

Test Booklet Code

(Divisions of Aakash Educational Services Pvt. Ltd.)

Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.: 011-47623456 Fax : 011-47623472

Answers & Solutions

Time : 2 hrs.

M.M. : 80

GUJCET-2018

(Physics, Chemistry)

Important Instructions :

- 1. The physics and Chemistry test consists of 80 question. Each question carries 1 marks. For correct response, the candidate will get 1 marks. For each incorrect response 1/4 mark will be deducted. The maximum marks are 80.
- 2. This test is of 2 hours duration.
- 3. Use **Black Ball Point Pen only** for writing particulars on OMR Answer Sheet and marking answers by darkening the circle.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room/Hall. The candidates are allowed to take away this Test Bookle with them.
- 6. The Set No. for this Booklet is 01. Make sure that the Set No. Printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8. Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet/Answer Sheet.
- 9. Use of White fluid for correction is not permissible on the Answer Sheet.
- 10. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 11. No candidate, without special permission of the Superindent or Invigilator, should leave his/her seat.
- 12. Use of manual Calculator is permissible.
- 13. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak-01). Cases where a candidate has not signed the Attendance Sheet (Patrak-01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
- 14. The candidates are governed by all Rules and Regulations of the Board with regards to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16. The candidates will write the Correct Test Booklet Set No. as given in the Test Booklet/Answer Sheet in the Attendance Sheet. (Patrak-01)

PART-A : PHYSICS

1. Three identical charges are placed on three vertices of a square. If the force acting between q_1 and q_2 is

 F_{12} and between q_1 and q_3 is F_{13} then $\frac{F_{13}}{F_{12}}$ =

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) 2
(C) $\frac{1}{2}$ (D) $\sqrt{2}$

Answer (C)

$$F_{12} = \frac{kq_1q_2}{a^2} = \frac{kq^2}{a^2}$$
$$F_{13} = \frac{kq_1q_3}{(\sqrt{2}a)^2} = \frac{kq^2}{2a^2}$$
$$\frac{F_{13}}{F_{12}} = \frac{1}{2}$$

 When a 10µC charge is enclosed by a closed surface, the flux passing through the surface is φ. Now another 10 µC charge is placed inside the closed surface, then the flux passing through the surface is _____

(A) 2¢	(B)
(C) 4ø	(D) Zero

Answer (A)

Sol.
$$\phi = \frac{q}{\epsilon_0}$$

 $\Rightarrow \phi \propto q$
 $\therefore \frac{\phi'}{\phi} = \frac{q'}{q} = \frac{20\mu C}{10\mu C}$
 $= \phi' = 2\phi$

 The electric force acting between two point charges kept at a certain distance in vacuum is 16N. If the same two charges are kept at the same distance in a medium of dielectric constant 8. The electric force acting between them is ____

Answer (D)

Sol. In medium F' = $\frac{F}{K} = \frac{16}{2}$

- 4. The unit of polarizabity of the molecule is ____
 - (A) $C^{-2}m^1N^{-1}$ (B) $C^{-2}m^1N^1$
 - (C) $C^2m^1N^{-1}$ (D) $C^2m^{-1}N^{-1}$

Answer (C)

- 5. On the axis and on the equator of an electric dipole for all points _____
 - (A) On the axis V = 0 and on equator V \neq 0
 - (B) On both of them V = 0
 - (C) On both of them $V \neq 0$
 - (D) On the axis $V \neq 0$ and on equator V = 0

Answer (D)

Sol. Potential due to dipole

$$V = \frac{kp\cos\theta}{r^2}$$

on axis,

θ

θ

$$= 0$$

 $V = \frac{kp}{2} \neq 0$

= 90° V

6. When the temperature of a conductor increases the ratio of conductivity and resistivity ____

on equator

= 0

- (A) decrease (B) increase
- (C) remain constant (D) increase or decrease

Answer (A)

Sol.
$$\frac{\sigma}{\rho} = \frac{1}{\rho^2}$$

 ρ increases when temperature is increased. Thus, the given ratio decreases.

GUJCET-2018 (Physics & Chemistry)

 You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ratio of maximum and minimum resistance is ____

(A)	2.5	(B)	10
(C)	100	(D)	25

Answer (C)

Sol. Minimum possible resistance is obtained when all resistors are connected in parallel

$$R_{min} = \frac{2}{10} = 0.2\Omega$$

Maximum possible resistance is obtained when all resistors are connected in series.

 $R_{max} = 2 \times 10 = 20\Omega$

8. The dimensional formula of mobility is ____

(A)
$$M^{1}L^{-1}T^{-2}A^{-1}$$
 (B) $M^{1}L^{0}T^{-2}A^{-1}$
(C) $M^{-1}L^{1}T^{2}A^{1}$ (D) $M^{-1}L^{0}T^{2}A^{1}$

Answer (D)

Sol.
$$\mu = \frac{V_d}{E}$$

 $[\mu] = \frac{[V_d]}{[E]} = \frac{[V_d][q]}{[F]}$
 $= \frac{[LT^{-1}][AT]}{[MLT^{-2}]}$
 $= [M^{-1}L^0T^2A]$

9. An electron having mass 9.1×10^{-31} kg, charge 1.6×10^{-19} C and moving with the velocity of 10^6 m/s enters a region where magnetic field exists. If it describes a circle of radius 0.2 m then intensity of magnetic field must be ____ $\times 10^{-5}$ T.

(A) 2.84	(B) 5.65
(C) 14.4	(D) 1.32

Answer (A)

Sol.
$$r = \frac{mv}{qE}$$

$$= B = \frac{mv}{qr} = \frac{9.1 \times 10^{-31} \times 10^{6}}{1.6 \times 10^{-19} \times 0.2}$$
$$= 2.84 \times 10^{-5} \text{ T}$$

10. A galvanometer of resistance 50Ω giving full scale deflection for a current of 10 milliampere is to be changed into a voltmeter of range 100V.

A resistance of $___ \Omega$ has to be connected in series with the galvanometer.

(A) 10000	(B) 10025
(C) 9950	(D) 9975

Answer (C)

 $= R = 9950\Omega$

- 11. Two parallel very long straight wires carrying current of 5A each are kept at a separation of 1m. If the currents are in the same direction, the force per unit length between them is ____ N/m. ($\mu_0 = 4\pi \times 10^{-7}$ SI)
 - (A) 5×10^{-5} , repulsive (B) 5×10^{-6} , attractive

(C) 5×10^{-5} , attractive (D) 5×10^{-6} , repulsive

Answer (B)

F

Sol. Force per unit length is given by

$$= \frac{\mu_0 l_1 l_2}{2\pi d}$$

$$= \frac{4\pi \times 10^{-7} \times 5 \times 5}{2\pi \times 1}$$

$$= 5 \times 10^{-6} \text{ N}$$

$$l_1 \wedge l_2$$

12. A very long straight wire of radius *r* carries current I. Intensity of magnetic field B at a point, lying at a perpendicular distance 'a' from the axis is \propto _____.

(where a < r)

(A)
$$\frac{1}{a}$$
 (B) $\frac{1}{a^2}$
(C) a^2 (D) a

Answer (D)

Sol. Magnetic field inside a wire is given by

$$B = \frac{\mu_0 ia}{2\pi r^2}$$
$$\implies B \propto a$$

- 13. A substance is placed in a non uniform magnetic field. It experience weak force towards the strong field. The substance is _____ type.
 - (A) Ferromagnetic (B) Diamagnetic
 - (C) Paramagnetic (D) None of these

Answer (C)

Sol. Paramagnetic material is weakly attracted towards strong magnetic field.

14. The relation between B_v , B_h and B is _____

(A)
$$B = \frac{B_v}{B_h}$$
 (B) $B = B_h \cdot B$
(C) $B = \sqrt{B_h^2 + B_v^2}$ (D) $B = \frac{B_h}{B_v}$

Β.,

Answer (C)

Sol. From the diagram

→B_h $\mathsf{B} = \sqrt{B_h^2 + B_v^2}$

15. Two thin lenses of focal length f_1 and f_2 are in contact and coaxial. The power of the combination is

Answer (D)

Sol. Power of combination of lenses is given by

$$P = P_1 + P_2 = \frac{1}{f_1} + \frac{1}{f_2}$$
$$= P = \frac{f_1 + f_2}{f_1 f_2}$$

16. On decreasing the wavelength of incident light from 8000 Å to 4000 Å. the intensity of the scattered light in Rayleih scattering will become _____ times the initial scattered intensity.

(A) 16	(B) 4
(C) 2	(D) 8

Answer (A)

Sol. Intensity in raylength scattering depends on wavelength as

$$I \propto \frac{1}{\lambda^4}$$
$$\frac{I'}{I} = \left(\frac{\lambda}{\lambda'}\right)^4$$
$$= \left(\frac{8000\,\text{\AA}}{4000\,\text{\AA}}\right)^4 = 16$$

GUJCET-2018 (Physics & Chemistry)

17. A small angled prism of refractive index 1.6 gives a deviation of 3.6°. The angle of prism is ____

(A)
$$5^{\circ}$$
 (B) 6°
(C) 7° (D) 8°

Answer (B)

Sol. $\delta = (\mu - 1)A$

$$\Rightarrow$$
 3.6 = (1.6 - 1)A

$$\Rightarrow$$
 A = 6

18. A plano convex lens is made of material having refractive index 1.5. The radius of curvature of curved surface is 60 cm. The focal length of the lens is ____ cm

Answer (B)

Sol.
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

= $\frac{1}{f} = (1.5 - 1) \left(\frac{1}{60} - \frac{1}{\infty} \right)$

- If the uncertainty in the position of an electron is 19. 10⁻¹⁰ m, then the value of uncertainty in its momentum will be ____ kgms⁻¹. ($h = 6.62 \times 10^{-34} \text{ J}^{-s}$)
 - (A) 1.06 × 10⁻²⁴ (B) 1.03 × 10^{−24}
 - (C) 1.05×10^{-24} (D) 1.08 × 10⁻²⁴

Answer (C)

Sol. As per principle of uncertainty

$$\Delta p \cdot \Delta x \simeq \frac{h}{2\pi}$$

$$\Rightarrow \Delta p = \frac{h}{2\pi\Delta x} = \frac{6.626 \times 10^{-34}}{2 \times 3.14 \times 10^{-10}}$$

$$= 1.05 \times 10^{-24} \text{ kg-m/s}$$

- 20. If the energy of photons corresponding to wavelength of 6000 Å is 3.2×10^{-19} J. The photon energy for wavelength of 4000 Å will be ____
 - (A) 1.11×10^{-19} J (B) 2.22×10^{-19} J

(C)
$$4.44 \times 10^{-19}$$
 J (D) 4.80×10^{-19} J

Answer (D)

Sol.
$$E = \frac{hC}{\lambda}$$

 $E \propto \frac{1}{\lambda}$

GUJCET-2018 (Physics & Chemistry)

$$\therefore \frac{E_2}{E_1} = \frac{\lambda_1}{\lambda_2}$$
$$= \frac{E_2}{3.2 \times 10^{-19}} = \frac{6000\text{ Å}}{4000\text{ Å}}$$
$$= E_2 = \frac{3}{2} \times 3.2 \times 10^{-19}$$
$$= 4.8 \times 10^{-19} \text{ J}$$

 Two inductors each of inductance L are connected in parallel. One more inductor of value 5 mH is connected in series of this configuration then the effective inductance is 15 mH. The value of L is _____ mH.

(A) 2.5	(B) 5.0
---------	---------

Answer (D)

Equivalent inductance is given by

$$L_{eq} = \left(\frac{L \times L}{L + L}\right) + 5 = 15 \text{ (in mH)}$$
$$= \frac{L}{2} = 10$$
$$= L = 20 \text{ mH}$$

22. A lamp consumes only 50% of maximum power in an A.C. circuit. What is the phase difference between the applied voltage and the circuit current?

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

Answer (B)

Sol. $P = VI \cos \phi$

$$P_{max} = VI$$

Given
 $P = \frac{P_{max}}{2}$

$$\Rightarrow \text{VIcos} \phi = \frac{\text{VI}}{2}$$
$$\Rightarrow \cos \phi = \frac{1}{2}$$
$$\Rightarrow \phi = \frac{\pi}{3}$$

- 23. A capacitor 'C' is connected across a D.C. source, the reactance of capacitor will be ____
 - (A) LOW (B) HIGH
 - (C) ZERO (D) INFINITE

Answer (D)

Sol. For D.C. source

Capacitive reactance

$$X_{C} = \frac{1}{\omega C} = \infty$$

- 24. The dimensional formula of $\mu_0 \in 0$ is _____
 - (A) $M^0L^1T^{-1}$ (B) $M^0L^2T^{-2}$
 - (C) $M^0L^{-2}T^2$ (D) $M^0L^{-1}T^1$

Answer (C)

Sol. Speed of light

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

$$= \mu_0 \varepsilon_0 = \frac{1}{c^2}$$

$$\therefore \quad [\mu_0 \varepsilon_0] = \frac{1}{[c]^2} = \frac{1}{[LT]}$$

$$= [L^{-2}T^2] = [M^0 L^{-2}T]$$

25. Match Column I and Column II

Column I

Column II

(i) Interference (P) Coherent sources

21

- (ii) Brewster's Law (Q) $\mu = \frac{1}{\sin C}$
 - SILC
- (iii) Malus Law (R) $\mu = \tan \theta_p$
- (iv) Total Internal (S) $I = I_0 \cos^2 \theta$ reflection
- (A) i→Q, ii→S, iii→R, iv→P
- (B) $i \rightarrow P$, $ii \rightarrow R$, $iii \rightarrow S$, $iv \rightarrow Q$
- (C) $i \rightarrow P$, $ii \rightarrow S$, $iii \rightarrow R$, $iv \rightarrow Q$
- (D) $i \rightarrow R$, $ii \rightarrow Q$, $iii \rightarrow S$, $iv \rightarrow P$

Answer (B)

- **Sol.** (i) Interference patterns can be observed only when coherent sources are used.
 - (ii) Brewster's Law gives angle of polarization $tan\theta_{p}$ = μ

Aakash Medical IIIT-IEEI Foundations

(iii) Malus law gives intensity of light after passing through polarizer

 $I = I_0 \cos^2 \theta$

(iv) Critical angle for total internal reflection is given by relation

$$\sin C = \frac{1}{u}$$

26. Frequencies of various radiations are given as

 $f_v \rightarrow \text{Visible light}$

 $f_r \rightarrow \text{Radio waves}$

 $f_{\rm UV} \rightarrow \text{Ultra Violet waves}$

Then which of following is true?

Answer (B)

Sol. -

27. Wavelength of characteristic X-ray depends on which property of target?

(A)	A	(B) Z
(C)	Melting point	(D) All of these

Answer (B)

Sol.
$$E = \frac{hC}{\lambda}$$
$$E \propto Z^{2}$$
$$\therefore \frac{1}{\lambda} \propto Z^{2}$$
$$= \lambda \propto \frac{1}{\sqrt{Z}}$$

28. The energy of the fast neutrons emitted in a nuclear fission reactor is approximately ____

(A) 10 MeV	(B) 2 KeV
(C) 2 MeV	(D) 20 Me∖

Answer (C)

29. In radioactive reaction

${}^{A}_{Z} X \to {}^{A}_{Z+1} X_1 \to {}^{A}_{Z+2}$	$X_2 \rightarrow^{A-4}_Z$	$X_3 \rightarrow^{A\!-\!4}_{Z^{+}1} X_4$
(Α) β ⁻ ,β ⁻ ,α,α	(B)	$\beta^{-},\beta^{-},\beta^{+},\alpha$
(C) β ⁻ ,β ⁻ ,β ⁻ ,α	(D)	$\beta^-, \beta^-, \alpha, \beta^-$

Answer (D)

Sol. In α -decay (⁴₂He) mass number decreases by 4 and atomic no. decreases by 2.

In β^- - decay $(n \rightarrow p^+ + e^-)$ mass number remains same while atomic no. increases by 1.

$$\overset{A}{_{Z}} X \xrightarrow{\beta^{-} \text{decay}} \overset{A}{_{Z+1}} X \xrightarrow{\beta^{-} \text{decay}}$$

$$\overset{A}{_{Z+2}} X_2 \overset{\alpha-\text{decay}}{\longrightarrow} \overset{A-4}{_Z} X_3 \overset{\beta^--\text{decay}}{\longrightarrow} \overset{A-4}{_{Z+1}} X_4$$

- 30. In CE transistor amplifier, the collector junction has _____ bias and emitter junction has _____ bias.
 - (A) reverse, forward (B) forward, forward
 - (C) reverse, reverse (D) forward, reverse

Answer (A)

Sol. -

- 31. When carrier wave of 2.5 MHz frequency is amplitude modulated, the resulting AM wave has maximum amplitude of 15 V and minimum amplitude of 10 V. The modulation index is _____.
 - (A) 10% (B) 20%

(C) 30% (D) 40%

Answer (B)

Sol. $A_{max} = 15 V$

=
$$A_c + A_m = 15 V$$
 (A)
 $A_{min} = 10 V$
= $A_c - A_m = 10 V$ (B)
from (A) - (B)
 $2A_m = 5$
from (A) + (B)
 $2A_c = 25$
modulation index,

$$\mu = \frac{A_m}{A_c} = \frac{5}{25} = \frac{1}{5}$$

$$=\frac{1}{5}\times 100\% = 20\%$$

- 32. Which of the following is wrong for interference fringes?
 - (A) Distance between two consecutive fringes is constant
 - (B) All bright fringes are equally bright
 - (C) Fringes are due to limited portion of wave front
 - (D) Fringes are due to the use of coherent sources

Answer (C)

Sol. -

GUJCET-2018 (Physics & Chemistry)

- 33. A ray of light travelling in impure water is incident on a glass plate immersed in it. When the angle of incidence is 51°, the reflected ray is totally plane polarized. Given that refractive index of impure water is 1.4. The refractive index of glass should be _____ (tan51° = 1.235)
 - (A) 1.53 (B) 1.34
 - (C) 1.64 (D) 1.73

Answer (D)

Sol. Using Brewster's law

- 34. A coil having 200 turns has a surface area of 0.15 m². A magnetic field of strength 0.2 T applied perpendicular to this changes to 0.6 T in 0.4 s, then the induced emf in the coil is ____ V.
 - (A) 15 (B) 30
 - (C) 45 (D) 60

Answer (B)

- Sol. $E = \frac{\Delta \phi}{\Delta t} = \frac{N(\Delta B)A}{\Delta t}$ = $\frac{200 \times (0.6 - 0.2) \times 0.15}{0.4} = 30V$
- 35. A sinusoidal A.C. current flows through a resistor of resistance 10Ω . If the peak current is 2A flowing through the resistor then the power dissipated in W.

(A)	10	(B) 20
(C)	30	(D) 40

Answer (B)

Sol.
$$P = i_{\text{rms}}^2 R = \left(\frac{i_{\text{max}}}{\sqrt{2}}\right)^2 R = \left(\frac{2}{\sqrt{2}}\right)^2 \times 10$$

= 20 W

36. Which of following gates produces output of 1?

Answer (B)

- Sol. (A) Output of AND gate is 0
 - (B) Output of NOR gate is 1
 - (C) Output of NAND gate is 0
 - (D) Output of OR gate is 0
- 37. The value of β of a transistor is 19. The value of α will be ____

(A) 0.99	(B) 0.98
(C) 0.93	(D) 0.95

Answer (D)

Sol.
$$\frac{1}{\alpha} = 1 + \frac{1}{\beta} = 1 + \frac{1}{19}$$

= $\alpha = 0.95$

If the half-life of a radioactive element is 10 hr, its average life = ____ hr.

(A) 14.4	(B) 6.93
(C) 1.44	(D) 0.693

Answer (A)

Sol. Average life

$$\tau = \frac{t_{1/2}}{\ln 2} = \frac{10}{0.693}$$

≃ 14.4 hrs.

39. _____ is the wavelength of photon of energy 35 KeV.

$$h = 6.625 \times 10^{-34} \text{ J}^{-2}, \text{ c} = 3 \times 10^8 \text{ m/s},$$

- $1 \text{ eV} = 1.6 \text{ x} 10^{-19} \text{ J}.$
- (A) 3.5 mm (B) 35 Å
- (C) 35×10^{-12} mm (D) 3.5 Å

Answer (C)

Sol.
$$E = \frac{hc}{\lambda}$$

 $\Rightarrow \lambda = \frac{hc}{E} = \frac{1242 \text{ eV} - \text{nm}}{35 \times 10^3 \text{ eV}}$
 $\approx 35 \times 10^{-3} \text{ nm}$
 $= 35 \times 10^{-12} \text{ m}$

40. The band gaps of an insulator, conductor and semi conductor are respectively E_{g1} , E_{g2} and E_{g3} . The relationship between them is given as ____

(A)
$$E_{g1} < E_{g2} > E_{g3}$$
 (B) $E_{g1} > E_{g2} > E_{g3}$
(C) $E_{g1} > E_{g2} < E_{g3}$ (D) $E_{g1} < E_{g2} < E_{g3}$

Answer (C)

Sol. Band gap is largest in insulators while it is smallest in conductors.

For More Papers Visit www.VisionPapers.in

7

PART-B: CHEMISTRY

- 41. If the edge length of a body centred unit cell is 400pm, what will be the approximate radius of the atom present in it? (in pm)
 - (A) 173 (B) 141
 - (C) 200 (D) 924

Answer (A)

Sol. a = 400pm

For Body centered unit cell ;

$$\frac{\sqrt{3}(400)}{4} = r$$
 r = 173.2 pm

- 42. Which of the following is Ferromagnetic?
 - (A) MnO (B) CrO₂
 - (C) O₂ (D) Fe₃O₄
- Answer (B)
- **Sol.** Fe, Co, Ni and CrO₂ are ferromagnetic in nature
- 43. What is the normality of aqueous solution of H_2SO_4 having pH = 1.
 - (A) 0.1 N (B) 0.05 N
 - (C) 1 N (D) 0.5 N

Answer (A)

- Sol. $H_2SO_4 \rightarrow 2H_{(aq)}^+ + SO_{4(aq)}^{2-}$
 - For $[H^+] = 0.1M$; the $p^H = 1$ Molarity of $H_2SO_4 = 0.05$ M
 - \therefore Normality of H₂SO₄ = M_{H₂SO₄} x n_f
 - = 0.05 x 2
 - = 0.1 N

44. Which of the following mixture is non-ideal solution?

- (A) Chlorobenzene and bromobenzene
- (B) Benzene and toluene
- (C) Chloroform and acetone
- (D) Bromoethane and chloroethane

Answer (C)

Sol. (CHCl₃ + H₃C – C – CH₃) forms a non-ideal solution showing negative deviation

- 45. Which solution is isotonic with 6% w/v aqueous solution of urea? [Mole mass of Urea = 60 gm. mol⁻¹]
 (A) 0.1 M NaCl
 (B) 0.5 M NaCl
 - (C) 0.25 M NaCl (D) 1 M NaCl

Answer (B)

- **Sol.** Isotonic solution means $(\pi_1 = \pi_2)$
 - Isotonic presure for 6% w/v aqueous soltuion of area $(\pi_1) = icRT$

6 gms of area is present in 100ml solution

$$\therefore C = \frac{6}{60} \times \frac{1000}{100} = 1$$

$$\therefore \pi_1 = (1) (1) RT (\because i \text{ of area} = 1)$$

$$\pi_1 = RT$$

$$\therefore \text{ For } 0.5 \text{ M NaCl solution, i = 2}$$

so $\pi_2 = (2) (0.5 \text{ RT})$

$$\boxed{\pi_2 = RT}$$

46. In which metal container, the aqueous solution of $CuSO_4$ can be stored?

$$\begin{split} & \mathsf{E}^{0}_{\mathsf{Cu}^{3+}/\mathsf{Cu}} = 0.34\mathsf{V} \\ & \mathsf{E}^{0}_{\mathsf{Fe}/\mathsf{Fe}^{2^{+}}} = 0.44\mathsf{V}, \mathsf{E}^{0}_{\mathsf{AI}/\mathsf{AI}^{3^{+}}} = 1.66\mathsf{V} \end{split}$$

$$E^{0}_{Ni/Ni^{2+}} = 0.25V, E^{0}_{Ag^{+}/Ag} = 0.80V$$

(A) Fe (B) Ni

(C) Ag (D) Al

Answer (C)

- Sol. Since the SRP value of Ag⁺/Ag = 0.80 V
 - \therefore aq solution of CuSO₄ can be stored in Ag as

$$E^{0}_{Cu^{2+}/Cu} = 0.34V$$

- 47. For how much time, 10 ampere electric current should be passed through a dilute aqueous $NiSO_4$ solution during electrolysis using inert electrode, in order to get 5.85 gm Nickel? [At. mass of Ni = 58.5gm]
 - (A) 1930 sec. (B) 3860 sec.
 - (C) 965 sec. (D) 9650 sec.

Answer (A)

Sol. By Faraday's Ist law of electrolysis m = zit

$$5.85 = \frac{\mathsf{E}}{\mathsf{F}}(\mathsf{i})(\mathsf{t})$$

(
$$\cdot \cdot E = Equivalent mass of Ni$$
)

$$E = \frac{58.5}{2} \quad 5.85 = \frac{58.5}{2} \frac{(10)}{(96500)}(t)$$