PHYSICS whereast think the second PHYSICS whereast thindest sill to - 1) An air-cored solenoid with length 30 cm, area of cross-section 25 cm² and number of turns 500, carries a current of 2.5A. The current is suddenly switched off in a brief time of 10⁻³ s. How much is the average back emf induced across the ends of the open switch in the circuit? Ignore the variation in magnetic field near the ends of the solenoid. - (A) 6.54 V (B) 65.4 V (C) 654 V - (D) 0.654 V - 2) For an ideal transformer, if N_s > N_p then - (A) $V_s < V_p$ (B) $V_s > V_p$ $(C)^{\prime}$ $V_s = V_n$ - (D) None of these - 3) A charged 10µF capacitor is connected to a 16mH inductor. What is the angular frequency of free oscillations of the circuit? - (A) 250 rad s^{-1} (B) 25 rad s^{-1} (C) 1111 rad s⁻¹ (D) 2500 rad s^{-1} (Space for Rough Work) Old Papers = VisionPapers.in | 4) | A light bulb | is rated at 200 W for a | 220 V su | ipply. Find the resistan | ce of the bulb | |------|--|--|----------------------------|--|---| | | | esona i nam mo 66 d | | | | | | (C) 242 Ω | to the Arthurst offer
to the Arthurst offer
continuous (V) the way | (D) | 400 Ω | | | | | i ni ncilacily - I ciaile | 1 Pront | adadatah sa aban sili- | | | 5) - | A radio car
correspond | n tune into any station ing wavelength band? (| in the 6 $c = 3 \times 10$ | MHz to 12 MHz band Office of the second sec | 1. What is the | | | (A) 40 m | to 60 m | (B) | 25 m to 50 m | | | | (C) 20 m | to 30 m | (D) | 10 m to 20 m | | | | | | | | 5 14 | | (6) | A charged of 10 ⁹ Hz. oscillator? | particle oscillates about
What is the frequency | its mean of the elec | equilibrium position wit
ctromagnetic waves pro | h a frequency
duced by the | | | (A) 10^{18} | Hz | | 10 ⁹ Hz | | | | (C) 10 ⁻⁹ | | (D) | 10 ¹⁰ Hz | V 1 3 | | ٠. | | | | | | | 7 | | n a point source in air furvature = 20 cm). The d
Find the image distance | istalice of | the light source nom the | (n = 1.5 and glass surface | | | is 100 cm. | Find the image distance | | | | | | (A) - 10 | 00 cm (8) | (B) | - 200 cm | a contract of the | | | (C) 200 | cm | (D) | 100 cm | | | | | Old Papers = | Vioio | Donoro in | | | | | | | | | | 8) | 8) Double - convex lenses are to be manufactured from a glass of refractive index 1.5. with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm? | | | | | | | | | |------|--|---------------------------|---------------------------------|---------------------------------|------------------|---|---------------------|---------------------------|---------------------| | | (A) | 44 cm | | (I) | (B) | 2.2 cm | 41 | pro C | r | | | (C) | 22 cm | | | (D) | 4.4 cm | | | The same | | | eniror | e granting la | yns ddiez Pao | . भग्न हरह र जा | | valgin"-q | b section | HW (E | | | 9) | conc | ave lens | | of a convex gth 10 cm? | lens o | f focal leng | th 30 cm | n in conta | ect with a | | | (A) | – 15 cm | GITAL. | | (B) | – 40 cm | | 131 | 71 | | | | – 20 cm | () | 0 | | - 30 cm | , | | | | | | mani w | | n salso (nassa)
one ensamble | | 2017 11 12 12 12 12 12 12 12 12 12 12 12 12 | | | | | 10) | Unp
inci | olarised l
dence so t | ight is incid
that the refle | ent on a plan | e glas
racted | s surface. W
rays are pe | hat shou | ıld be the
ılar to eac | angle of h other? | | | (A) | 56° | por les | 1 | (B) | 57° | 1.7 | : 1 | | | i ja | (C) | 58° | | ricons (*). | (D) | 59° | 1 , | i i | · / pi | | ie e | | | | t 4023 0 15 | | | | | | | 11) | Two
Wh | slits are
at is the fr | made 3 mil
inge separat | limetre (3 mi
ion when blu | n) apa
e-gree | art and the sen light of wa | creen is pavelengtl | placed 2 r
h 600 nm | n away.
is used? | | | (A) | | | Fire Land | | | | | | | | (C) | 0.5 mm | v (*) | | (D) | 0.7 mm | | 1) (1, 1) | 1 | | | | | Old Pap | ers = V | isio | nPaper | s.in | y. | F 7 . | Estimate the distance for which ray optics is good approximation for an aperture of 5 mm and wavelength 500 nm. (A) 50 m (B) 18 m (C) 40 m (D) 60 m What is the de-Broglie wavelength associated with an electron moving with a speed of 6.4×10^6 m/s? [Mass of electron $m_e = 9.11 \times 10^{-31}$ kg, Planck's constant $h = 6.63 \times 10^{-34}$ J.s.] (A) 0.124 nm (B) 0.114 nm (C) 0.135 nm (D) 0.145 nm 14) An electron, an α-particle and a proton have the same kinetic energy. Which of these particles has the shortest de-Broglie wavelength? (A) α-particle (B) Electron (C) Proton (D) None of these A difference of 5.4 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom make a transition from the upper level to the lower level? [1 eV = $$1.6 \times 10^{-19}$$ J, h = 6.625×10^{-34} J.s.] - (A) $1.304 \times 10^{15} \,\text{Hz}$ - (B) $5.6 \times 10^{15} \,\text{Hz}$ - (C) $5.6 \times 10^{14} \,\mathrm{Hz}$ - (D) $1.304 \times 10^{14} \text{ Hz}$ (A) 320 nm (B) 720 nm (C) 840 nm (D) 820 nm 17) The radius of the innermost electron orbit of a hydrogen atom is 5.3×10^{-11} m. What are the radii of the n = 3 orbit? - (A) 4.12×10^{-10} m - (B) 4.77×10^{-10} m - (C) 2.12×10^{-10} m - (D) 2.24×10^{-10} m In accordance with the Bohr's model, find the quantum number that characterises the earth's revolution around the sun in an orbit of radius 1.5×10^{11} m with orbital speed 3×10^4 m/s. (Mass of earth = 6×10^{24} kg, h = 6.625×10^{-34} J.s.) (A) 3.6×10^{74} (B) 1.6×10^{74} $(C) 2.6 \times 10^{74}$ (D) 4.6×10^{74} $$^{238}_{92}U = 238.05079 u$$ $${}^{4}_{2}$$ He = 4.00260 u $$^{234}_{90}$$ Th = 234.04363 u Calculate the energy released during the alpha decay of $^{238}_{92}$ U. $$\left(1 \text{ u} = 931.5 \text{ MeV/}_{\text{C}^2}\right)$$ - (A) 4.25 MeV - (C) 5.75 MeV - (B) 6.23 MeV - (D) 3.25 MeV - A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to 6.250 %? - (A) 3 T (B) 6 T (C) 5 T - (D) 4 T - 21) The half-life of ⁹⁰₃₈Sr is 28 years. What is the disintegration rate of 38g of this isotope? $$[N_A = 6.023 \times 10^{23} \,\mathrm{mol}^{-1}]$$ (A) $2.7 \times 10^{14} \text{Bq}$ (B) 4.7×10^{14} Bq (C) 3.7×10^{14} Bq (D) $5.7 \times 10^{14} \text{Bq}$ 22) The circuits shown in fig. works as which gate? (A) NAND gate (B) OR gate (C) AND gate - (D) NOR gate - 23) When a forward bias is applied to a p-n junction, it - (A) raises the potential barrier - (B) reduces the majority carrier current to zero - (C) lowers the potential barrier - (D) none of the above - Suppose a pure Si crystal has 5×10^{28} atoms m⁻³. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that $n_i = 1.5 \times 10^{16} \,\text{m}^{-3}$ (A) $$6.5 \times 10^9 \,\mathrm{m}^{-3}$$ (B) $$4.5 \times 10^9 \,\mathrm{m}^{-3}$$ (C) $$5.5 \times 10^9 \,\mathrm{m}^{-3}$$ (D) $$5.5 \times 10^{-9} \,\mathrm{m}^{-3}$$ (A) $$M^1 L^{-3} T^{-3} A^{-1}$$ (B) $$M^1 L^3 T^3 A^{-1}$$ (C) $$M^1 L^3 T^{-3} A^{-1}$$ (D) $$M^{-1}L^3T^{-3}A^{-1}$$ it i ling of the potential 26) An electric dipole with dipole moment 4×10^{-9} cm is aligned at 60° with the direction of a uniform electric field of magnitude $5 \times 10^4 \text{ NC}^{-1}$. Calculate the magnitude of the torque acting on the dipole. (A) $$17.3 \times 10^{-5} \text{ Nm}$$ (B) $$1.73 \times 10^{-4} \text{ Nm}$$ (C) $$1.73 \times 10^{-5} \text{ Nm}$$ (D) $$17.3 \times 10^{-4} \text{ Nm}$$ An infinite line charge produces a field of $9 \times 10^4 \,\mathrm{NC}^{-1}$ at a distance of 2 cm. 27) Calculate Electrical field produced at a distance of 3 cm. (A) $$\approx 6 \times 10^{-3} \text{ NC}^{-3}$$ in the second of seco (C) $$6 \times 10^{-5} \text{ NC}^{-1}$$ (D) $$6 \times 10^2 \, \text{NC}^{-1}$$ - How will you connect 4 (four) capacitors, each of capacitance $4\mu F$ for having equivalent capacitance 1.6 μF ? - (A) Two in parallel and two in series - (B) All four in series - (C) All four in parallel - (D) Three in parallel and one in series - 29) A slab of material of dielectric constant 3 has the same area as the plates of a parallel plate capacitor but has a thickness $\left(\frac{3}{4}\right)d$, where d is the separation of the plates. What is the Electrical potential difference between the plates, when the slab is inserted between the plates? Initial electrical potential difference V_0 . - (A) $\frac{V_0}{6}$ (B) $\frac{V_0}{4}$ (C) $\frac{V_0}{2}$ - (D) $\frac{V_0}{3}$ - 30) A molecule of a substance has a permanent electric dipole moment of magnitude 10^{-29} cm. 2 mole of this substance is polarised (at low temperature) by applying a strong electrostatic field of magnitude 10^6 Vm⁻¹. What should be potential energy of its? [1 mole of the substance contains 6×10^{23} molecules] (A) -6 J (B) -12 J (C) 12 J (D) 6 J - At room temperature (27 °C) the resistance of a heating element is 100 Ω . What is the temperature of the element if the resistance is found to be 137 Ω , given that the temperature coefficient of the material of the resistor is 1.35×10^{-4} °C⁻¹. - (A) 2767 °C (B) 1227 °C (C) 1027 °C (D) 2327 °C For the given following circuit diagram, the dissipated of electrical power 150 W, then find value of Resistance R =_____. (A) 5Ω (B) 8Ω (C) 6Ω - (D) 3Ω - 33) The number density of free electrons in a copper conductor estimated 8.5×10^{28} m⁻³. How long does an electron take to drift from one end of a wire 6 m long to its other end? The area of cross-section of the wire is 1.0×10^{-6} m² and it is carrying a current of 1.5A. - (A) 8.1×10^4 s (B) $5.4 \times 10^4 \text{ s}$ (C) 12.7×10^4 s (D) 4.5×10^4 s (Space for Dough M. 1) 34) A solenoid of length 0.25 m has a radius of 1 cm and is made up of 500 turns. It carries a current of 2.5 A. What is the magnitude of the magnetic field inside the solenoid? $$(\mu_0 = 4\pi \times 10^{-7} \,\mathrm{SI})^{-1}$$ (A) $$6.28 \times 10^{-3} \,\mathrm{T}$$ (B) $$6.28 \times 10^{-2} \,\mathrm{T}$$ (C) $$6.28 \times 10^{-4} \text{ T}$$ (D) $$6.28 \times 10^{-1} \text{ T}$$ - 35) How the shunt wire should be? - (A) short and thin (B) long and thin (C) long and thick - (D) short and thick - 36) Two long and parallel straight wires A and B carrying currents of 10 A and 4 A in the same direction are separated by a distance of 2 cm. Estimate the force on a 4 cm section of wire A. $$(\mu_0 = 4\pi \times 10^{-7} \text{ SI})$$ (A) $$1.6 \times 10^{-4} \text{ N}$$ (B) $$1.6 \times 10^{-5} \text{ N}$$ (C) $$1.6 \times 10^{-6} \text{ N}$$ (D) $$1.6 \times 10^{-3} \text{ N}$$ | 37) | the so | olenoid are | insulated from | m the core and | l carry a cu | bility 400. The windings of trent of 1 A. If the number $T. (\mu_0 = 4\pi \times 10^{-7} \text{ SI})$ | |------|----------------|----------------------------------|--------------------|--|----------------------|---| | | (A) | $1.6\pi \times 10^4$ | -2 | (B) | $16\pi \times 10$ | | | | (C) | $16\pi \times 10^{-3}$ | 2 | (D) | $0.16\pi \times 1$ | 10^{-2} | | | | | | (8), | | CLART WAS | | 38) | field | of 0.25 Te | xperiences a | rith its axis at a
torque of magrent of the mag | itude equa | uniform external magnetic 1 to 4.5×10^{-2} J. What is the | | | (A) | $0.36 \mathrm{J}\mathrm{T}^{-1}$ | l | | 0.036 J T | | | | (C) | 3.6 J T^{-1} | | (D) | 36 J T ⁻¹ | The state of the state of | | | | | | | | THE LY WE (A) | | 39) | | | | V V | - | uce a current which opposes tement is known as | | | (A) | Faraday | | (B) | Maxwell | | | est. | (C) |) Kirchho | ff
Company comp | (D) | Lenz | distribute annional qu | | 40 | ch
cc
(A | anges from oil? | 0 to 10 A in 0 | .5 s, what is th | e change of | H. If the current in one coil flux linkage with the other | | | | | | | | | ### **GUJCET 2022** #### CHEMISTRY | 41) | Hybridisation in XeF ₂ and XeF ₄ are respectively | | |-----|---|--| | | / | | (A) sp^2 and sp^3d^2 (B) sp^3d and sp^3d^2 (C) $sp and sp^3$ (D) sp^3d and sp^3 42) Which is the correct options for bonds and their number in pyrophosphoric acid? - (A) Two P-OH, Four P = O, One P-O-P - (B) Four P-OH, One P = O, One P-O-P - (C) Two P-OH, Four P = O, Two P-O-P - (D) Four P-OH, Two P = O, One P-O-P 43) Name a transition element which does not exhibit variable oxidation states. (A) Zinc (B) Copper (C) Scandium (D) Chromium 44) Which statement is incorrect from the following? - (A) CrO is basic, but Cr₂O₃ is amphoteric - (B) 'Cd' is not consider as transition element - (C) Atomic sizes of elements of '4d' series is greater than corresponding elements of '3d' series - (D) Atomic sizes of elements of '5d' series is greater than corresponding '4d' series | | | | | v | | | | | |-----|-------------|--|---------|-------------|-----------------------|-----------|--------------|------| | 45) | How
have | w many numbers of Geometric? | al Isom | ers of [F | | | | will | | | (4) | a constitution of the cons | (D) | 2 | Port of the second | for Sil | 1774 | | | | (A) | | (B) | 2 | 819 | Feet lite | (1) | | | | (C) | 1 | (D) | 4 | | | | | | | | the second second | iki rij | ं वय प्रत | | ye li | ··(0)/ - ; 0 | 1 | | 46) | | w many numbers of mole Ions
(III) hexacyanido Ferrate (II) co | | | aqueous | solutio | n of 1 m | iole | | | (A) | 4 | (B) | 7 | | | (· · · | | | | (C) | . 5 | (D) | 6 | 1412 | | ari) | | | | | | | | | 6 | | | | 47) | Whi | ch of the following ligand is am | bidenta | te? | 25 0 1 151 125 | 研身中 | | ÷, | | | NO
(P) | | . A | Allisboir - | aknor. | (I_n) | rai, | | | | (A) | R and S | | at Frield | 70,7 | | | | | | (B) | P and Q | | . 4. | n - Ha | | | | | | (C) | Q and S | | | H HO, | 1 | 03, | | | | (D) | Q and R | | | | | | | | | | | | | | | | | - 48) How many numbers of sigma (σ) and pi (π) bonds in DDT respectively? - (A) 28 and 6 (B) 29 and 6 (C) 30 and 6 - (D) 21 and 6 - 49) Which of the following undergoes S_N2 reaction most readily? - (A) $C_6H_5CH(CH_3)Br$ - (B) $C_6H_5CH(C_6H_5)Br$ - (C) $C_6H_5C(CH_3)(C_6H_5)Br$ - (D) $C_6H_5CH_2Br$ - 50) From following reactions, which reaction does not give "Benzene"? - (A) $C_6H_5COONa + Sodalime \xrightarrow{\Delta}$ - (B) $C_6H_5N_2^+Cl^- + H_3PO_2 + H_2O \longrightarrow$ - (C) $C_6H_5OH + Zn \xrightarrow{\Delta}$ - (D) $C_6H_5OH + H_2CrO_4 \xrightarrow{[O]}$ 51) Which product is obtained from following reaction? $$\begin{array}{c} O \\ CH_2 - C - OCH_3 \\ O \end{array}$$ NaBH₄ (A) $$CH_2-CH_2-OCH_3$$ (B) $$CH_2$$ CH_2 CH_3 CH_3 $$(C) \qquad \begin{array}{c} OH \\ CH_2-C-OCH_3 \\ O \end{array}$$ (D) $$CH_2-CH_2-OCH_3$$ - 52) Which method is used to prepare salicylic acid from phenol? - (A) Stephen reaction (B) Kolbe's reaction (C) Etard reaction (D) Reimer-Tiemann reaction 53) Which of the following compounds will not give "Iodoform" by reaction with "sodiumhypoiodide"? (D) $$CH_3 - CH_2 - CO - CH_2 - CH_3$$ 54) What will be the main product in the following reaction? $$\bigcirc \longrightarrow CHO + CH_3CHO \xrightarrow{OH^-} ?$$ (B) $$\bigcirc$$ CH = CH - CHO (C) $$\left\langle \bigcirc \right\rangle$$ — CH_2 – CH_2 – CHO (D) $$\langle O \rangle$$ - CH = CH - COOH | 55) | Whic | ch is the incorrect order of increasing acidic strength for the following? | | |-----|------------|---|-------| | | (A) | CH ₂ FCH ₂ CH ₂ COOH < CH ₃ CHFCH ₂ COOH man section (1) | | | | (B) | CH ₂ CICOOH < CH ₂ FCOOH (1) | | | | | CH ₃ COOH < CH ₂ CICOOH | | | | | HCOOH < C ₆ H ₅ COOH | 15.00 | | 56) | How | v many numbers of Isomer for the compound having molecular formula C ₃ H ₉ l | N? | | 50) | (A) | | | | | (C) | | | | | | | | | 57) | | m which of the following reaction primary amine is produced? | | | | (A) | | | | | (B) | Reduction of Amide Compounds Hoffmann bromamide degradation reaction | | | | (C) | Hoffmann bromamide degradation reaction | | | | (D) | Above all reactions | | | | | | | | 58) | Ide | entify the compound 'C' from following reaction. | | | | СН | $H_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2+NaOH} B \xrightarrow{NaNO_2} C$ | | | | (A) |) $CH_3 - CH_2N_2^+Cl^-$ | | | | (B) | Websens HO IV | | | | (C)
(D) | CH ₃ OH mires M (Cl) | | 59) Select proper statement from following True (T) and False (F) statements. Pentose sugar + base → Nucleotide Nucleotide + Phosphate → Nucleoside (II)(III) DNA contains four bases A, G, C and T (IV) RNA contains four bases A,G, C and U (A) FTFT (B) FTTT (C) **FFTT** (D) TTTT Which glycosidic linkage occurs in 'Amylopectin'? 60) (A) $C_1 - C_3$ and $C_1 - C_4$ (B) $C_1 - C_4$ and $C_1 - C_6$ (C) $C_1 - C_2$ and $C_1 - C_6$ (D) $C_2 - C_4$ and $C_4 - C_6$ 61) Which polymer is used in manufacture of paints and lacquers? Glyptal (A) Teflon (B) Neoprene (C) Melamine ### Old Papers = VisionPapers.in (D) | 62) | | ch of the following polymer is not obtained by the condensation merization? | |-----|-------|--| | | (A) | Decron | | | (B) | Nylon - 2 - Nylon - 6 | | | (C) | Nylon - 6, 6 | | | (D) | Polyacrylonitrile | | | r mit | A marticulat a legación espinal esta el esta el Control de 180 180
Esta el flore como control de la como del control de 180 1 | | 63) | Whi | ch of the following drug is used for treatment of Acidity? | | | (A) | Ranitidine | | | (B) | Meprobamate | | | (C) | Salvarsan and the same and the medical state of the same and | | | (D) | Codein | | | | TO THE CONTRACT OF CONTRAC | | 64) | Whi | ch Artificial sweetener is unstable at cooking temperature? | | | (A) | Sucralose (83 | | ì | (B) | Aspartame . The contraction of the contraction (A) | | | (C) | Alitame designation designate of the executive (D) | | | (D) | Saccharin deserted and examined this sometimes are sometimes (1) | | | | | | | | Old Papers = VisionPapers.in | | 65) | Cell | edg | |-----|------------------------|----------------| | | (A) | 2 <i>r</i> . | | | | | | | (C) | 2 | | | | | | 66) | Ator
tetral
M ar | hedr | | | (A) | M, | | | (C) | M ₂ | | 67) | Calc | ulat | | | (A) | 0.0 | | • | (C) | 0.0 | e length in bcc, ccp and simple cubic unit cell is respectively as $$(A) \quad 2r, \frac{4r}{\sqrt{3}}, 2\sqrt{2}r$$ (B) $$2r, 2\sqrt{2}r, \frac{4r}{\sqrt{3}}$$ (C) $$2\sqrt{2}r, \frac{4r}{\sqrt{3}}, 2r$$ (D) $$\frac{4r}{\sqrt{3}}, 2\sqrt{2}r, 2r$$ of element N form hep lattice and those of the element M occupy 1/3rd o ral voids. What will be the formula of the compound formed by the element N, N, te the mole fraction of aqueous solution of 1 molal urea (NH₂CONH₂) which countries then mented and cooking comportune? 01878 (B) 0.01768 01800 (D) 0.01698 Value of Henry's constant K_H_ 68) - no effect by changing temperature (A) - decreases with increase in temperature (B) - increases with increase in temperature (C) - first decreases and then increases by increase in temperature (D) | 69) | What is value of Van't Hoff factor (i
(A) 2.70
(C) 3 | (B) | 180% of CaCl ₂ dissociates?
2.40
2.30 | |-----|---|------------|---| | 70) | How much electricity in terms of F
Cr ₂ O ₇ ²⁻ into Cr ³⁺ in acidic medium | | y is required for reduction of 2 mol | | | (A) 12 F
(C) 6 F | (B) | 3 F
9 F | | 71) | Which is proper value of x for the for $Zn_{(s)} \left Zn_{(xM)}^{2+} \right \left Cu_{(0.02M)}^{2+} \right Cu_{(s)}$ | llowin | g to increase cell potential of | | | (A) $x = 0.02 \text{ M}$
(C) $x > 0.02 \text{ M}$ | (B)
(D) | x < 0.02 M
$x \ge 0.02 \text{ M}$ | | 72) | Which substance is used as oxidising (A) Ni(OH) ₃ (C) Ni | (B)
(D) | Cd
CdO | | 73) | What is the value of slope when gra | aph plo | otted of $\log \frac{[R]_0}{[R]}$ Vs t (time) for first | | | order reaction? (A) $-\frac{K}{2.303}$ | (B) | $\frac{K}{2.303}$ | | | (C) -K | (D) | 2.303
K | | 74) | That of act Mil | h respect to a rea | nctant A and second order with respect
concentration of both A and B increased | |---------------|---|--------------------|---| | e he | (A) Eight times | (B) | Quadrupled | | | (C) Doubled | 1 1 | Sixteen times | | | (和) | 18 P | | | 75)
> (s.) | Which colloidal sol results highly diluted KI solution? | , when highly d | iluted solution of AgNO ₃ is added to | | | (A) . AgI/ NO_3^- | (B) | AgI/K ⁺ | | | (C) AgI/Ag ⁺ | | AgI/I | | | | | | | (6) | Match the types of colloid in Column - II. | al systems giver | n in Column - I with the name given | | | Column - I | | Column - II | | | (i) Solid in liquid | (p) | Aerosol | | | (ii) Liquid in solid | (q) | Foam | ## (iii) Liquid in gas (r) Sol (iv) Gas in liquid (s) Gel (A) (i) \rightarrow (r), (ii) \rightarrow (s), (iii) \rightarrow (p), (iv) \rightarrow (q) (B) (i) \rightarrow (s), (ii) \rightarrow (r), (iii) \rightarrow (p), (iv) \rightarrow (q) (C) (i) \rightarrow (r), (ii) \rightarrow (s), (iii) \rightarrow (q), (iv) \rightarrow (p) (D) (i) \rightarrow (p), (ii) \rightarrow (q), (iii) \rightarrow (r), (iv) \rightarrow (s) | 77) | In wh | nich colloids both Lyophilic and | Lyoph | obic parts present? | |-----|-------|---|---------|---| | | | Micelle | (B) | Gold sol | | · | (C) | Rubbersol | (D) | Sol of As ₂ S ₃ | | 78) | Whi | ch method is not proper to obtai | n metal | of high purity from impure metal? | | | (A) | Leaching | | | | | (B) | Chromatographic methods | | 45. | | | (C) | Liquation | | | | | (D) | Distillation | 0 | | | 79) | Wh | ich is known as "Copper Matte" | ? | | | , | (A) | Cu ₂ S+FeO | (B) | Cu ₂ S+FeS | | | (C) | Cu ₂ O+FeS | (D) | Cu ₂ O+FeO | | 80) | | nich products are obtained by rehibitine? | eaction | of hot and concentrated NaOH with | | | (A) | NaCl+NaClO ₂ +H ₂ O | (B) | NaCl+NaClO ₄ +H ₂ O | | | (C) | $) NaCl + NaClO_3 + H_2O$ | (D) | NaCl+NaOCl+H ₂ O | | | | Old Papers = Vi | sion | Papers.in |