Pap Tes Slo Lan	per Name st Date t g	amination (Main) - JEE(Main) B.E/B.Tech.(Paper I) 27-06-2022 SLOT - 1 English
	c Name: Mathemati	cs-Section A
	mCode:101361 The are estion:	ea of the polygon, whose vertices are the non-real roots of the equation $\overline{z} = iz^2$ is:
A	$\frac{3\sqrt{3}}{4}$	
В	$\frac{3\sqrt{3}}{2}$	
C	$\frac{3}{2}$	
D	$\frac{3}{4}$	
Q:2 Topi	i c Name: Mathemati	cs-Section A
Itei	mCode:101362	
		e system of linear equations $x + 2y + z = 2$, $\alpha x + 3y - z = \alpha$, $-\alpha x + y + 2z = -\alpha$ be
Qu	inconsi	istent. Then α is equal to :
A	<u>5</u>	
В	$-\frac{5}{2}$	

Topic Name: Mathematics-Section A

ItemCode:101363

If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1,

Question: $abc \neq 0$, then:

A x, y, z are in A.P.

B x, y, z are in G.P.

 $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in A.P.

D	$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 - (a + b + c)$
Q:4 Topi	c Name: Mathematics-Section A
	Let $\frac{dy}{dx} = \frac{ax - by + a}{bx + cy + a}$, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is:
	10
В	
C	
D	5
Qu	Let a be an integer such that $\lim_{x \to 7} \frac{18 - [1 - x]}{[x - 3a]}$ exists, where [t] is greatest integer \leq t. Then estion: a is equal to:
	-6
В	-2
C	2
D	6
Ite	ic Name: Mathematics-Section A mCode: 101366 estion: The number of distinct real roots of $x^4 - 4x + 1 = 0$ is :
H	
	4
В	2
C	1
D	0
Q:7 Topi	ic Name:Mathematics-Section A

The lengths of the sides of a triangle are $10 + x^2$, $10 + x^2$ and $20 - 2x^2$. If for x = k, the area of

ItemCode:101367

5

B 8

c 10

Question: the triangle is maximum, then $3k^2$ is equal to :

Topic Name: Mathematics-Section A

If
$$\cos^{-1}\left(\frac{y}{2}\right) = \log_{e}\left(\frac{x}{5}\right)^{5}$$
, $|y| < 2$, then:

A
$$x^2y'' + xy' - 25y = 0$$

$$x^2y'' - xy' + 25y = 0$$

$$\mathbf{p} \quad x^2 y'' + x y' + 25 y = 0$$

Topic Name: Mathematics-Section A

ItemCode:101369

If
$$\int \frac{(x^2+1)e^x}{(x+1)^2} dx = f(x)e^x + C$$
, where C is a constant, then $\frac{d^3f}{dx^3}$ at $x=1$ is equal to:

$$\begin{vmatrix} -\frac{3}{4} \end{vmatrix}$$

Topic Name: Mathematics-Section A

ItemCode:101370

The value of the integral $\int_{2}^{2} \frac{|x^3 + x|}{(e^{x|x|} + 1)} dx$ is equal to:

Question:

 $_{3e^{-2}}$

Topic Name: Mathematics-Section A

ItemCode:101371

If $\frac{dy}{dx} + \frac{2^{x-y}(2^y - 1)}{2^x - 1} = 0$, x, y > 0, y(1) = 1, then y(2) is equal to:

A	$2 + \log_2 3$
В	$2 + \log_3 2$
C	$2-\log_3 2$
D	$2-\log_2 3$

Topic Name: Mathematics-Section A

ItemCode:101372

In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If (α, β) is the centroid of $\triangle ABC$, then $15(\alpha + \beta)$ is

Question: equal to:

A	39

B 41

51

D 63

Topic Name: Mathematics-Section A

ItemCode:101373

Let the eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b, be $\frac{1}{4}$. If this ellipse passes through the

point $\left(-4\sqrt{\frac{2}{5}}, 3\right)$, then $a^2 + b^2$ is equal to:

Question:

31

32

34

Topic Name: Mathematics-Section A

ItemCode:101374

If two straight lines whose direction cosines are given by the relations

l+m-n=0, $3l^2+m^2+cnl=0$ are parallel, then the positive value of c is: **Question:**

- A 6

Topic Name: Mathematics-Section A

Ite	mCode:101375
	Let $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = 2\hat{i} - 3\hat{j} + 2\hat{k}$. Then the number of vectors \vec{b} such that
Qu	pestion: $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $ \overrightarrow{b} \in \{1, 2,, 10\}$ is:
	0
В	1
C	2
D	3
Q:10	6 ic Name:Mathematics-Section A
	Five numbers x_1 , x_2 , x_3 , x_4 , x_5 are randomly selected from the numbers 1, 2, 3,, 18 and are arranged in the increasing order ($x_1 < x_2 < x_3 < x_4 < x_5$). The probability that $x_2 = 7$ and $x_4 = 11$ is:
A	$\frac{1}{136}$
В	$\frac{1}{72}$
C	$\frac{1}{68}$
D	$\frac{1}{34}$
Q: 17	7 ic Name:Mathematics-Section A
Ite	mCode:101377 Let X be a random variable having binomial distribution B(7, p). If $P(X=3)=5P(X=4)$, then

Q: To

 $_{\mbox{\scriptsize Question:}}$ the sum of the mean and the variance of X is :

105 16

B $\frac{7}{16}$

C 77 36

D 49 16

Q:18 Topic Name: Mathematics-Section A

ItemCode:1013/8
The value of $\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ is equal to :
A = 1
$-\frac{1}{2}$
$-\frac{1}{3}$
$-\frac{1}{4}$
Q:19 Topic Name: Mathematics-Section A
ItemCode:101379 $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right) \text{ is equal to :}$ Question:
$\frac{11\pi}{12}$
$\frac{17\pi}{12}$
$\frac{c}{12}$
$-\frac{3\pi}{4}$
Q:20 Topic Name: Mathematics-Section A
ItemCode:101380 Question: The boolean expression $(\sim(p\land q))\lor q$ is equivalent to :
$q \to (p \land q)$
$p \to q$
$c p \to (p \to q)$
$\begin{array}{c c} \mathbf{p} & \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} & \mathbf{p} \end{array}$
Q:21 Topic Name: Mathematics-Section B
ItemCode:101381
Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined by $f(x) = \frac{2e^{2x}}{e^{2x} + e}$. Then
Question: $f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \dots + f\left(\frac{99}{100}\right)$ is equal to

If the sum of all the roots of the equation $e^{2x} - 11e^x - 45e^{-x} + \frac{81}{2} = 0$ is $\log_e p$, then p is

Question: equal to _____.

O:23

Topic Name: Mathematics-Section B

ItemCode:101383

The positive value of the determinant of the matrix A, whose

$$Adj(Adj(A)) = \begin{pmatrix} 14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14 \end{pmatrix}, \text{ is } \underline{\hspace{1cm}}.$$

Question:

O:24

Topic Name: Mathematics-Section B

ItemCode:101384

The number of ways, 16 identical cubes, of which 11 are blue and rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is ______.

Q:25

Topic Name: Mathematics-Section B

ItemCode:101385

If the coefficient of x^{10} in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}} + \frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{k} \cdot l$, where $l, k \in \mathbb{N}$ and

l is co-prime to 5, then k is equal to ______.

O:26

Topic Name: Mathematics-Section B

ItemCode:101386 Let

 $A_1 = \{(x, y) : |x| \le y^2, |x| + 2y \le 8\}$ and

 $A_1 = \{(x, y) : |x| \le y^2, |x| + 2y \le 8\}$ and

Question: $A_2 = \{(x, y) : |x| + |y| \le k\}$. If 27 (Area A_1) = 5 (Area A_2), then k is equal to :

O:27

Topic Name: Mathematics-Section B

ItemCode:101387

If the sum of the first ten terms of the series

$$\frac{1}{5} + \frac{2}{65} + \frac{3}{325} + \frac{4}{1025} + \frac{5}{2501} + \dots$$

is $\frac{m}{m}$, where m and n are co-prime numbers, then m+n is equal to _____.

estion:

Topic Name: Mathematics-Section B

ItemCode:101388

A rectangle R with end points of one of its sides as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x-y+4=0, then the area of R is ______.

Q:29

Topic Name: Mathematics-Section B

ItemCode:101389

A circle of radius 2 unit passes through the vertex and the focus of the parabola $y^2 = 2x$ and

touches the parabola $y = \left(x - \frac{1}{4}\right)^2 + \alpha$, where $\alpha > 0$. Then $(4\alpha - 8)^2$ is equal to ______.

Question:

Q:30

Topic Name: Mathematics-Section B

ItemCode:101390

Let the mirror image of the point (a, b, c) with respect to the plane 3x-4y+12z+19=0 be Ouestion: $(a-6, \beta, \gamma)$. If a+b+c=5, then $7\beta-9\gamma$ is equal to ______.

Q:31

Topic Name: Physics-Section A

ItemCode:101301

A projectile is launched at an angle ' α ' with the horizontal with a velocity 20 ms⁻¹. After α 10 s, its inclination with horizontal is ' β '. The value of tan β will be : ($g=10 \text{ ms}^{-2}$).

A $\tan \alpha + 5 \sec \alpha$

B $\tan \alpha - 5 \sec \alpha$

c $2\tan\alpha - 5\sec\alpha$

D $2\tan\alpha + 5\sec\alpha$

Q:32

Topic Name: Physics-Section A

ItemCode:101302

A girl standing on road holds her umbrella at 45° with the vertical to keep the rain away. If she starts running without umbrella with a speed of $15\sqrt{2}$ kmh⁻¹, the rain drops hit her Ouestion: head vertically. The speed of rain drops with respect to the moving girl is:

A 30 kmh⁻¹

 $\frac{25}{\sqrt{2}} \text{ kmh}^{-1}$

 $\frac{30}{\sqrt{2}}$ kmh⁻¹

D 25 kmh⁻¹

Topic Name:Physics-Section A

Ite	nCode:101303
	A silver wire has a mass (0.6 ± 0.006) g, radius (0.5 ± 0.005) mm and length (4 ± 0.04) cm.
Qu	The maximum percentage error in the measurement of its density will be:
A	4%
В	3%
C	6%
D	7%

O:34

Topic Name: Physics-Section A

ItemCode:101304

A system of two blocks of masses $m=2\ kg$ and $M=8\ kg$ is placed on a smooth table as shown in figure. The coefficient of static friction between two blocks is 0.5. The maximum horizontal force F that can be applied to the block of mass M so that the blocks move together will be:

A 9.8 N

B 39.2 N

C 49 N

78.4 N

Topic Name: Physics-Section A

ItemCode:101305

Two blocks of masses 10 kg and 30 kg are placed on the same straight line with coordinates (0,0) cm and (x,0) cm respectively. The block of 10 kg is moved on the same line through a distance of 6 cm towards the other block. The distance through which the block of 30 kg Question: must be moved to keep the position of centre of mass of the system unchanged is :

- 4 cm towards the 10 kg block
- 2 cm away from the 10 kg block
- 2 cm towards the 10 kg block
- 4 cm away from the 10 kg block

Topic Name: Physics-Section A

ItemCode:101306

A 72 Ω galvanometer is shunted by a resistance of 8 Ω . The percentage of the total current Question: which passes through the galvanometer is:

A	0.1%
В	10%
C	25%
D	0.25%
Q:37	c Name:Physics-Section A
	nCode:101307
	Given below are two statements:
	Statement I: The law of gravitation holds good for any pair of bodies in the universe.
	Statement II: The weight of any person becomes zero when the person is at the centre of the earth.
Qu	In the light of the above statements, choose the correct answer from the options given below.
A	Both Statement I and Statement II are true
В	Both Statement I and Statement II are false
C	Statement I is true but Statement II is false
D	Statement I is false but Statement II is true
Q:38	c Name:Physics-Section A
	nCode:101308
	What percentage of kinetic energy of a moving particle is transferred to a stationary particle
	when it strikes the stationary particle of 5 times its mass?
Qu	(Assume the collision to be head-on elastic collision)
A	50.0%
В	66.6%
C	55.6%
D	33.3%
Q:39 Topi	c Name:Physics-Section A
Itei	nCode:101309
	The velocity of a small ball of mass 'm' and density d ₁ , when dropped in a container filled
	with glycerine, becomes constant after some time. If the density of glycerine is d ₂ , then the
Qu	viscous force acting on the ball, will be:
A	$mg\left(1-\frac{d_1}{d_2}\right)$
В	$mg\left(1-\frac{d_2}{d_1}\right)$
C	$mg\left(\frac{d_1}{d_2}-1\right)$

```
\operatorname{mg}\left(\frac{d_2}{d_1}-1\right)
Topic Name: Physics-Section A
ItemCode:101310
        The susceptibility of a paramagnetic material is 99. The permeability of the material in
         Wb/A-m, is:
Question: [Permeability of free space \mu_0 = 4\pi \times 10^{-7} \text{ Wb/A-m}]
   4\pi \times 10^{-7}
   4\pi \times 10^{-4}
    4\pi \times 10^{-5}
    4\pi \times 10^{-6}
Topic Name: Physics-Section A
ItemCode:101311
        The current flowing through an ac circuit is given by
        I=5 \sin(120\pi t)A
Question: How long will the current take to reach the peak value starting from zero?
    60 s
    120 s
Topic Name: Physics-Section A
ItemCode:101312
         Match List - I with List - II:
               List - I
                                                  List - II
               Ultravoilet rays
                                           (i)
         (a)
                                                  Study crystal structure
               Microwaves
                                                  Greenhouse effect
         (b)
                                           (ii)
               Infrared waves
                                                  Sterilizing surgical instrument
         (c)
                                           (iii)
         (d)
               X-rays
                                                  Radar system
                                           (iv)
Question: Choose the correct answer from the options given below :
    (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
    (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
```

C (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i) a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) b) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) C-13	C	(a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
Tapic Name:Physics-Section Λ HemCode:101313	D	(a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
An α particle and a carbon 12 atom has same kinetic energy K. The ratio of their de-Broglie Oucstion: wavelengths ($\lambda_{\alpha}:\lambda_{C12}$) is: A 1: $\sqrt{3}$ B $\sqrt{3}:1$ C 3:1 D 2: $\sqrt{3}$ O-14 Topic Name:Physics-Section A ItemCode:101314 A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. Oucstion: If one plate of capacitor is removed, then the force acting on that particle will be. A 5 N B 10 N C 20 N D Zero Q-15 Topic Name:Physics-Section A ItemCode:101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q-16 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%		
B √3 : 1 C 3 : 1 D 2 : √3 Q-44 Tropic Name-Physics-Section ∧ TennCode: 101314 A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. Question: If one plate of capacitor is removed, then the force acting on that particle will be. A 5 N B 10 N C 20 N D Zero Q-45 Topic Name-Physics-Section A HennCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q-46 Topic Name-Physics-Section A HennCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%		An α particle and a carbon 12 atom has same kinetic energy K. The ratio of their de-Broglie wavelengths ($\lambda = \lambda - \alpha$) is:
C 3:1 D 2:√3 Q-34 Topic Name:Physics-Section A HtemCode:101314 A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. Question: If one plate of capacitor is removed, then the force acting on that particle will be. A 5 N B 10 N C 20 N D Zero Q-45 Topic Name:Physics-Section A HtemCode:101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position question: is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q-46 Topic Name:Physics-Section A HtemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	A	$1:\sqrt{3}$
D Q-24 Topic Name: Physics-Section A HemCode: 101314 A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. Question: If one plate of capacitor is removed, then the force acting on that particle will be. A 5 N B 10 N C 20 N D Zero Q-45 Topic Name: Physics-Section A HemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q-46 Topic Name: Physics-Section A HemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5 %	В	$\sqrt{3}:1$
2: V3 Q:44 Topic Name:Physics-Section A ItemCode: 101314 A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. Question: If one plate of capacitor is removed, then the force acting on that particle will be. A 5 N B 10 N C 20 N D Zero Q:45 Topic Name:Physics-Section A ItemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5 %	C	3:1
ItemCode: 101	D	$2:\sqrt{3}$
RemCode:101314		
A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. John John		
A 5 N B 10 N C 20 N D Zero Q:45 Topic Name:Physics-Section A ItemCode:101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: A 20% B 10% C 5 %	itei	
B 10 N C 20 N D Zero Q:45 Topic Name: Physics-Section A ItemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position Question: is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	Qu	estion: If one plate of capacitor is removed, then the force acting on that particle will be.
C 20 N D Zero Q:45 Topic Name: Physics-Section A ItemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5 %	A	5 N
Q-45 Topic Name: Physics-Section A ItemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position ouestion: is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q-46 Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5 %	В	10 N
Q:45 Topic Name:Physics-Section A ItemCode: 101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20 % B 10 % C 5 %	C	20 N
Topic Name:Physics-Section A ItemCode: 101315	D	Zero
ItemCode:101315 The displacement of simple harmonic oscillator after 3 seconds starting from its mean position Question: is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	_	
The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is: A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%		
A 6 s B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20 % B 10 % C 5 %	1101	
B 8 s C 12 s D 36 s Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	Qu	estion: is equal to half of its amplitude. The time period of harmonic motion is:
C 12 s D 36 s Q:46 Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	A	6 s
Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	В	8 s
Q:46 Topic Name:Physics-Section A ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	C	12 s
Topic Name: Physics-Section A ItemCode: 101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	D	36 s
ItemCode:101316 An observer moves towards a stationary source of sound with a velocity equal to one-fifth of Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%	-	
Question: the velocity of sound. The percentage change in the frequency will be: A 20% B 10% C 5%		
A 20% B 10% C 5%		
B 10% C 5%	Qu	the velocity of sound. The percentage change in the frequency will be:
C 5%	A	20%
3 76	В	10%
D 0 %	C	5 %
	D	0 %

Topic Name: Physics-Section A

ItemCode:101317

Consider a light ray travelling in air is incident into a medium of refractive index $\sqrt{2n}$. The Question: incident angle is twice that of refracting angle. Then, the angle of incidence will be:

$$\sin^{-1}(\sqrt{n})$$

$$\cos^{-1}\left(\sqrt{\frac{n}{2}}\right)$$

$$\sin^{-1}(\sqrt{2n})$$

$$2\cos^{-1}\!\left(\!\sqrt{\frac{n}{2}}\right)$$

Topic Name: Physics-Section A

ItemCode:101318

A hydrogen atom in its ground state absorbs 10.2 eV of energy. The angular momentum of electron of the hydrogen atom will increase by the value of :

Question: (Given, Planck's constant = 6.6×10^{-34} Js).

 $2.10 \times 10^{-34} \text{ Js}$

 $1.05 \times 10^{-34} \text{ Js}$

 $3.15 \times 10^{-34} \text{ Js}$

 $4.2 \times 10^{-34} \text{ Js}$

Topic Name: Physics-Section A

ItemCode:101319

Identify the correct Logic Gate for the following output (Y) of two inputs A and B.

Question:

Topic Name: Physics-Section A

ItemCode:101320

A mixture of hydrogen and oxygen has volume 2000 cm³, temperature 300 K, pressure 100 kPa and mass 0.76 g. The ratio of number of moles of hydrogen to number of moles of oxygen in the mixture will be :

Question: [Take gas constant $R = 8.3 \text{ JK}^{-1}\text{mol}^{-1}$]

A	$\frac{1}{3}$
В	$\frac{3}{1}$
C	$\frac{1}{16}$
D	$\frac{16}{1}$

Q:51 Topic Name: Physics-Section B

ItemCode:101321

In a carnot engine, the temperature of reservoir is 527°C and that of sink is 200 K. If the workdone by the engine when it transfers heat from reservior to sink is 12000 kJ, the quantity of heat absorbed by the engine from reservoir is $____$ × 10^6 J.

Q:52 Topic Name:Physics-Section B

ItemCode:101322
A 220 V, 50 Hz AC source is connected to a 25 V, 5 W lamp and an additional resistance R
in series (as shown in figure) to run the lamp at its peak brightness, then the value of R (in
ohm) will be
25 V, Lamp WWWW R
220 V, Squestion: 50 Hz
Q:53 Topic Name:Physics-Section B
ItemCode:101323
In Young's double slit experiment the two slits are 0.6 mm distance apart. Interference
pattern is observed on a screen at a distance 80 cm from the slits. The first dark fringe is
observed on the screen directly opposite to one of the slits. The wavelength of light will be
Question: nm.
Q:54
Topic Name: Physics-Section B
ItemCode:101324
A beam of monochromatic light is used to excite the electron in Li ⁺⁺ from the first orbit to
the third orbit. The wavelength of monochromatic light is found to be $x \times 10^{-10}$ m. The
value of x is
Question: [Given hc=1242 eV nm]
Q:55 Topic Name:Physics-Section B
ItemCode:101325
A cell, shunted by a 8 Ω resistance, is balanced across a potentiometer wire of length 3 m.
The balancing length is 2 m when the cell is shunted by 4 Ω resistance. The value of internal
Question: resistance of the cell will be $___$ Ω .
Q:56
Topic Name:Physics-Section B ItemCode:101326
The current density in a cylindrical wire of radius 4 mm is 4×10^6 Am ⁻² . The current through
the outer portion of the wire between radial distances $\frac{R}{2}$ and R is π A. Question:
Q:57 Tonic Name: Physics-Section B

A capacitor of cap	pacitance 50 pF is charged by 100 V source. It is then connected to another
Question: uncharged identi	cal capacitor. Electrostatic energy loss in the process is nJ.
Q:58 Topic Name:Physics-Section B	
ItemCode:101328	
The height of a	transmitting antenna at the top of a tower is 25 m and that of receiving
antenna is, 49 n	n. The maximum distance between them, for satisfactory communication in
LOS (Line-Of-Si	ght) is K $\sqrt{5}$ × 10 ² m. The value of K is
Question: (Assume radius	of Earth is $64 \times 10^{+5}$ m) [Calculate upto nearest integer value]
Q:59 Topic Name:Physics-Section B	
ItemCode:101329	
The area of cros	ss-section of a large tank is 0.5 m ² . It has a narrow opening near the bottom
having area of o	cross-section 1 cm ² . A load of 25 kg is applied on the water at the top in the
tank. Neglectin	g the speed of water in the tank, the velocity of the water, coming out of the
opening at the t	ime when the height of water level in the tank is 40 cm above the bottom, will
Question: be	cms ⁻¹ . [Take $g = 10 \text{ ms}^{-2}$]
Q:60 Topic Name:Physics-Section B	
Topic Name:Physics-Section B ItemCode:101330	
Topic Name:Physics-Section B ItemCode:101330	length 2 m consists of a wooden bob of mass 50 g. A bullet of mass 75 g is
Topic Name:Physics-Section B ItemCode:101330 A pendulum of	length 2 m consists of a wooden bob of mass 50 g. A bullet of mass 75 g is ne stationary bob with a speed v . The bullet emerges out of the bob with a
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the	he stationary bob with a speed v . The bullet emerges out of the bob with a he bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the	he stationary bob with a speed v . The bullet emerges out of the bob with a he bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the	he stationary bob with a speed v . The bullet emerges out of the bob with a he bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$).	he stationary bob with a speed v . The bullet emerges out of the bob with a he bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$). Q:61 Topic Name:Chemistry-Section A ItemCode:101331	he stationary bob with a speed v . The bullet emerges out of the bob with a he bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$). Q:61 Topic Name:Chemistry-Section A ItemCode:101331	the stationary bob with a speed v . The bullet emerges out of the bob with a speed bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$). Q:61 Topic Name:Chemistry-Section A ItemCode:101331 Given below are Reason (R).	the stationary bob with a speed v . The bullet emerges out of the bob with a speed bob just completes the vertical circle. The value of v is ms ⁻¹ .
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$). Q:61 Topic Name:Chemistry-Section A ItemCode:101331 Given below are Reason (R).	The stationary bob with a speed v . The bullet emerges out of the bob with a see bob just completes the vertical circle. The value of v is ms^{-1}. The two statements is two statements in the bob with a see two statements is labelled as Assertion (A) and the other is labelled as
Topic Name:Physics-Section B ItemCode:101330 A pendulum of fired towards the speed $\frac{v}{3}$ and the Question: (if $g = 10 \text{ m/s}^2$). Q:61 Topic Name:Chemistry-Section A ItemCode:101331 Given below are Reason (R).	The stationary bob with a speed v . The bullet emerges out of the bob with a speed bob just completes the vertical circle. The value of v is ms^{-1}. The solution is cooled to v is ms^{-1}. The solution is cooled to v is ms^{-1}.

Both (A) and (R) are true and (R) is the correct explanation of (A).

Both (A) and (R) are true but (R) is not the correct explanation of (A).

(A) is true but (R) is false.

It	emCode:101334						
	Matc	ch List - I with List - II.		T TT			
	(4)	List - I	(T)	List - II			
	(A)	Lyophilic colloid	(I)	Liquid-liqu	1000 1000 100 100 100 100 100 100 100 1		
	(B)	Emulsion Positively charged colleid	(II)	Protective	0		
	(C) (D)	Positively charged colloid Negatively charged colloid	(III) (IV)	$FeCl_3 + Na$ $FeCl_3 + hot$			
	Choc			0	Provident According to the Providence of the Pro		
Q A	question:						
	(11) (11),	, (B) - (I), (C) - (IV), (D) - (III)					
-), (B) - (I), (C) - (IV), (D) - (II)					
C	(A) - (II),	(A) - (II), (B) - (I), (C) - (III), (D) - (IV)					
D	(A) - (III)), (B) - (II), (C) - (I), (D) - (IV)					
Q:6							
	pic Name: Chemis temCode: 101335	•					
	Give	n below are two statements : one is	labell	led as Asser	tion (A) and the other is labelled as		
		son (R).					
		ertion (A): The ionic radii of O^{2-}		· ·			
		son (R): Both O^{2-} and Mg^{2+}			•		
Question: In the light of the above statements, choose the correct answer from the options g					swer from the options given below.		
A	A Both (A) and (R) are true and (R) is the correct explanation of (A).						
В	Both (A)	and (R) are true but (R) is not the	e corre	ect explanati	ion of (A).		
C	(A) is tru	ue but (R) is false.					
D	(A) is fal	se but (R) is true.					
0:66							
Q :6	56						
Top	pic Name:Chemis						
Top	pic Name:Chemis temCode:101336						
Top	pic Name:Chemis temCode:101336	AS SERVINGS SUSS DECEMBER ASSISTED 170000-			List - II		
Top	pic Name:Chemis temCode:101336	ch List - I with List - II.		(I)	List - II Aniline		
Top	pic Name:Chemis temCode:101336 Matc	ch List - I with List - II. List - I		(I) (II)			
Top	pic Name:Chemis temCode:101336 Matc	ch List - I with List - II. List - I Concentration of gold ore		200	Aniline		
Top	pic Name: Chemis temCode: 101336 Matc (A) (B) (C) (D)	ch List - I with List - II. List - I Concentration of gold ore Leaching of alumina Froth stabiliser Blister copper		(II) (III) (IV)	Aniline NaOH SO ₂ NaCN		
Top Ita	pic Name: Chemis temCode: 101336 Matc (A) (B) (C) (D)	ch List - I with List - II. List - I Concentration of gold ore Leaching of alumina Froth stabiliser	tions	(II) (III) (IV)	Aniline NaOH SO ₂ NaCN		
Top Ita	pic Name:Chemis temCode:101336 Matc (A) (B) (C) (D) Choco	ch List - I with List - II. List - I Concentration of gold ore Leaching of alumina Froth stabiliser Blister copper	tions	(II) (III) (IV)	Aniline NaOH SO ₂ NaCN		
Top Ita	(A) (B) (C) (D) Chocoustion:	ch List - I with List - II. List - I Concentration of gold ore Leaching of alumina Froth stabiliser Blister copper ose the correct answer from the op	tions	(II) (III) (IV)	Aniline NaOH SO ₂ NaCN		

```
Question: Addition of H_2SO_4 to BaO_2 produces :
    BaO, SO<sub>2</sub> and H<sub>2</sub>O
 BaHSO<sub>4</sub> and O<sub>2</sub>
 <sup>C</sup> BaSO<sub>4</sub>, H<sub>2</sub> and O<sub>2</sub>
   BaSO<sub>4</sub> and H<sub>2</sub>O<sub>2</sub>
O:68
Topic Name: Chemistry-Section A
 ItemCode:101338
{\tt Question:} BeCl_2 reacts with LiAlH_4 to give :
 A Be + Li[AlCl<sub>4</sub>] + H<sub>2</sub>
 Be + AlH_3 + LiCl + HCl
 C BeH<sub>2</sub> + LiCl + AlCl<sub>3</sub>
D BeH<sub>2</sub> + Li[AlCl<sub>4</sub>]
Q:69
Topic Name: Chemistry-Section A
ItemCode:101339
          Match List - I with List - II.
                                                                  List - II
                  List - I
                  (Si-Compounds)
                                                                  (Si-Polymeric/Other Products)
          (A) (CH<sub>3</sub>)<sub>4</sub>Si
                                                                  Chain Silicone
                                                           (I)
                 (CH<sub>3</sub>)Si(OH)<sub>3</sub>
                                                                  Dimeric Silicone
          (B)
                                                          (II)
                 (CH_3)_2Si(OH)_2
          (C)
                                                          (III)
                                                                  Silane
                  (CH<sub>3</sub>)<sub>3</sub>Si(OH)
                                                          (IV) 2D - Silicone
          (D)
Question: Choose the correct answer from the options given below :
 A (A) - (III), (B) - (II), (C) - (I), (D) - (IV)
 B (A) - (IV), (B) - (I), (C) - (II), (D) - (III)
 (A) - (II), (B) - (I), (C) - (IV), (D) - (III)
    (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
Topic Name: Chemistry-Section A
```

C (A) - (III), (B) - (II), (C) - (I), (D) - (IV)

D (A) - (II), (B) - (IV), (C) - (III), (D) - (I)

O:67

Topic Name: Chemistry-Section A

ItemCode:101337

	mCode:101340 Heating white phosphorus with conc. NaOH solution gives mainly:			
A	Na ₃ P and H ₂ O			
В	H ₃ PO and NaH			
C	P(OH) ₃ and NaH ₂ PO ₄			
D	PH ₃ and NaH ₂ PO ₂			
Ite	ic Name:Chemistry-Section A mCode:101341 Which of the following will have maximum stabilization due to crystal field? estion:			
A	$[Ti(H_2O)_6]^{3+}$			
В	$[Co(H_2O)_6]^{2+}$			
C	$[Co(H_2O)_6]^{2+}$ $[Co(CN)_6]^{3-}$			
D	$[Cu(NH_3)_4]^{2+}$			
Ite	ic Name: Chemistry-Section A mCode: 101342 Given below are two Statements: Statement I: Classical smog occurs in cool humid climate. It is a reducing mixture of smoke, fog and sulphur dioxide. Statement II: Photochemical smog has components, ozone, nitric oxide, acrolein, formaldehyde, PAN etc. In the light of the above statements, choose the most appropriate answer from the options given below. Both Statement I and Statement II are correct.			
В	Both Statement I and Statement II are correct. Both Statement I and Statement II are incorrect.			
C	Both Statement 1 and Statement II are incorrect.			
D	Statement I is incorrect but Statement II is correct.			
Ite	ic Name: Chemistry-Section A mCode: 101343 Which of the following is structure of a separating funnel?			

NO2

Question:

Which of the following reactions will yield benzaldehyde as a product?

(B)
$$CH_2OH$$
 CrO_3/H_2SO_4

(C)
$$C - OCH_3$$
 (i) $NaBH_4$ (ii) PCC

CH₃
(D) $C + OCH_3$ (ii) CrO_3 , $(CH_3CO)_2O$ (iii) CrO_3 , $(CH_3CO)_2O$

Question:

- A (B) and (C)
- (C) and (D)
- (A) and (D)
- D (A) and (C)

O:77

Topic Name: Chemistry-Section A

ItemCode:101347

Given below are two statements:

Statement - I: In Hofmann degradation reaction, the migration of only an alkyl group takes place from carbonyl carbon of the amide to the nitrogen atom.

Statement - II: The group is migrated in Hofmann degradation reaction to electron deficient atom.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

Question: given below:

- A Both Statement I and Statement II are correct.
- Both Statement I and Statement II are incorrect.
- C Statement I is correct but Statement II is incorrect.
- D Statement I is incorrect but Statement II is correct.

Match List - I with List - II.

List - I

List - II

(Polymer)

(Used in)

(A) Bakelite

(I) Radio and television cabinets

(B) Glyptal

(II) Electrical switches

(C) PVC

(III) Paints and Lacquers

(D) Polystyrene

(IV) Water pipes

Question: Choose the correct answer from the options given below :

- A (A) (II), (B) (III), (C) (IV), (D) (I)
- $^{\mathbf{B}}$ (A) (I), (B) (II), (C) (III), (D) (IV)
- $^{\mathbf{C}}$ (A) (IV), (B) (III), (C) (II), (D) (I)
- **D** (A) (II), (B) (III), (C) (I), (D) (IV)

O:79

Topic Name: Chemistry-Section A

ItemCode:101349

L-isomer of a compound 'A' ($C_4H_8O_4$) gives a positive test with $[Ag(NH_3)_2]^+$. Treatment of 'A' with acetic anhydride yields triacetate derivative. Compound 'A' produces an optically active compound (B) and an optically inactive compound (C) on treatment with bromine water and HNO_3 respectively. Compound (A) is:

Question:

Topic Name: Chemistry-Section A

ItemCode:101350

O:80

Match List - I with List - II.

List - I

List - II

(A) $\begin{bmatrix} CH_3 \\ CH_3(CH_2)_{15} - N - CH_3 \\ CH_3 \end{bmatrix}^+ Br^-$

(I)

(C) $C_{17}H_{35}COO^{-}Na^{+} + Na_{2}CO_{3} + Rosinate$

(B) $CH_3 - (CH_2)_{11} \longrightarrow CO_3^- Na^+$

(III) Laundry soap

(II) Toothpaste

(D) $CH_3(CH_2)_{16}COO(CH_2CH_2O)_nCH_2CH_2OH$

(IV) Hair conditioner

Dishwashing powder

Question: Choose the correct answer from the options given below:

A (A) - (III), (B) - (II), (C) - (IV), (D) - (I)

 $^{\mathbf{B}}$ (A) - (IV), (B) - (II), (C) - (III), (D) - (I)

C (A) - (IV), (B) - (III), (C) - (II), (D) - (I)

D (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

Q:81 Topic Name: Chemistry-Section B

ItemCode:101351

Metal deficiency defect is shown by $Fe_{0.93}O$. In the crystal, some Fe^{2+} cations are missing and loss of positive charge is compensated by the presence of Fe³⁺ ions. The percentage of

 $\mathrm{Fe^{2+}}$ ions in the $\mathrm{Fe_{0.93}O}$ crystals is _____. (Nearest integer)

Topic Name: Chemistry-Section B

ItemCode:101352

If the uncertainty in velocity and position of a minute particle in space are, 2.4×10^{-26} (m s $^{-1}$) and 10^{-7} (m) respectively. The mass of the particle in g is _____ (Nearest integer)

Question: (Given : $h = 6.626 \times 10^{-34} \text{ Js}$)

Q:83 Topic Name: Chemistry-Section B

2 g of a non-volatile non-electrolyte solute is disolved in 200 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1:8. The elevation in boiling points of A

and B are in the ratio $\frac{x}{y}$ (x : y). The value of y is ______. (Nearest Integer)

Question:

Q:84

Topic Name: Chemistry-Section B

ItemCode:101354

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

In an experiment, 2.0 moles of NOCl was placed in a one-litre flask and the concentration of NO after equilibrium established, was found to be 0.4 mol/L. The equilibrium constant at Question: 30°C is ______× 10^{-4} .

Q:85

Topic Name: Chemistry-Section B

ItemCode:101355

The limiting molar conductivities of NaI, NaNO₃ and AgNO₃ are 12.7, 12.0 and 13.3 mS m² mol $^{-1}$, respectively (all at 25°C). The limiting molar conductivity of AgI at this temperature is _____mS m² mol $^{-1}$.

Ques

Q:86
Topic Name: Chemistry-Section B

ItemCode:101356

The rate constant for a first order reaction is given by the following equation:

$$\ln k = 33.24 - \frac{2.0 \times 10^4 \text{ K}}{T}$$

The Activation energy for the reaction is given by $___$ kJ mol⁻¹. (In Nearest integer)

Question: (Given : $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$)

Q:87

Topic Name: Chemistry-Section B

ItemCode:101357

The number of statement(s) **correct** from the following for Copper (at. no. 29) is/are _____.

- (A) Cu(II) complexes are always paramagnetic
- (B) Cu(I) complexes are generally colourless
- (C) Cu(I) is easily oxidized
- Question: (D) In Fehling solution, the active reagent has Cu(I)

Q:88

Topic Name: Chemistry-Section B

Acidified potassium permanganate solution oxidises oxalic acid. The spin-only magnetic moment of the mangenese product formed from the above reaction is B.M. Question: (Nearest Integer)
Q:89 Topic Name: Chemistry-Section B
ItemCode: 101359
Two elements A and B which form 0.15 moles of A ₂ B and AB ₃ type compounds. If both A ₂ B
and AB ₃ weigh equally, then the atomic weight of A is times of atomic weight of
Question: B.
Q :90
Topic Name: Chemistry-Section B
ItemCode:101360
Question: Total number of possible stereoisomers of dimethyl cyclopentane is