PHYSICS whereast think the second PHYSICS whereast thindest sill to

- 1) An air-cored solenoid with length 30 cm, area of cross-section 25 cm² and number of turns 500, carries a current of 2.5A. The current is suddenly switched off in a brief time of 10⁻³ s. How much is the average back emf induced across the ends of the open switch in the circuit? Ignore the variation in magnetic field near the ends of the solenoid.
 - (A) 6.54 V

(B) 65.4 V

(C) 654 V

- (D) 0.654 V
- 2) For an ideal transformer, if N_s > N_p then
 - (A) $V_s < V_p$

(B) $V_s > V_p$

 $(C)^{\prime}$ $V_s = V_n$

- (D) None of these
- 3) A charged 10µF capacitor is connected to a 16mH inductor. What is the angular frequency of free oscillations of the circuit?
 - (A) 250 rad s^{-1}

(B) 25 rad s^{-1}

(C) 1111 rad s⁻¹

(D) 2500 rad s^{-1}

(Space for Rough Work)
Old Papers = VisionPapers.in

4)	A light bulb	is rated at 200 W for a	220 V su	ipply. Find the resistan	ce of the bulb
		esona i nam mo 66 d			
	(C) 242 Ω	to the Arthurst offer to the Arthurst offer continuous (V) the way	(D)	400 Ω	
		i ni ncilacily - I ciaile	1 Pront	adadatah sa aban sili-	
5) -	A radio car correspond	n tune into any station ing wavelength band? (in the 6 $c = 3 \times 10$	MHz to 12 MHz band Office of the second sec	1. What is the
	(A) 40 m	to 60 m	(B)	25 m to 50 m	
	(C) 20 m	to 30 m	(D)	10 m to 20 m	
					5 14
(6)	A charged of 10 ⁹ Hz. oscillator?	particle oscillates about What is the frequency	its mean of the elec	equilibrium position wit ctromagnetic waves pro	h a frequency duced by the
	(A) 10^{18}	Hz		10 ⁹ Hz	
	(C) 10 ⁻⁹		(D)	10 ¹⁰ Hz	V 1 3
٠.					
7		n a point source in air furvature = 20 cm). The d Find the image distance	istalice of	the light source nom the	(n = 1.5 and glass surface
	is 100 cm.	Find the image distance			
	(A) - 10	00 cm (8)	(B)	- 200 cm	a contract of the contract of
	(C) 200	cm	(D)	100 cm	
		Old Papers =	Vioio	Donoro in	

8)	8) Double - convex lenses are to be manufactured from a glass of refractive index 1.5. with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm?								
	(A)	44 cm		(I)	(B)	2.2 cm	41	pro C	r
	(C)	22 cm			(D)	4.4 cm			The same
	eniror	e granting la	yns ddiez Pao	. भग्न हरह र जा		valgin"-q	b section	HW (E	
9)	conc	ave lens		of a convex gth 10 cm?	lens o	f focal leng	th 30 cm	n in conta	ect with a
	(A)	– 15 cm	GITAL.		(B)	– 40 cm		131	71
		– 20 cm	()	0		- 30 cm	,		
		mani w		n salso (nassa) one ensamble		2017 11 12 12 12 12 12 12 12 12 12 12 12 12			
10)	Unp inci	olarised l dence so t	ight is incid that the refle	ent on a plan	e glas racted	s surface. W rays are pe	hat shou	ıld be the ılar to eac	angle of h other?
	(A)	56°	por les	1	(B)	57°	1.7	: 1	
i ja	(C)	58°		ricons (*).	(D)	59°	1 ,	i i	· / pi
ie e				t 4023 0 15					
11)	Two Wh	slits are at is the fr	made 3 mil inge separat	limetre (3 mi ion when blu	n) apa e-gree	art and the sen light of wa	creen is pavelengtl	placed 2 r h 600 nm	n away. is used?
	(A)			Fire Land					
	(C)	0.5 mm	v (*)		(D)	0.7 mm		1) (1, 1)	1
			Old Pap	ers = V	isio	nPaper	s.in	y.	F 7 .

Estimate the distance for which ray optics is good approximation for an aperture of 5 mm and wavelength 500 nm.

(A) 50 m

(B) 18 m

(C) 40 m

(D) 60 m

What is the de-Broglie wavelength associated with an electron moving with a speed of 6.4×10^6 m/s?

[Mass of electron $m_e = 9.11 \times 10^{-31}$ kg, Planck's constant $h = 6.63 \times 10^{-34}$ J.s.]

(A) 0.124 nm

(B) 0.114 nm

(C) 0.135 nm

(D) 0.145 nm

14) An electron, an α-particle and a proton have the same kinetic energy. Which of these particles has the shortest de-Broglie wavelength?

(A) α-particle

(B) Electron

(C) Proton

(D) None of these

A difference of 5.4 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom make a transition from the upper level to the lower level?

[1 eV =
$$1.6 \times 10^{-19}$$
 J, h = 6.625×10^{-34} J.s.]

- (A) $1.304 \times 10^{15} \,\text{Hz}$
- (B) $5.6 \times 10^{15} \,\text{Hz}$
- (C) $5.6 \times 10^{14} \,\mathrm{Hz}$
- (D) $1.304 \times 10^{14} \text{ Hz}$

(A) 320 nm

(B) 720 nm

(C) 840 nm

(D) 820 nm

17) The radius of the innermost electron orbit of a hydrogen atom is 5.3×10^{-11} m. What are the radii of the n = 3 orbit?

- (A) 4.12×10^{-10} m
- (B) 4.77×10^{-10} m
- (C) 2.12×10^{-10} m
- (D) 2.24×10^{-10} m

In accordance with the Bohr's model, find the quantum number that characterises the earth's revolution around the sun in an orbit of radius 1.5×10^{11} m with orbital speed 3×10^4 m/s. (Mass of earth = 6×10^{24} kg, h = 6.625×10^{-34} J.s.)

(A) 3.6×10^{74}

(B) 1.6×10^{74}

 $(C) 2.6 \times 10^{74}$

(D) 4.6×10^{74}

$$^{238}_{92}U = 238.05079 u$$

$${}^{4}_{2}$$
He = 4.00260 u

$$^{234}_{90}$$
Th = 234.04363 u

Calculate the energy released during the alpha decay of $^{238}_{92}$ U.

$$\left(1 \text{ u} = 931.5 \text{ MeV/}_{\text{C}^2}\right)$$

- (A) 4.25 MeV
- (C) 5.75 MeV

- (B) 6.23 MeV
- (D) 3.25 MeV
- A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to 6.250 %?
 - (A) 3 T

(B) 6 T

(C) 5 T

- (D) 4 T
- 21) The half-life of ⁹⁰₃₈Sr is 28 years. What is the disintegration rate of 38g of this isotope?

$$[N_A = 6.023 \times 10^{23} \,\mathrm{mol}^{-1}]$$

(A) $2.7 \times 10^{14} \text{Bq}$

(B) 4.7×10^{14} Bq

(C) 3.7×10^{14} Bq

(D) $5.7 \times 10^{14} \text{Bq}$

22) The circuits shown in fig. works as which gate?

(A) NAND gate

(B) OR gate

(C) AND gate

- (D) NOR gate
- 23) When a forward bias is applied to a p-n junction, it
 - (A) raises the potential barrier
 - (B) reduces the majority carrier current to zero
 - (C) lowers the potential barrier
 - (D) none of the above
- Suppose a pure Si crystal has 5×10^{28} atoms m⁻³. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes.

Given that $n_i = 1.5 \times 10^{16} \,\text{m}^{-3}$

(A)
$$6.5 \times 10^9 \,\mathrm{m}^{-3}$$

(B)
$$4.5 \times 10^9 \,\mathrm{m}^{-3}$$

(C)
$$5.5 \times 10^9 \,\mathrm{m}^{-3}$$

(D)
$$5.5 \times 10^{-9} \,\mathrm{m}^{-3}$$

(A)
$$M^1 L^{-3} T^{-3} A^{-1}$$

(B)
$$M^1 L^3 T^3 A^{-1}$$

(C)
$$M^1 L^3 T^{-3} A^{-1}$$

(D)
$$M^{-1}L^3T^{-3}A^{-1}$$

it i ling of the potential

26) An electric dipole with dipole moment 4×10^{-9} cm is aligned at 60° with the direction of a uniform electric field of magnitude $5 \times 10^4 \text{ NC}^{-1}$. Calculate the magnitude of the torque acting on the dipole.

(A)
$$17.3 \times 10^{-5} \text{ Nm}$$

(B)
$$1.73 \times 10^{-4} \text{ Nm}$$

(C)
$$1.73 \times 10^{-5} \text{ Nm}$$

(D)
$$17.3 \times 10^{-4} \text{ Nm}$$

An infinite line charge produces a field of $9 \times 10^4 \,\mathrm{NC}^{-1}$ at a distance of 2 cm. 27) Calculate Electrical field produced at a distance of 3 cm.

(A)
$$\approx 6 \times 10^{-3} \text{ NC}^{-3}$$
 in the second of the seco

(C)
$$6 \times 10^{-5} \text{ NC}^{-1}$$

(D)
$$6 \times 10^2 \, \text{NC}^{-1}$$

- How will you connect 4 (four) capacitors, each of capacitance $4\mu F$ for having equivalent capacitance 1.6 μF ?
 - (A) Two in parallel and two in series
 - (B) All four in series
 - (C) All four in parallel
 - (D) Three in parallel and one in series
 - 29) A slab of material of dielectric constant 3 has the same area as the plates of a parallel plate capacitor but has a thickness $\left(\frac{3}{4}\right)d$, where d is the separation of the plates. What is the Electrical potential difference between the plates, when the slab is inserted between the plates? Initial electrical potential difference V_0 .
 - (A) $\frac{V_0}{6}$

(B) $\frac{V_0}{4}$

(C) $\frac{V_0}{2}$

- (D) $\frac{V_0}{3}$
- 30) A molecule of a substance has a permanent electric dipole moment of magnitude 10^{-29} cm. 2 mole of this substance is polarised (at low temperature) by applying a strong electrostatic field of magnitude 10^6 Vm⁻¹. What should be potential energy of its?

[1 mole of the substance contains 6×10^{23} molecules]

(A) -6 J

(B) -12 J

(C) 12 J

(D) 6 J

- At room temperature (27 °C) the resistance of a heating element is 100 Ω . What is the temperature of the element if the resistance is found to be 137 Ω , given that the temperature coefficient of the material of the resistor is 1.35×10^{-4} °C⁻¹.
 - (A) 2767 °C

(B) 1227 °C

(C) 1027 °C

(D) 2327 °C

For the given following circuit diagram, the dissipated of electrical power 150 W, then find value of Resistance R =_____.

(A) 5Ω

(B) 8Ω

(C) 6Ω

- (D) 3Ω
- 33) The number density of free electrons in a copper conductor estimated 8.5×10^{28} m⁻³. How long does an electron take to drift from one end of a wire 6 m long to its other end? The area of cross-section of the wire is 1.0×10^{-6} m² and it is carrying a current of 1.5A.
 - (A) 8.1×10^4 s

(B) $5.4 \times 10^4 \text{ s}$

(C) 12.7×10^4 s

(D) 4.5×10^4 s

(Space for Dough M. 1)

34) A solenoid of length 0.25 m has a radius of 1 cm and is made up of 500 turns. It carries a current of 2.5 A. What is the magnitude of the magnetic field inside the solenoid?

$$(\mu_0 = 4\pi \times 10^{-7} \,\mathrm{SI})^{-1}$$

(A)
$$6.28 \times 10^{-3} \,\mathrm{T}$$

(B)
$$6.28 \times 10^{-2} \,\mathrm{T}$$

(C)
$$6.28 \times 10^{-4} \text{ T}$$

(D)
$$6.28 \times 10^{-1} \text{ T}$$

- 35) How the shunt wire should be?
 - (A) short and thin

(B) long and thin

(C) long and thick

- (D) short and thick
- 36) Two long and parallel straight wires A and B carrying currents of 10 A and 4 A in the same direction are separated by a distance of 2 cm. Estimate the force on a 4 cm section of wire A.

$$(\mu_0 = 4\pi \times 10^{-7} \text{ SI})$$

(A)
$$1.6 \times 10^{-4} \text{ N}$$

(B)
$$1.6 \times 10^{-5} \text{ N}$$

(C)
$$1.6 \times 10^{-6} \text{ N}$$

(D)
$$1.6 \times 10^{-3} \text{ N}$$

37)	the so	olenoid are	insulated from	m the core and	l carry a cu	bility 400. The windings of trent of 1 A. If the number $T. (\mu_0 = 4\pi \times 10^{-7} \text{ SI})$
	(A)	$1.6\pi \times 10^4$	-2	(B)	$16\pi \times 10$	
	(C)	$16\pi \times 10^{-3}$	2	(D)	$0.16\pi \times 1$	10^{-2}
				(8),		CLART WAS
38)	field	of 0.25 Te	xperiences a	rith its axis at a torque of magrent of the mag	itude equa	uniform external magnetic 1 to 4.5×10^{-2} J. What is the
	(A)	$0.36 \mathrm{J}\mathrm{T}^{-1}$	l		0.036 J T	
	(C)	3.6 J T^{-1}		(D)	36 J T ⁻¹	The state of the state of
						THE LY WE (A)
39)				V V	-	uce a current which opposes tement is known as
	(A)	Faraday		(B)	Maxwell	
est.	(C)) Kirchho	ff Company comp	(D)	Lenz	distribute annional qu
40	ch cc (A	anges from oil?	0 to 10 A in 0	.5 s, what is th	e change of	H. If the current in one coil flux linkage with the other

GUJCET 2022

CHEMISTRY

41)	Hybridisation in XeF ₂ and XeF ₄ are respectively	
	/	

(A) sp^2 and sp^3d^2

(B) sp^3d and sp^3d^2

(C) $sp and sp^3$

(D) sp^3d and sp^3

42) Which is the correct options for bonds and their number in pyrophosphoric acid?

- (A) Two P-OH, Four P = O, One P-O-P
- (B) Four P-OH, One P = O, One P-O-P
- (C) Two P-OH, Four P = O, Two P-O-P
- (D) Four P-OH, Two P = O, One P-O-P

43) Name a transition element which does not exhibit variable oxidation states.

(A) Zinc

(B) Copper

(C) Scandium

(D) Chromium

44) Which statement is incorrect from the following?

- (A) CrO is basic, but Cr₂O₃ is amphoteric
- (B) 'Cd' is not consider as transition element
- (C) Atomic sizes of elements of '4d' series is greater than corresponding elements of '3d' series
- (D) Atomic sizes of elements of '5d' series is greater than corresponding '4d' series

				v				
45)	How have	w many numbers of Geometric?	al Isom	ers of [F				will
	(4)	a constitution of the cons	(D)	2	Port of the second	for Sil	1774	
	(A)		(B)	2	819	Feet lite	(1)	
	(C)	1	(D)	4				
		the second second	iki rij	ं वय प्रत		ye li	··(0)/ - ; 0	1
46)		w many numbers of mole Ions (III) hexacyanido Ferrate (II) co			aqueous	solutio	n of 1 m	iole
	(A)	4	(B)	7			(· · ·	
	(C)	. 5	(D)	6	1412		ari)	
						6		
47)	Whi	ch of the following ligand is am	bidenta	te?	25 0 1 151 125	研身中		÷,
	NO (P)		. A	Allisboir -	aknor.	(I_n)	rai,	
	(A)	R and S		at Frield	70,7			
	(B)	P and Q		. 4.	n - Ha			
	(C)	Q and S			H HO,	1	03,	
	(D)	Q and R						

- 48) How many numbers of sigma (σ) and pi (π) bonds in DDT respectively?
 - (A) 28 and 6

(B) 29 and 6

(C) 30 and 6

- (D) 21 and 6
- 49) Which of the following undergoes S_N2 reaction most readily?
 - (A) $C_6H_5CH(CH_3)Br$
 - (B) $C_6H_5CH(C_6H_5)Br$
 - (C) $C_6H_5C(CH_3)(C_6H_5)Br$
 - (D) $C_6H_5CH_2Br$
- 50) From following reactions, which reaction does not give "Benzene"?
 - (A) $C_6H_5COONa + Sodalime \xrightarrow{\Delta}$
 - (B) $C_6H_5N_2^+Cl^- + H_3PO_2 + H_2O \longrightarrow$
 - (C) $C_6H_5OH + Zn \xrightarrow{\Delta}$
 - (D) $C_6H_5OH + H_2CrO_4 \xrightarrow{[O]}$

51) Which product is obtained from following reaction?

$$\begin{array}{c}
O \\
CH_2 - C - OCH_3 \\
O
\end{array}$$
NaBH₄

(A)
$$CH_2-CH_2-OCH_3$$

(B)
$$CH_2$$
 CH_2
 CH_3
 CH_3

$$(C) \qquad \begin{array}{c} OH \\ CH_2-C-OCH_3 \\ O \end{array}$$

(D)
$$CH_2-CH_2-OCH_3$$

- 52) Which method is used to prepare salicylic acid from phenol?
 - (A) Stephen reaction

(B) Kolbe's reaction

(C) Etard reaction

(D) Reimer-Tiemann reaction

53) Which of the following compounds will not give "Iodoform" by reaction with "sodiumhypoiodide"?

(D)
$$CH_3 - CH_2 - CO - CH_2 - CH_3$$

54) What will be the main product in the following reaction?

$$\bigcirc \longrightarrow CHO + CH_3CHO \xrightarrow{OH^-} ?$$

(B)
$$\bigcirc$$
 CH = CH - CHO

(C)
$$\left\langle \bigcirc \right\rangle$$
 — CH_2 – CH_2 – CHO

(D)
$$\langle O \rangle$$
 - CH = CH - COOH

55)	Whic	ch is the incorrect order of increasing acidic strength for the following?	
	(A)	CH ₂ FCH ₂ CH ₂ COOH < CH ₃ CHFCH ₂ COOH man section (1)	
	(B)	CH ₂ CICOOH < CH ₂ FCOOH (1)	
		CH ₃ COOH < CH ₂ CICOOH	
		HCOOH < C ₆ H ₅ COOH	15.00
56)	How	v many numbers of Isomer for the compound having molecular formula C ₃ H ₉ l	N?
50)	(A)		
	(C)		
57)		m which of the following reaction primary amine is produced?	
	(A)		
	(B)	Reduction of Amide Compounds Hoffmann bromamide degradation reaction	
	(C)	Hoffmann bromamide degradation reaction	
	(D)	Above all reactions	
58)	Ide	entify the compound 'C' from following reaction.	
	СН	$H_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2+NaOH} B \xrightarrow{NaNO_2} C$	
	(A)) $CH_3 - CH_2N_2^+Cl^-$	
	(B)	Websens HO IV	
	(C) (D)	CH ₃ OH mires M (Cl)	

59) Select proper statement from following True (T) and False (F) statements. Pentose sugar + base → Nucleotide Nucleotide + Phosphate → Nucleoside (II)(III) DNA contains four bases A, G, C and T (IV) RNA contains four bases A,G, C and U (A) FTFT (B) FTTT (C) **FFTT** (D) TTTT Which glycosidic linkage occurs in 'Amylopectin'? 60) (A) $C_1 - C_3$ and $C_1 - C_4$ (B) $C_1 - C_4$ and $C_1 - C_6$ (C) $C_1 - C_2$ and $C_1 - C_6$ (D) $C_2 - C_4$ and $C_4 - C_6$ 61) Which polymer is used in manufacture of paints and lacquers? Glyptal (A) Teflon (B) Neoprene (C) Melamine

Old Papers = VisionPapers.in

(D)

62)		ch of the following polymer is not obtained by the condensation merization?
	(A)	Decron
	(B)	Nylon - 2 - Nylon - 6
	(C)	Nylon - 6, 6
	(D)	Polyacrylonitrile
	r mit	A marticulat a legación espinal esta el esta el Control de 180 de 180 Esta el flore como control de la como del control de 180 de 1
63)	Whi	ch of the following drug is used for treatment of Acidity?
	(A)	Ranitidine
	(B)	Meprobamate
	(C)	Salvarsan and the same and the medical state of the same and the same
	(D)	Codein
		TO THE CONTRACT OF THE CONTRAC
64)	Whi	ch Artificial sweetener is unstable at cooking temperature?
	(A)	Sucralose (83
ì	(B)	Aspartame . The contraction of the contraction (A)
	(C)	Alitame designation designate of the executive (D)
	(D)	Saccharin deserted and examined this sometimes are sometimes (1)
		Old Papers = VisionPapers.in

65)	Cell	edg
	(A)	2 <i>r</i> .
	(C)	2
66)	Ator tetral M ar	hedr
	(A)	M,
	(C)	M ₂
67)	Calc	ulat
	(A)	0.0
•	(C)	0.0

e length in bcc, ccp and simple cubic unit cell is respectively as

$$(A) \quad 2r, \frac{4r}{\sqrt{3}}, 2\sqrt{2}r$$

(B)
$$2r, 2\sqrt{2}r, \frac{4r}{\sqrt{3}}$$

(C)
$$2\sqrt{2}r, \frac{4r}{\sqrt{3}}, 2r$$

(D)
$$\frac{4r}{\sqrt{3}}, 2\sqrt{2}r, 2r$$

of element N form hep lattice and those of the element M occupy 1/3rd o ral voids. What will be the formula of the compound formed by the element

N,

N,

te the mole fraction of aqueous solution of 1 molal urea (NH₂CONH₂)

which countries then mented and cooking comportune?

01878

(B) 0.01768

01800

(D) 0.01698

Value of Henry's constant K_H_ 68)

- no effect by changing temperature (A)
- decreases with increase in temperature (B)
- increases with increase in temperature (C)
- first decreases and then increases by increase in temperature (D)

69)	What is value of Van't Hoff factor (i (A) 2.70 (C) 3	(B)	180% of CaCl ₂ dissociates? 2.40 2.30
70)	How much electricity in terms of F Cr ₂ O ₇ ²⁻ into Cr ³⁺ in acidic medium		y is required for reduction of 2 mol
	(A) 12 F (C) 6 F	(B)	3 F 9 F
71)	Which is proper value of x for the for $Zn_{(s)} \left Zn_{(xM)}^{2+} \right \left Cu_{(0.02M)}^{2+} \right Cu_{(s)}$	llowin	g to increase cell potential of
	(A) $x = 0.02 \text{ M}$ (C) $x > 0.02 \text{ M}$	(B) (D)	x < 0.02 M $x \ge 0.02 \text{ M}$
72)	Which substance is used as oxidising (A) Ni(OH) ₃ (C) Ni	(B) (D)	Cd CdO
73)	What is the value of slope when gra	aph plo	otted of $\log \frac{[R]_0}{[R]}$ Vs t (time) for first
	order reaction? (A) $-\frac{K}{2.303}$	(B)	$\frac{K}{2.303}$
	(C) -K	(D)	2.303 K

74)	That of act Mil	h respect to a rea	nctant A and second order with respect concentration of both A and B increased
e he	(A) Eight times	(B)	Quadrupled
	(C) Doubled	1 1	Sixteen times
	(和)	18 P	
75) > (s.)	Which colloidal sol results highly diluted KI solution?	, when highly d	iluted solution of AgNO ₃ is added to
	(A) . AgI/ NO_3^-	(B)	AgI/K ⁺
	(C) AgI/Ag ⁺		AgI/I
(6)	Match the types of colloid in Column - II.	al systems giver	n in Column - I with the name given
	Column - I		Column - II
	(i) Solid in liquid	(p)	Aerosol
	(ii) Liquid in solid	(q)	Foam

(iii) Liquid in gas (r) Sol (iv) Gas in liquid (s) Gel (A) (i) \rightarrow (r), (ii) \rightarrow (s), (iii) \rightarrow (p), (iv) \rightarrow (q) (B) (i) \rightarrow (s), (ii) \rightarrow (r), (iii) \rightarrow (p), (iv) \rightarrow (q) (C) (i) \rightarrow (r), (ii) \rightarrow (s), (iii) \rightarrow (q), (iv) \rightarrow (p) (D) (i) \rightarrow (p), (ii) \rightarrow (q), (iii) \rightarrow (r), (iv) \rightarrow (s)

77)	In wh	nich colloids both Lyophilic and	Lyoph	obic parts present?
		Micelle	(B)	Gold sol
·	(C)	Rubbersol	(D)	Sol of As ₂ S ₃
78)	Whi	ch method is not proper to obtai	n metal	of high purity from impure metal?
	(A)	Leaching		
	(B)	Chromatographic methods		45.
	(C)	Liquation		
	(D)	Distillation	0	
79)	Wh	ich is known as "Copper Matte"	?	
,	(A)	Cu ₂ S+FeO	(B)	Cu ₂ S+FeS
	(C)	Cu ₂ O+FeS	(D)	Cu ₂ O+FeO
80)		nich products are obtained by rehibitine?	eaction	of hot and concentrated NaOH with
	(A)	NaCl+NaClO ₂ +H ₂ O	(B)	NaCl+NaClO ₄ +H ₂ O
	(C)	$) NaCl + NaClO_3 + H_2O$	(D)	NaCl+NaOCl+H ₂ O
		Old Papers = Vi	sion	Papers.in