

PART-B: CHEMISTRY

- 41. If the edge length of a body centred unit cell is 400pm, what will be the approximate radius of the atom present in it? (in pm)
 - (A) 173 (B) 141
 - (C) 200 (D) 924

Answer (A)

Sol. a = 400pm

For Body centered unit cell ;

$$\frac{\sqrt{3}(400)}{4} = r$$
 r = 173.2 pm

- 42. Which of the following is Ferromagnetic?
 - (A) MnO (B) CrO₂
 - (C) O₂ (D) Fe₃O₄
- Answer (B)
- Sol. Fe, Co, Ni and CrO₂ are ferromagnetic in nature
- 43. What is the normality of aqueous solution of H_2SO_4 having pH = 1.
 - (A) 0.1 N (B) 0.05 N
 - (C) 1 N (D) 0.5 N

Answer (A)

Sol. $H_2SO_4 \rightarrow 2H_{(aq)}^+ + SO_{4(aq)}^{2-}$

For $[H^+] = 0.1M$; the $p^H = 1$ Molarity of $H_2SO_4 = 0.05$ M

- \therefore Normality of H₂SO₄ = M_{H₂SO₄} x n_f
 - = 0.05 x 2
 - = 0.1 N

44. Which of the following mixture is non-ideal solution?

- (A) Chlorobenzene and bromobenzene
- (B) Benzene and toluene
- (C) Chloroform and acetone
- (D) Bromoethane and chloroethane

Answer (C)

Sol. (CHCl₃ + H₃C – C – CH₃) forms a non-ideal solution showing negative deviation

- 45. Which solution is isotonic with 6% w/v aqueous solution of urea? [Mole mass of Urea = 60 gm. mol⁻¹]
 (A) 0.1 M NaCl
 (B) 0.5 M NaCl
 - (C) 0.25 M NaCl (D) 1 M NaCl

Answer (B)

- **Sol.** Isotonic solution means $(\pi_1 = \pi_2)$
 - Isotonic presure for 6% w/v aqueous soltuion of area $(\pi_1) = icRT$

6 gms of area is present in 100ml solution

$$\therefore C = \frac{6}{60} \times \frac{1000}{100} = 1$$

$$\therefore \pi_1 = (1) (1) RT (\because i \text{ of area} = 1)$$

$$\pi_1 = RT$$

$$\therefore \text{ For 0.5 M NaCl solution, i = 2}$$

so $\pi_2 = (2) (0.5 RT)$

$$\boxed{\pi_2 = RT}$$

46. In which metal container, the aqueous solution of $CuSO_4$ can be stored?

$$\begin{split} E^{0}_{Cu^{3+}/Cu} &= 0.34V \\ E^{0}_{Fe/Fe^{2+}} &= 0.44V, \\ E^{0}_{Al/Al^{3+}} &= 1.66V \end{split}$$

$$E^{0}_{Ni/Ni^{2+}} = 0.25V, E^{0}_{Ag^{+}/Ag} = 0.80V$$

(A) Fe (B) Ni

Answer (C)

- Sol. Since the SRP value of Ag⁺/Ag = 0.80 V
 - \therefore aq solution of CuSO₄ can be stored in Ag as

$$E^{0}_{Cu^{2+}/Cu} = 0.34V$$

- 47. For how much time, 10 ampere electric current should be passed through a dilute aqueous $NiSO_4$ solution during electrolysis using inert electrode, in order to get 5.85 gm Nickel? [At. mass of Ni = 58.5gm]
 - (A) 1930 sec. (B) 3860 sec.
 - (C) 965 sec. (D) 9650 sec.

Answer (A)

Sol. By Faraday's Ist law of electrolysis m = zit

$$5.85 = \frac{\mathsf{E}}{\mathsf{F}}(\mathsf{i})(\mathsf{t})$$

(
$$\cdot \cdot E = Equivalent mass of Ni$$
)

$$E = \frac{58.5}{2} \quad 5.85 = \frac{58.5}{2} \frac{(10)}{(96500)}(t)$$

GUJCET-2018 (Physics & Chemistry)

48. What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and 25°C temperature?

Pt H _{2(g)} HCl _(aq) pH	l = 3
1bar	

(A)	0.177 V	(B)	0.188 V
(C)	0.059 V	(D)	0.000 V

Answer (A)

Sol. For the half cell; $Pt|H_{2(g)}|HCl_{(aq)}pH = 3$

$$H_{2(q)} \rightarrow 2H^{+}_{(aq)} + 2e^{-}$$
 by Nernst equation

$$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[H^+]^2}{p_{H_2}}$$

$$E_{cell} = 0 - \frac{0.0591}{2} \log \frac{(10^{-3})^2}{1} \left[\therefore [H^+] = 10^{-3} M \right]$$

$$E_{cell} = - \frac{0.0591}{2} (-6)$$

 $E_{cell} = 0.177 V$

- 49. Which ore does not contain carbonate?
 - (A) Malachite (B) Ciderite
 - (C) Calamine (D) Zincite

Answer (D)

- Sol. Zincite is ZnO, so does not contain carbonate
- 50. Which is the correct order of metallurgy for the extraction of copper metal?
 - (A) Concentration \rightarrow roasting \rightarrow smelting \rightarrow bessimerisation
 - (B) Concentration \rightarrow smelting \rightarrow roasting \rightarrow bessimerisation
 - (C) Concentration \rightarrow smelting \rightarrow bessimerisation \rightarrow roasting
 - (D) Concentration \rightarrow roasting \rightarrow bessimerisation \rightarrow smelting

Answer (A)

Sol. In the extraction of copper metal; the correct order is

51. How many grams of Cl₂ gas will be obtained by the complete reaction of 31.6 gm of potassium permanganate with hydrochloric acid?

[Mole mass of $KMnO_4 = 316 \text{ gm/mol}$]

- (A) 35.5 (B) 17.75
- (C) 71 (D) 142

Answer (B)

Sol. 2KMnO₄ + 16HCl → 2MnCl₂+5Cl₂ + 2KCl + 8H₂O2 moles KMnO₄ produces 5 moles of Cl₂1 mole of KMnO₄ will produce
$$\frac{5}{2}$$
 molles of Cl₂ $\therefore \frac{31.6}{316}$ moles of KMnO4 will produce $\frac{1}{4}$ moles ofCl₂ \therefore Mass of Cl₂ gas = $\frac{71}{4}$ = 17.75 gms.52. What is the structure of XeOF₄?(A) Pyramidal(B) Trigonal bipyramidal(C) Square pyramidal(D) Square bipyramidalAnswer (C)Sol. XeOF₄

Hybridisation of Xe =
$$5 + \frac{1}{2}[8-6]$$

= $5 + 1$
= $sp^{3}d^{2}$

Hence by the VSEPR theory, due to 5 bond pair & 1 lone pair of e^{-} The shape of $XeOF_4$ is square pyramidal

- 53. Which one is not an allylic halide?
 - (A) 1 Chloro but 2 ene
 - (B) 1 Chloro but 1 ene
 - (C) 3 Chloro cyclo hex 1 ene
 - (D) 3 Chloro prop 1 ene.

Answer (B)

Sol. 1 – Chloro but – 1 – ene \Rightarrow HC = CH – CH₂–CH₃

Hence the above is not an allylic halide but vinylic halide

- 54. Which is the main organic product obtained by the reaction of 2, 2, 2 trichloro ethanal with calcium hydroxide?
 - (A) Chloroform
 - (B) Carbon tetrachloride
 - (C) Methylene chloride
 - (D) Trichloro ethane

Answer (A)

Sol. On reaction of 2,2,2 - trichloro ethanal (Chloral) with Ca(OH)₂; chloroform (CHCl₃) is the main organic product obtained.

Aakash Medical/IIT-JEEl Foundations

- 55. Which of the following compound is optically inactive?
 - (A) 2 Hydroxy propanoic acid
 - (B) 2, 3 Dichloro butane
 - (C) 3 Chloro but 1 ene
 - (D) 2, 2 Dichloro pentane

Answer (D)

Sol. 2, 2 – Dichloropentane
$$\Rightarrow$$
 H₃C–C–CH₂–CH₂–CH₃

 \sim

- \therefore The above compound is optically inactive
- 56. Which of the organic products of the following reactions has the least boiling point?

(A)
$$CH_3 - CH_2 - CHO \xrightarrow{NaBH_4}_{H_2O}$$

(B) $CH_3 - C - CH_3 \xrightarrow{NaBH_4}_{H_2O}$

(C)
$$CH_3 - CH_2 - COOH - \frac{LiAIH_4}{H_2O}$$

(D)
$$CH_3 - CH = CH_2 - \frac{(BH_3)_2}{H_2O_2, OH^-}$$

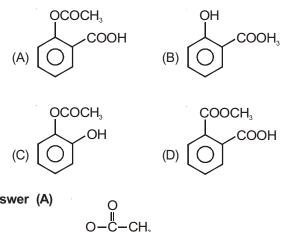
Answer (B)

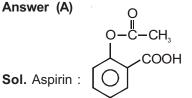
Sol. In the reaction A,C,D the product formed is propan-1-ol. whereas in the reaction – B

$$\begin{array}{c} H_{3}C-C-CH_{3} \xrightarrow{\text{NaBH}_{4}} H_{3}C-CH-CH_{3} \\ H_{2}O & H_{3}C-CH-CH_{3} \\ H_{2}O & OH \end{array}$$

... Due to weaker force of attraction in Propan-2-ol; it has least boiling point.

- 57. Which is the final product obtained by the reaction of a grignard reagent ethyl Magnesium bromide with propanone?
 - (A) Pentane 2 ol
 - (B) 2 Methyl butane 2 ol
 - (C) Pentane -1- ol
 - (D) 3 Methyl butane 2 ol


Answer (B)


Sol.
$$C_2H_5MgBr + H_3C - C - CH_3 \rightarrow H_3C - C - OH_1 + H_3C - C - CH_3 \rightarrow H_3C - C - OH_1CH_3$$

(Final Product)

+ Mg(OH)Br

. Final product formed is 2-Methyl - butan-2-ol

58. Which is the correct structural formula of Aspirin?

- 59. The units for the rate constant and the rate of reaction are same for a reaction. What will be the order of the reaction?
 - (A) First (B) Zero
 - (C) Second (D) Third

Answer (B)

- **Sol.** Unit of rate constant $(k) = (conc)^{1-n} (s)^{-1}$
 - n = order of the reaction
 - The rate law of the reaction is
 - Rate = K [Reactant]ⁿ

For unit of Rate = Rate constant (k); n should be equal to 0

- : Order is zero
- 60. At 27° C temperature, time required for 75% completion of a first order reaction is 20 seconds. What will be its rate constant?
 - (A) 0.693 sec⁻¹ (B) 0.0693 sec⁻¹
 - (C) 0.693 sec⁻¹ mole⁻¹ It (D) 0.0693 sec⁻¹ mole⁻¹ It

Answer (B)

Sol. For 1st order reaction ;

$$Kt = \ln \left(\frac{A_{o}}{A_{t}}\right)$$
$$K (20) = \ln \left(\frac{A_{o}}{0.25A_{o}}\right)$$
$$K (20) = \ln (4)$$

$$K = \frac{2\ln 2}{20} = \frac{0.693}{10} = 0.0693 \, \mathrm{s}^{-1}$$

GUJCET-2018 (Physics & Chemistry)

- 61. Which statement is incorrect for a catalyst?
 - (A) It decreases the activation energy of a reaction
 - (B) It increases the proportion of products in less time
 - (C) It does not affect the equilibrium constant
 - (D) It increases the free energy change for the reaction

Answer (D)

- Sol. A Catalyst can,
 - Increase the rate of reaction by decreasing the activation energy
 - (ii) Also increase the proportion of products per unit time.
 - (iii) Does not alter equilibrium established reaction. Hence does not alter equilibrium constant.
 - (iv) Does not alters the value of $\Delta\,{\rm G}$ and $\Delta\,{\rm H}$
 - Hence the correct answer is (D)
- 62. During electrophoresis of colloidal sol of Fe(OH)_{3'} the colloidal particles
 - (A) Move towards anode
 - (B) Move towards cathode
 - (C) Move towards anode and cathode both
 - (D) Do not move

Answer (B)

- **Sol.** $Fe(OH)_3$ is a positively charged colloid. Hence under the influence of electricity these particles can migrate towards cathode.
- 63. In manufacturing of sulphuric acid in presence of platinum catalyst, which metal impurity acts as catalytic poison?

(A)	Cu	(B) Cr
(C)	Fe	(D) V

(C) Fe Answer (A)

- **Sol.** In production of sulphuric acid, in the presence of platinum catalyst, the impurity of copper decreases the efficiency of the catalyst. It is called catalytic poison.
- 64. Which ion has the least value of theoretical magnetic moment?

(A) Ti ³⁺	(B) Co ³⁺
(C) Cr ³⁺	(D) V ³⁺

Answer (A)

Sol. Magnatic moment $\mu = \sqrt{n(n+2)}$ BM

where n = no. of unpaired electrons

As the number of unpaired electrons increases, magnetic moment also increases.

In the given options.

Ti⁺³ = [Ar]3d¹4s^o; n=1

- Co+3= [Ar]3d64so;n=4
- $Cr^{+3} = [Ar]3d^{3}4s^{0};n=3$
- V⁺³= [Ar]3d² 4s^o;n=2

Hence the correct answer is (A)

- 65. Which of the following mixture can form an alloy?
 - (A) Fe, Mn, Mg
 - (B) Cr, Co, Na
 - (C) Fe, Ni, Cr
 - (D) Ni, Mg, Na

Answer (C)

Sol. Alloy is the combination of two or more metals.

According to Hume-Rothery ratio, metals which have

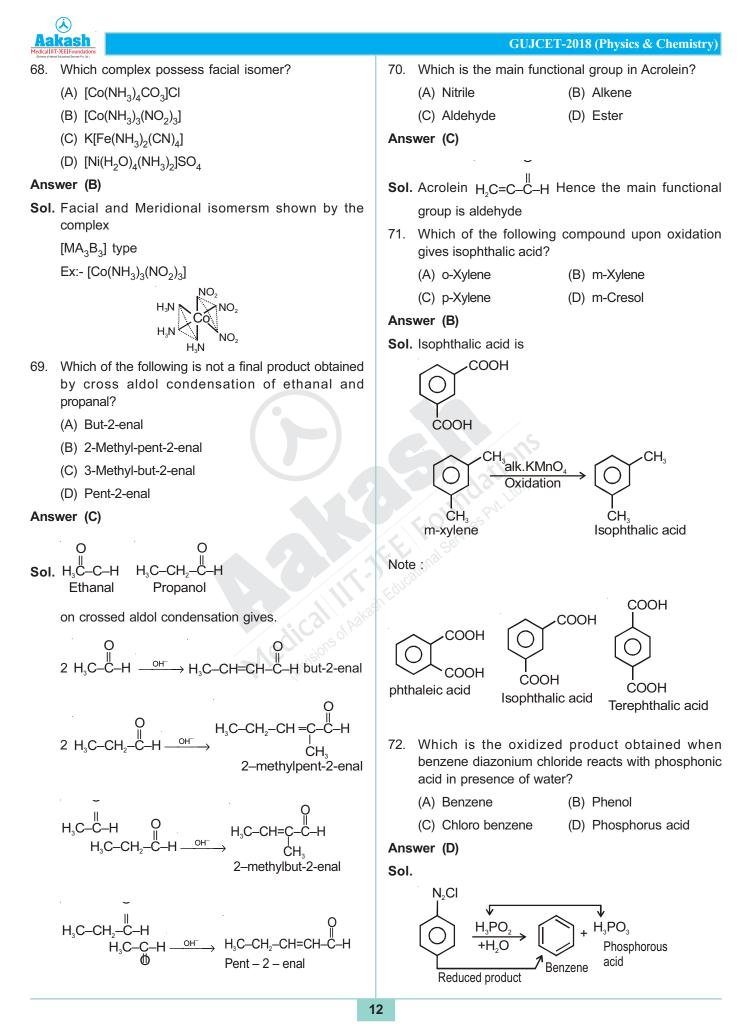
- (i) Similar electronic structure in the valence shell
- (ii) Similar crystal structure and
- (iii) Difference in the radius should be less than 15% can form alloy.
- Hence Fe, Ni, Cr belongs to 3d series can form alloy.
- 66. Which of the following statements is incorrect?
 - (A) K_4 [Ni(CN)₄] is square planar while K_2 [Ni(CN)₄] is paramagnetic.
 - (B) K_2 [Ni(CN)₄] is diamagnetic while K_2 [NiCl₄] is paramagnetic.
 - (C) K₄ [Ni(CN)₄] and K₂[Ni(CN)₄] both have same magnetic moment
 - (D) K₂ [NiCl₄] and K₄ [Ni(CN)₄] both have same geometrical shapes

Answer (A)

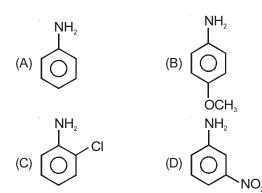
Sol. Incorrect option is (A) where

K₄[Ni(CN)₄] sp³ Tetrahedran (Diamagnetic)

K₂[Ni(CN)₄] dsp² square planar (Diamagnetic)


K₂[NiCl₄] sp³ Tetrahedran (Paramagnetic)

- 67. The aqueous solution of which of the following complex has the leaste conductivity under identical conditions.
 - (A) Hexa aqua chromium (III) chloride
 - (B) Tetra aqua dichlorido chromium (III) chloride
 - (C) Penta aqua chlorido chromium (III) chloride
 - (D) Tri aqua trichlorido chromium (III)


Answer (D)

- **Sol.** The complex which produce least number of ions in aqueous solution will show least conductivity.
 - (A) [Cr(H₂O)₆]Cl₃; 4 ions
 - (B) $[Cr(H_2O)_4Cl_2]Cl$; 2 ions
 - (C) $[Cr(H_2O)_5Cl]Cl_2$; 3 ions
 - (D) $[Cr(H_2O)_3CI_3]$; No ions.

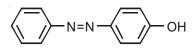
73. Which of the following compound is the most basic?

Answer (B)

Sol.

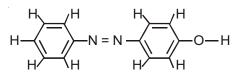
: NH₂ is most basic among the following -CH₃ :O-

because of more pronounced + R effect of $- \ddot{O} - CH_3$ group.


- * Basic strength α EDG.
- 74. The number of σ and π bonds in orange azo dye is ___ and _____ respectively.

(A) 26 and 7 (I	B) 24 and
-----------------	-----------

(C) 27 and 7 (D) 26 and 6


Answer (A)

Sol. Orange dye is

It is obtained by the reaction between B.D.C and phenol.

(D) Guanine

Total σ bonds = 26

Total π bonds = 7

75. Which one is a purine base?

(A) Cytosine (B) Thymine

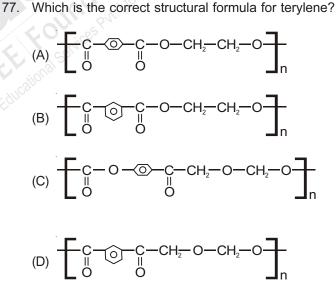
(C) Uracil

- Answer (D)
- Sol. [Guanine and adenine] are purine bases

Cytosine, Uracil, Thymine are pyrimidine bases.

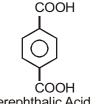
- 76. Which of the following amino acid has pH greater than 7?
 - (A) Glycine
 - (B) Lysine
 - (C) Glutamic acid
 - (D) Alanine

Answer (B)


Sol. pH should be more for basic amino acids.

Lysine is basic amino acid.

Hence, its pH > 7.


$$H_{2}N-(H_{2}C)_{3}-COOH$$

Lysine

Answer (A)

Sol. Terylene is the co-polymer of terephthalic acid and Ethylene glycol

 $-CH_{2}$ OH OH Ethylene Glycol

Terephthalic Acid

13

A 2 Medical I	kash TrJEElFoundadons	GUJCET-2018 (Physics & Chem	istry)
78.	Which are the monomers of Buna – N?	(A) P \rightarrow N, Q \rightarrow O, R \rightarrow M, S \rightarrow L	
	(A) Buta - 1, 3-diene and prop -2-ene-1-nitrile	(B) $P \rightarrow N, Q \rightarrow M, R \rightarrow O, S \rightarrow L$	
	(B) Buta - 1, 2-diene and acrylonitrile	(C) $P \rightarrow N, Q \rightarrow O, R \rightarrow L, S \rightarrow M$	
	(C) Buta - 1, 3-diene and prop-1-ene-1-nitrile	(D) $P \rightarrow L$, $Q \rightarrow O$, $R \rightarrow M$, $S \rightarrow N$	
	(D) Buta - 1, 2-diene and prop-2-ene-1-nitrile	Answer (A)	
Ans	swer (A)	Sol . Artificial sweetner – Alitame	
Sol	. Buna – N	Food Preservative - Sorbic acid	
	Butadiene + Prop – 2 – en – 1 – nitrile	Anti oxidant – Ascorbic acid	
	$H_2C = CH - CH = CH_2 + H_2C = CH - C \equiv N$	Food Colour – Caramel.	
79.	Choose the correct option for the suitable matc between Column I and Column II		Inxiety
	Column - I Column - II	(A) Luminal (B) Aspirin	
	(P) Artificial Sweetner (L) Caramel	(C) Ofloxacin (D) Mestranol	

Medical III

Answer (A)

Februarional Services Printed

Sol. Barbiturates can release from stress and anxiety.

- (Q) Food Preservative (M) Ascorbic acid
- (R) Anti Oxidants (N) Alitame
- (S) Food colours

14