paper – I(A) (English Version)

Time: 3 Hours | [Max. Marks: 75]

Note: This question paper consists of three Sections - A, B and C.

 $10 \times 2 = 20$

- I. Very Short Answer Type questions:
 - (i) Answer all the questions.
 - (ii) Each question carries two marks.
 - 1. If $A = \{-2, -1, 0, 1, 2\}$ and $f : A \rightarrow B$ is a surjection defined by $f(x) = x^2 + x + 1$, then find B.
 - 2. If f(x) = 2x 1, $g(x) = \frac{x+1}{2}$ for all $x \in \mathbb{R}$, then find (got) (x).
 - 3. If $\begin{bmatrix} x-3 & 2y-8 \\ z+2 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ -2 & a-4 \end{bmatrix}$, then find the values of x, y, z and a.
 - 4. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ find the rank of this matrix.

- 5. Let $\vec{a} = 2\vec{i} + 4\vec{j} 5\vec{k}$, $\vec{b} = \vec{i} + \vec{j} + \vec{k}$ and $\vec{e} = \vec{j} + 2\vec{k}$. Find the unit vector in the opposite direction of $\vec{a} + \vec{b} + \vec{e}$.
- 6. Find the vector equation of the plane passing through the points

$$\overline{i} - 2\overline{j} + 5\overline{k}$$
, $-5\overline{j} - \overline{k}$ and $-3\overline{i} + 5\overline{j}$.

- 7. If the vectors $\lambda \vec{i} 3\vec{j} + 5\vec{k}$ and $2\lambda \vec{i} \lambda \vec{j} \vec{k}$ are perpendicular to each other, find λ .
- 8. If $\sin \theta = \frac{4}{5}$ and θ is not in the first quadrant, find the value of $\cos \theta$.
- 9. If θ is not an integral multiple of $\frac{\pi}{2}$, prove that $\tan \theta + 2\tan 2\theta + 4\tan 4\theta + 8\cot 8\theta = \cot \theta.$
- 10. Show that $\tan h^{-1} \left(\frac{1}{2} \right) = \frac{1}{2} \log_e 3$.

SECTION - B

$$5 \times 4 = 20$$

- II. Short Answer Type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries four marks.
 - 11. If $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$, then show that the adjoint of A is 3A'. Find A⁻¹.
 - 12. Show that the line joining the pair of points $6\overline{a} 4\overline{b} + 4\overline{c}$, $-4\overline{c}$ and the line joining the pair of points $-\overline{a} 2\overline{b} 3\overline{c} = \overline{a} + 2\overline{b} 5\overline{c}$, intersect at the point $-4\overline{c}$, when \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors.

166 (Day-5)

- 13. If $\overline{a} = 2\overline{i} + \overline{j} \overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} 4\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$, then find $(\overline{a} \times \overline{b}) \cdot (\overline{b} \times \overline{c})$.
- 14. Prove that $\left(1 + \cos\frac{\pi}{10}\right) \left(1 + \cos\frac{3\pi}{10}\right) \left(1 + \cos\frac{7\pi}{10}\right) \left(1 + \cos\frac{9\pi}{10}\right) = \frac{1}{16}$.
- 15. Give $p \neq \pm q$, show that the solutions of $\cos p\theta + \cos q\theta = 0$ form two series each of which is in A.P. Also, find the common difference of each A.P.
- 16. Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$
- 17. In $\triangle ABC$ if $a = (b + c) \cos \theta$, then prove that $\sin \theta = \frac{2\sqrt{bc}}{b+c} \cos \frac{A}{2}$.

SECTION - C

 $5 \times 7 = 35$

III. Long Answer Type questions:

- (i) Answer any **five** questions.
- (ii) Each question carries seven marks.
- 18. Let $f: A \to B$, $g: B \to C$ be bijections, then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 19. Using mathematical induction, prove that for all $n \in N$,

$$a + ar + ar^2 + \dots$$
 upto $n \text{ terms} = \frac{a(r^n - 1)}{(r - 1)}, r \neq 1.$

- 20. Show that $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2 = \begin{vmatrix} 2bc a^2 & c^2 & b^2 \\ c^2 & 2ac b^2 & a^2 \\ b^2 & a^2 & 2ab c^2 \end{vmatrix} = (a^3 + b^3 + c^3 3abc)^2.$
- 21. x y + 3z = 5, 4x + 2y z = 0, -x + 3y + z = 5, solve the system of equations by using Cramer's rule.

- 22. Show that the volume of a tetrahedron with \overline{a} , \overline{b} and \overline{c} as coterminous edges is $\frac{1}{6} \| [\overline{a} \ \overline{b} \ \overline{c}] \|$.
- 23. If A + B + C = 0, then prove that $\sin 2A + \sin 2B + \sin 2C = -4\sin A \sin B \sin C$.
- 24. In a \triangle ABC, if a = 13, b = 14, c = 15, show that R = $\frac{65}{8}$, r = 4, r₁ = $\frac{21}{2}$, r₂ = 12 and r₃ = 14.