Slo Lan	
Q:1 Topi	ic Name:Mathematics-Section A
Itei	mCode:101261
	Let $R_1 = \{(a, b) \in \mathbb{N} \times \mathbb{N} : a - b \le 13\}$ and
Qu	estion: $R_2 = \{(a, b) \in \mathbb{N} \times \mathbb{N} : a-b \neq 13\}$. Then on \mathbb{N} :
A	Both R ₁ and R ₂ are equivalence relations
В	Neither R_1 nor R_2 is an equivalence relation
C	R ₁ is an equivalence relation but R ₂ is not
D	\mathbf{R}_2 is an equivalence relation but \mathbf{R}_1 is not
Q:2 Topi	ic Name:Mathematics-Section A
Itei	mCode:101262 Let $f(x)$ be a quadratic polynomial such that $f(-2) + f(3) = 0$. If one of the roots of $f(x) = 0$ is
	Let $f(x)$ be a quadratic polynomial such that $f(-2) + f(3) = 0$. If one of the roots of $f(x) = 0$ is -1 , then the sum of the roots of $f(x) = 0$ is equal to :
Qu	estion: $f(x) = 0$ is equal to .
A	$\frac{11}{3}$
В	$\frac{7}{3}$
C	$\frac{13}{3}$
D	$\frac{14}{3}$
Q:3 Topi	ic Name:Mathematics-Section A
Itei	mCode:101263
	The number of ways to distribute 30 identical candies among four children C ₁ , C ₂ , C ₃ and C ₄
0	so that C_2 receives at least 4 and at most 7 candies, C_3 receives at least 2 and at most 6 candies, is equal to:
A	205
В	615
C	510
D	430
Q:4 Topi	c Name: Mathematics-Section A

Joint Entrance Examination (Main) - JEE(Main)

28-06-2022

Paper Name Test Date B.E/B.Tech.(Paper I)

Item	Code:	10	1	2	64

The term independent of x in the expansion of $(1 - x^2 + 3x^3) \left(\frac{5}{2}x^3 - \frac{1}{5x^2}\right)^{11}$, $x \ne 0$ is:

Question:

A	7
	$\overline{40}$

 \mathbf{C}

200

11 50

200

Topic Name: Mathematics-Section A

ItemCode:101265

If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to Question: the last mean is 1:7 and a+n=33, then the value of n is :

- 21
- 22
- 23
- 24

Topic Name: Mathematics-Section A

ItemCode:101266

Let $f, g: \mathbf{R} \to \mathbf{R}$ be functions defined by

$$f(x) = \begin{cases} [x] & , & x < 0 \\ |1 - x| & , & x \ge 0 \end{cases} \text{ and } g(x) = \begin{cases} e^x - x & , & x < 0 \\ (x - 1)^2 - 1 & , & x \ge 0 \end{cases}$$

where [x] denote the greatest integer less than or equal to x. Then, the function fog is Question: discontinuous at exactly:

- one point
- two points
- three points
- four points

Topic Name: Mathematics-Section A

Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable function such that $f\left(\frac{\pi}{4}\right) = \sqrt{2}$, $f\left(\frac{\pi}{2}\right) = 0$ and $f'\left(\frac{\pi}{2}\right) = 1$

and let $g(x) = \int_{x}^{\pi/4} (f'(t) \operatorname{sect} + \operatorname{tant} \operatorname{sect} f(t)) dt$ for $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. Then $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x)$ is

Question: equal to :

 $\mathbf{D} - 3$

Topic Name: Mathematics-Section A

ItemCode:101268

Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function satisfying f(x) + f(x+k) = n, for all $x \in \mathbf{R}$ where k > 0

and n is a positive integer. If $I_1 = \int_{0}^{4nk} f(x)dx$ and $I_2 = \int_{-1}^{3k} f(x)dx$, then:

Question:

A $I_1 + 2I_2 = 4nk$

 $\mathbf{I}_1 + 2\mathbf{I}_2 = 2n\mathbf{k}$

 $|\mathbf{I}_1 + \mathbf{n}\mathbf{I}_2 = 4\mathbf{n}^2\mathbf{k}$

 $I_1 + nI_2 = 6n^2k$

Topic Name: Mathematics-Section A

ItemCode: 101269

The area of the bounded region enclosed by the curve $y = 3 - |x - \frac{1}{2}| - |x+1|$ and the x-axis

Question: is:

Topic Name: Mathematics-Section A

Let x = x(y) be the solution of the differential equation $2y e^{x/y^2} dx + (y^2 - 4xe^{x/y^2}) dy = 0$

Question: such that x(1) = 0. Then, x(e) is equal to :

- A e log_e(2)
- $-e \log_e(2)$
- c e² log_e(2)
- $-e^2 \log_e(2)$

O:11

Topic Name: Mathematics-Section A

ItemCode: 101271

Let the slope of the tangent to a curve y = f(x) at (x, y) be given by $2 \tan x(\cos x - y)$. If the

curve passes through the point $(\pi/4, 0)$, then the value of $\int_{0}^{\pi/2} y dx$ is equal to :

Question:

- $(2-\sqrt{2})+\frac{\pi}{\sqrt{2}}$
- $2 \frac{\pi}{\sqrt{2}}$
- $(2+\sqrt{2})+\frac{\pi}{\sqrt{2}}$
 - $2+\frac{\pi}{\sqrt{2}}$

Q:12

Topic Name: Mathematics-Section A

ItemCode:101272

Let a triangle be bounded by the lines $L_1: 2x + 5y = 10$; $L_2: -4x + 3y = 12$ and the line L_3 , which passes through the point P(2, 3), intersects L_2 at A and L_1 at B. If the point P divides the line-segment AB, internally in the ratio 1:3, then the area of the triangle is equal to:

 $\frac{110}{13}$

Question:

- B 132
- C 142 13
- D 151

Topic Name: Mathematics-Section A

ItemCode:101273

Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of

the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Let e' and l' respectively be the eccentricity and length of the

latus rectum of its conjugate hyperbola. If $e^2 = \frac{11}{14}l$ and $(e')^2 = \frac{11}{8}l'$, then the value of

Question: 77a+44b is equal to:

A	100	١
A	1111	,

- 110
- 120
- 130

Q:14

Topic Name: Mathematics-Section A

ItemCode:101274

Let $\vec{a} = \alpha \hat{i} + 2 \hat{j} - \hat{k}$ and $\vec{b} = -2 \hat{i} + \alpha \hat{j} + \hat{k}$, where $\alpha \in \mathbb{R}$. If the area of the

parallelogram whose adjacent sides are represented by the vectors \overrightarrow{a} and \overrightarrow{b} is $\sqrt{15(\alpha^2+4)}$,

then the value of $2 \begin{vmatrix} \overrightarrow{a} \end{vmatrix}^2 + \begin{pmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix}^2$ is equal to:

- 10

- 14

Topic Name: Mathematics-Section A

ItemCode:101275

If vertex of a parabola is (2, -1) and the equation of its directrix is 4x - 3y = 21, then the

Question: length of its latus rectum is:

- 8
- 12
- 16

Topic Name: Mathematics-Section A

Ite	mCod	Let the plane $ax + by + cz = d$ pass through $(2, 3, -5)$ and is perpendicular to the planes $2x + y - 5z = 10$ and
		3x + 5y - 7z = 12.
		If a, b, c, d are integers $d > 0$ and $gcd(a , b , c , d) = 1$, then the value of $a + 7b + c + 20d$ is equal to:
A	18	
В	20	
C	24	
D	22	
Q:1 Top		ne:Mathematics-Section A
Ite	mCod	e:101277 The probability that a randomly chasen one function from the set (a, b, c, d) to the
		The probability that a randomly chosen one-one function from the set $\{a, b, c, d\}$ to the set $\{1, 2, 3, 4, 5\}$ satisfies $f(a) + 2f(b) - f(c) = f(d)$ is :
	estion	: Set (1, 2, 3, 4, 3) satisfies $f(a) + 2f(b) - f(c) - f(a)$ is .
A	$\frac{1}{24}$	
В	$\frac{1}{40}$	
C	$\frac{1}{30}$	
D	$\frac{1}{20}$	
Q:1 Top		ne:Mathematics-Section A
Ite	mCod	e:101278
0	ostion	The value of $\lim_{n \to \infty} 6 \tan \left\{ \sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{r^2 + 3r + 3} \right) \right\}$ is equal to :
A	estion	
	2000	
В	2	
C	3	
D	6	

Q:19 Topic Name:Mathematics-Section A

Let \vec{a} be a vector which is perpendicular to the vector $3\hat{i} + \frac{1}{2}\hat{j} + 2\hat{k}$.

 $\stackrel{\rightarrow}{a} \times (2\hat{i} + \hat{k}) = 2\hat{i} - 13\hat{j} - 4\hat{k}$, then the projection of the vector $\stackrel{\rightarrow}{a}$ on the vector

Question:
$$2\hat{i} + 2\hat{j} + \hat{k}$$
 is:

Question:
$$2i + 2j + k$$
 is .

A 1

$$\frac{1}{3}$$

Topic Name: Mathematics-Section A

If
$$\cot \alpha = 1$$
 and $\sec \beta = -\frac{5}{3}$, where $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$, then the value of $\tan(\alpha + \beta)$

Question: and the quadrant in which $\alpha+\beta$ lies, respectively are :

$$-\frac{1}{7}$$
 and IVth quadrant

$\frac{1}{7}$ and Ist quadrant

Topic Name: Mathematics-Section B ItemCode: 101281

Let the image of the point P(1, 2, 3) in the line L: $\frac{x-6}{3} = \frac{y-1}{2} = \frac{z-2}{3}$ be Q. Let

R (α, β, γ) be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the Question: value of 22 $(\alpha + \beta + \gamma)$ is equal to _____.

Q:22 Topic Name: Mathematics-Section B

ItemCode:101282

Suppose a class has 7 students. The average marks of these students in the mathematics examination is 62, and their variance is 20. A student fails in the examination if he/she gets Question: less than 50 marks, then in worst case, the number of students can fail is _

Q:23
Topic Name: Mathematics-Section B

Topic Name. Mathematics-Section

If one of the diameters of the circle $x^2+y^2-2\sqrt{2}x-6\sqrt{2}y+14=0$ is a chord of the circle

Question: $(x-2\sqrt{2})^2+(y-2\sqrt{2})^2=r^2$, then the value of r^2 is equal to ______.

ItemCode:101283

Topic Name: Mathematics-Section B

If $\lim_{x \to 1} \frac{\sin(3x^2 - 4x + 1) - x^2 + 1}{2x^3 - 7x^2 + ax + b} = -2$, then the value of (a - b) is equal to ______.

Topic Name: Mathematics-Section B

ItemCode:101285

Let for $n = 1, 2,, 50, S_n$ be the sum of the infinite geometric progression whose first term is

 n^2 and whose common ratio is $\frac{1}{(n+1)^2}$. Then the value of

$$\frac{1}{26} + \sum_{n=1}^{50} \left(S_n + \frac{2}{n+1} - n - 1 \right)$$
 is equal to ______.

Q:26 **Topic Name:**Mathematics-Section B

ItemCode:101286

If the system of linear equations

2r - 3u = x + 5

 $2x - 3y = \gamma + 5$, $\alpha x + 5y = \beta + 1$, where α , β , $\gamma \in \mathbf{R}$ has infinitely many solutions, then the value of $|9\alpha + 3\beta + 5\gamma|$

Question: is equal to _____.

Q:27
Topic Name: Mathematics-Section B

ItemCode:101287

Let $A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix}$ where $i = \sqrt{-1}$. Then, the number of elements in the set

Question: $\{n \in \{1, 2,, 100\} : A^n = A\}$ is ______.

Q:28 **Topic Name:**Mathematics-Section B

ItemCode:101288

Question: -

Sum of squares of modulus of all the complex numbers z satisfying $\overline{z} = iz^2 + z^2 - z$ is equal to

Q:29

Topic Name: Mathematics-Section B

Let $S = \{1, 2, 3, 4\}$. Then the number of elements in the set

Question: $\{f: S \times S \to S: f \text{ is onto and } f(a, b) = f(b, a) \ge a \ \forall (a, b) \in S \times S \} \text{ is } \underline{\hspace{1cm}}$

Topic Name: Mathematics-Section B

ItemCode:101290

The maximum number of compound propositions, out of p \vee r \vee s, p \vee r \vee s, p \vee e \vee e, \sim p \vee er \vee s, ~pv~rv~s, ~pvqv~s, qvrv~s, qv~rv~s, ~pv~qv~s that can be made simultaneously true by Question: an assignment of the truth values to p, q, r and s, is equal to ____

Topic Name: Physics-Section A

ItemCode:101201

Velocity (v) and acceleration (a) in two systems of units 1 and 2 are related as $v_2 = \frac{\pi}{m^2} v_1$

and $a_2 = \frac{a_1}{m_1}$ respectively. Here m and n are constants. The relations for distance and time

Question: in two systems respectively are :

$$\frac{n^3}{m^3}L_1 = L_2 \text{ and } \frac{n^2}{m}T_1 = T_2$$

 $L_1 = \frac{n^4}{m^2} L_2$ and $T_1 = \frac{n^2}{m} T_2$

 $L_1 = \frac{n^2}{m} L_2$ and $T_1 = \frac{n^4}{m^2} T_2$

 $\frac{n^2}{m^2}L_1 = L_2 \text{ and } \frac{n^4}{m^2}T_1 = T_2$

O:32

Topic Name: Physics-Section A

ItemCode:101202

A ball is spun with angular acceleration $\alpha = 6t^2 - 2t$ where t is in second and α is in rads⁻². At t=0, the ball has angular velocity of 10 rads⁻¹ and angular position of 4 rad. The most Question: appropriate expression for the angular position of the ball is :

 $\frac{3}{2}t^4 - t^2 + 10t$

 $\frac{2t^4}{3} - \frac{t^3}{6} + 10t + 12$

Topic Name: Physics-Section A

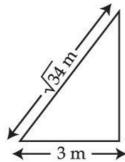
ItemCode:101203

A block of mass 2 kg moving on a horizontal surface with speed of 4 ms^{-1} enters a rough surface ranging from x = 0.5 m to x = 1.5 m. The retarding force in this range of rough surface is related to distance by F = -kx where $k = 12 \text{ Nm}^{-1}$. The speed of the block as it just Question: crosses the rough surface will be:

zero

 1.5 ms^{-1}

 2.0 ms^{-1}


 2.5 ms^{-1}

Topic Name: Physics-Section A

ItemCode:101204

A $\sqrt{34}$ m long ladder weighing 10 kg leans on a frictionless wall. Its feet rest on the floor 3 m away from the wall as shown in the figure. If F_f and F_w are the reaction forces of the floor and the wall, then ratio of F_w/F_f will be :

(Use $g = 10 \text{ m/s}^2$.)

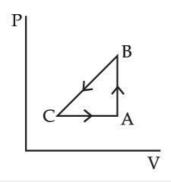
Question:

ItemCode:101205 Water falls from a 40 m high dam at the rate of 9×10^4 kg per hour. Fifty percentage of gravitational potential energy can be converted into electrical energy. Using this hydro electric energy number of 100 W lamps, that can be lit, is: Question: (Take $g = 10 \text{ ms}^{-2}$) 25 50 100 18 **Q**:36 Topic Name: Physics-Section A ItemCode:101206 Two objects of equal masses placed at certain distance from each other attracts each other with a force of F. If one-third mass of one object is transferred to the other object, then the Question: new force will be: F Topic Name: Physics-Section A ItemCode:101207 A water drop of radius 1 μ m falls in a situation where the effect of buoyant force is negligible. Co-efficient of viscosity of air is 1.8×10^{-5} Nsm⁻² and its density is negligible as compared to that of water $10^6\ \mathrm{gm^{-3}}$. Terminal velocity of the water drop is :

(Take acceleration due to gravity = 10 ms^{-2})

 $145.4 \times 10^{-6} \text{ ms}^{-1}$

 $118.0 \times 10^{-6} \text{ ms}^{-1}$


 $132.6 \times 10^{-6} \text{ ms}^{-1}$

 $123.4 \times 10^{-6} \text{ ms}^{-1}$

Topic Name: Physics-Section A

Q:38

A sample of an ideal gas is taken through the cyclic process ABCA as shown in figure. It absorbs, 40 J of heat during the part AB, no heat during BC and rejects 60 J of heat during CA. A work of 50 J is done on the gas during the part BC. The internal energy of the gas at A is 1560 J. The workdone by the gas during the part CA is:

Question:

20 J

B 30 J

-30 I

-60 J

Topic Name: Physics-Section A

ItemCode:101209

What will be the effect on the root mean square velocity of oxygen molecules if the temperature Question: is doubled and oxygen molecule dissociates into atomic oxygen?

- The velocity of atomic oxygen remains same
- The velocity of atomic oxygen doubles
- The velocity of atomic oxygen becomes half
- The velocity of atomic oxygen becomes four times

Topic Name: Physics-Section A

ItemCode:101210

Two point charges A and B of magnitude $+8\times10^{-6}$ C and -8×10^{-6} C respectively are placed at a distance d apart. The electric field at the middle point O between the charges is Question: $6.4 \times 10^4 \ NC^{-1}$. The distance 'd' between the point charges A and B is :

A 2.0 m

B 3.0 m

1.0 m

4.0 m

Topic Name: Physics-Section A

Ite	MCode:101211 Resistance of the wire is measured as 2 Ω and 3 Ω at 10°C and 30°C respectively. Temperature
Qu	estion: co-efficient of resistance of the material of the wire is:
A	0.033 °C ⁻¹
В	-0.033 °C ⁻¹
C	0.011 °C ⁻¹
D	0.055 °C ⁻¹
Q:42 Topi	ic Name: Physics-Section A
Ite	mCode:101212
	The space inside a straight current carrying solenoid is filled with a magnetic material having
	magnetic susceptibility equal to 1.2×10^{-5} . What is fractional increase in the magnetic field incide colonial with respect to air as medium incide the colonial?
Qu	inside solenoid with respect to air as medium inside the solenoid?
A	1.2×10^{-5}
	1.2×10^{-3}
C	1.8×10^{-3}
D	2.4×10^{-5}
Q:43	B ic Name:Physics-Section A
	mCode:101213
	Two parallel, long wires are kept 0.20 m apart in vacuum, each carrying current of x A in the
	same direction. If the force of attraction per meter of each wire is 2×10^{-6} N, then the value
Qu	of x is approximately:
A	1
В	2.4
C	1.4
D	2
Q:44 Topi	4 ic Name:Physics-Section A
	mCode:101214
	A coil is placed in a time varying magnetic field. If the number of turns in the coil were to be
	halved and the radius of wire doubled, the electrical power dissipated due to the current
	induced in the coil would be:
Qu	estion: (Assume the coil to be short circuited.)
A	Halved
В	Quadrupled
C	The same
D	Doubled

An EM wave propagating in x-direction has a wavelength of 8 mm. The electric field vibrating y-direction has maximum magnitude of 60 Vm⁻¹. Choose the correct equations for electric Ouestion: and magnetic fields if the EM wave is propagating in vacuum :

$$E_y = 60 \sin \left[\frac{\pi}{4} \times 10^3 (x - 3 \times 10^8 t) \right] \hat{j} \text{ Vm}^{-1}$$

$$B_z = 2\sin\left[\frac{\pi}{4} \times 10^3 (x - 3 \times 10^8 t)\right] \hat{k} T$$

$$E_y = 60 \sin \left[\frac{\pi}{4} \times 10^3 \left(x - 3 \times 10^8 t \right) \right] \hat{j} \text{ Vm}^{-1}$$

$$B_z = 2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^3 (x - 3 \times 10^8 t) \right] \hat{k} T$$

$$E_y = 2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^3 (x - 3 \times 10^8 t) \right] \hat{j} \text{ Vm}^{-1}$$

$$B_z = 60 \sin \left[\frac{\pi}{4} \times 10^3 (x - 3 \times 10^8 t) \right] \hat{k} T$$

$$E_y = 2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^4 (x - 4 \times 10^8 t) \right] \hat{j} \text{ Vm}^{-1}$$

$$B_z = 60 \sin \left[\frac{\pi}{4} \times 10^4 (x - 4 \times 10^8 t) \right] \hat{k} T$$

Topic Name: Physics-Section A

ItemCode:101216

In young's double slit experiment performed using a monochromatic light of wavelength λ , when a glass plate ($\mu = 1.5$) of thickness $x\lambda$ is introduced in the path of the one of the interfering beams, the intensity at the position where the central maximum occurred previously remains unchanged. The value of x will be :

Question:

3

2

1.5

0.5

Topic Name: Physics-Section A

ItemCode:101217 Let K₁ and K₂ be the maximum kinetic energies of photo-electrons emitted when two monochromatic beams of wavelength λ_1 and λ_2 , respectively are incident on a metallic surface.

Question: If $\lambda_1 = 3\lambda_2$ then :

A	V	2	K_2
	\mathbf{N}_1	>	3

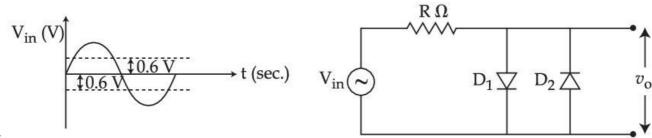
 $K_1 < \frac{K_2}{3}$ $K_1 = \frac{K_2}{3}$ $K_2 = \frac{K_1}{3}$

Q:48

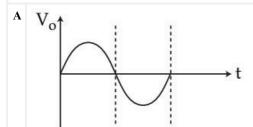
Topic Name: Physics-Section A

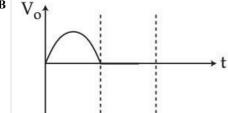
ItemCode:101218

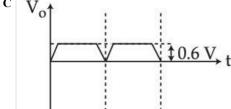
Following statements related to radioactivity are given below:

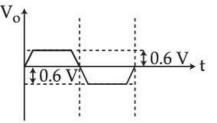

- Radioactivity is a random and spontaneous process and is dependent on physical and (A) chemical conditions.
- (B) The number of un-decayed nuclei in the radioactive sample decays exponentially with time.
- Slope of the graph of log_e (no. of undecayed nuclei) Vs. time represents the reciprocal (C) of mean life time (τ) .
- Product of decay constant (λ) and half-life time ($T_{1/2}$) is not constant.

Ouestion: Choose the most appropriate answer from the options given below :


- (A) and (B) only
- (B) and (D) only
- (B) and (C) only
- (C) and (D) only


Topic Name: Physics-Section A


In the given circuit the input voltage \boldsymbol{V}_{in} is shown in figure. The cut-in voltage of p-n junction diode (D_1 or D_2) is 0.6 V. Which of the following output voltage (V_0) waveform across the diode is correct?



Question:

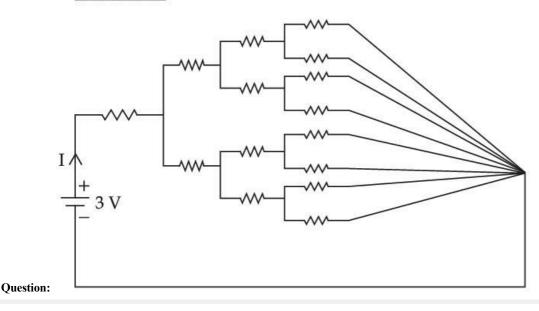
Topic Name: Physics-Section A

ItemCode:101220

Amplitude modulated wave is represented by

 $V_{\rm AM}\!=\!10\big[1+0.4\,\cos(2\pi\times10^4t)\big]\,\cos\,(2\pi\times10^7t). \label{eq:VAM}$ The total bandwidth of the amplitude

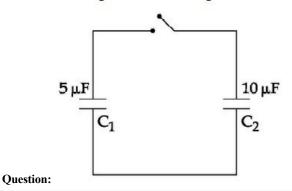
Question: modulated wave is:


- 10 kHz
- 20 MHz
- 20 kHz
- 10 MHz

Topic Name: Physics-Section B ItemCode:101221 A student in the laboratory measures thickness of a wire using screw gauge. The readings are 1.22 mm, 1.23 mm, 1.19 mm and 1.20 mm. The percentage error is $\frac{x}{121}$ %. The value of Question: X is _____. Topic Name: Physics-Section B ItemCode:101222 A zener of breakdown voltage $V_Z = 8\,V$ and maximum zener current, $I_{ZM} = 10\,\text{mA}$ is subjected to an input voltage $V_i = 10 \text{ V}$ with series resistance $R = 100 \Omega$. In the given circuit R_L represents the variable load resistance. The ratio of maximum and minimum value of R_L is _ **Question:** Topic Name: Physics-Section B ItemCode:101223 In a Young's double slit experiment, an angular width of the fringe is 0.35° on a screen placed at 2 m away for particular wavelength of 450 nm. The angular width of the fringe, when whole system is immersed in a medium of refractive index 7/5, is $\frac{1}{\alpha}$. The value of α Question: is _____ Topic Name: Physics-Section B ItemCode:101224 In the given circuit, the magnitude of V_L and V_C are twice that of V_R . Given that f = 50~Hz, the inductance of the coil is $\frac{1}{K\pi}$ mH. The value of K is _____.

All resistances in figure are 1 Ω each. The value of current 'I' is $\frac{a}{5}$ A. The value of a

is _____.



Q:56

Topic Name: Physics-Section B

ItemCode:101226

A capacitor C_1 of capacitance 5 μF is charged to a potential of 30 V using a battery. The battery is then removed and the charged capacitor is connected to an uncharged capacitor C_2 of capacitance 10 μF as shown in figure. When the switch is closed charge flows between the capacitors. At equilibrium, the charge on the capacitor C_2 is _____ μC .

0.57

Topic Name: Physics-Section B

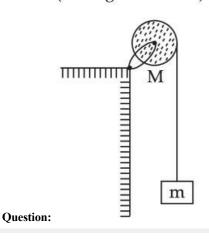
ItemCode:101227

A tunning fork of frequency 340 Hz resonates in the fundamental mode with an air column of length 125 cm in a cylindrical tube closed at one end. When water is slowly poured in it, the minimum height of water required for observing resonance once again is ______ cm.

Question: (Velocity of sound in air is 340 ms⁻¹)

Q:58

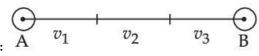
Topic Name: Physics-Section B


A liquid of density 750 kgm⁻³ flows smoothly through a horizontal pipe that tapers in cross-sectional area from $A_1 = 1.2 \times 10^{-2} \text{m}^2$ to $A_2 = \frac{A_1}{2}$. The pressure difference between the wide and narrow sections of the pipe is 4500 Pa. The rate of flow of liquid Question: is ______ $\times 10^{-3} \text{ m}^3 \text{s}^{-1}$.

Topic Name: Physics-Section B

ItemCode:101229

A uniform disc with mass M=4 kg and radius R=10 cm is mounted on a fixed horizontal axle as shown in figure. A block with mass m = 2 kg hangs from a massless cord that is wrapped around the rim of the disc. During the fall of the block, the cord does not slip and there is no friction at the axle. The tension in the cord is ______ N.


(Take $g = 10 \text{ ms}^{-2}$)

Topic Name: Physics-Section B

ItemCode:101230

A car covers AB distance with first one-third at velocity $v_1 \, \mathrm{ms}^{-1}$, second one-third at v_2 ms⁻¹ and last one-third at v_3 ms⁻¹. If $v_3 = 3v_1$, $v_2 = 2v_1$ and $v_1 = 11$ ms⁻¹ then the average velocity of the car is $_$ ms⁻¹.

Topic Name: Chemistry-Section A

ItemCode:101231

Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is,

Given: Atomic masses of C, H and N are 12, 1 and 14 amu respectively.

The molar mass of the compound A is 162 g mol^{-1} .

 A $C_4H_6N_2$

D	$C_{10}H_{14}N$	$\mathbf{I_2}$
Q:62		
	ic Name: Chemis	
ite	mCode:101232 Cons	sider the following statements :
	(A)	The principal quantum number 'n' is a positive integer with values of 'n' = 1, 2, 3,
	(B)	The azimuthal quantum number ' l ' for a given ' n ' (principal quantum number) can have values as ' l ' = 0, 1, 2, n
	(C)	Magnetic orbital quantum number ' m_l ' for a particular ' l ' (azimuthal quantum number) has $(2l+1)$ values.
	(D)	$\pm 1/2$ are the two possible orientations of electron spin.
	(E)	For $l=5$, there will be a total of 9 orbital
Ou	estion: Whic	ch of the above statements are correct?
	(A), (B) a	
В	(A), (C),	(D) and (E)
C	(A), (C)	and (D)
D	(A), (B),	(C) and (D)
0.6	,	
Q:63 Top	ic Name:Chemis	stry-Section A
Ite	mCode:101233	
Qu	estion:	e structure of SF ₄ , the lone pair of electrons on S is in.
A	equatori	al position and there are two lone pair - bond pair repulsions at 90°.
В	equatori	al position and there are three lone pair - bond pair repulsions at 90°.
C	axial pos	sition and there are three lone pair - bond pair repulsion at 90°.
D	axial pos	sition and there are two lone pair - bond pair repulsion at 90°.
Q:64		
	ic Name:Chemis mCode:101234	•
		ident needs to prepare a buffer solution of propanoic acid and its sodium salt with pH 4.
	The	ratio of $\frac{\text{CH}_3\text{CH}_2\text{COO}^-}{\text{[CH}_3\text{CH}_2\text{COOH]}}$ required to make buffer is
On	Give	$en: K_a(CH_3CH_2COOH) = 1.3 \times 10^{-5}$
H	0.03	
В	0.13	
C	0.23	
	0.33	

 $^{\mathbf{B}}$ (A) - (IV), (B) - (II), (C) - (I), (D) - (III)

(A) - (II), (B) - (IV), (C) - (III), (D) - (I)

(A) - (I), (B) - (II), (C) - (III), (D) - (IV)

Topic Name: Chemistry-Section A ItemCode: 101237

In the metallurgical extraction of copper, following reaction is used:

 $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$

FeO and FeSiO₃ respectively are.

A gangue and flux.

B flux and slag.

C	slag and flux.
D	gangue and slag.
	c Name: Chemistry-Section A
	Hydrogen has three isotopes: protium (¹ H), deuterium (² H or D) and tritium (³ H or T). They have nearly same chemical properties but different physical properties. They differ in
A	number of protons.
В	atomic number.
C	electronic configuration.
D	atomic mass.
Ite	c Name:Chemistry-Section A mCode:101239 Among the following, basic oxide is:
A	SO ₃
В	SiO ₂
C	CaO
D	Al_2O_3
Q:70 Topi	c Name:Chemistry-Section A
	MCode:101240 Among the given oxides of nitrogen; N_2O , N_2O_3 , N_2O_4 and N_2O_5 , the number of compound/(s) having $N-N$ bond is:
A	1
В	2
C	3
D	4
Ite	c Name:Chemistry-Section A nCode:101241 Which of the following oxoacids of sulphur contains "S" in two different oxidation states ? estion:
A	$H_2S_2O_3$
В	$H_2S_2O_6$
C	$H_2S_2O_7$
D	$H_2S_2O_8$

Q:72

Topic Name: Chemistry-Section A

ItemCode:101242

Correct statement about photo-chemical smog is :

- It occurs in humid climate.
- It is a mixture of smoke, fog and SO₂.
- It is reducing smog.
- It results from reaction of unsaturated hydrocarbons.

Topic Name: Chemistry-Section A

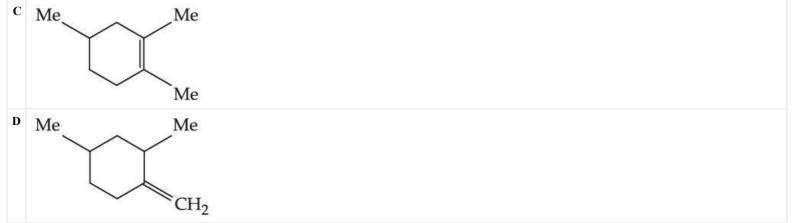
ItemCode:101243

The correct IUPAC name of the following compound is:

$$O_2N$$

Question:

- 4-methyl-2-nitro-5-oxohept-3-enal
- 4-methyl-5-oxo-2-nitrohept-3-enal
- 4-methyl-6-nitro-3-oxohept-4-enal
- 6-formyl-4-methyl-2-nitrohex-3-enal


Topic Name: Chemistry-Section A

ItemCode:101244

The major product (P) of the given reaction is (where, Me is $-CH_3$)

$$\begin{array}{c} \text{Me} & \xrightarrow{\text{OH}} & \xrightarrow{\text{H}^+} & \text{P} \\ \text{Me} & \xrightarrow{\text{Me}} & \text{Major Product} \end{array}$$

Question:

Q:75

Topic Name: Chemistry-Section A

ItemCode:101245

Br

A
$$(i)$$
 Cl_2 , Δ (ii) $CN^ (iii)$ H_2O/H^+ A -Bromophenyl acetic acid.

 $_{\mbox{\scriptsize Question:}}$ In the above reaction 'A' is

CH₃

CH=CH₂

O:76

Topic Name: Chemistry-Section A

ItemCode:101246

Isobutyraldehyde on reaction with formaldehyde and K_2CO_3 gives compound 'A'. Compound 'A' reacts with KCN and yields compound 'B', which on hydrolysis gives a stable compound 'C'. The compound 'C' is

$$\begin{array}{c|c} ^{B} & \text{HO-CH}_{2}\text{CH}_{2}\text{-CH-CH-COOH} \\ & | & | \\ & \text{CH}_{3} & \text{OH} \end{array}$$

Q:77 **Topic Name:**Chemistry-Section A

ItemCode:101247

With respect to the following reaction, consider the given statements:

- (A) o-Nitroaniline and p-nitroaniline are the predominant products.
- (B) p-Nitroaniline and m-nitroaniline are the predominant products.
- (C) HNO₃ acts as an acid.
- (D) H₂SO₄ acts as an acid.

Question: Choose the correct option.

- A (A) and (C) are correct statements.
- B (A) and (D) are correct statements.
- (B) and (D) are correct statements.
- (B) and (C) are correct statements.

Q:78

Topic Name: Chemistry-Section A

Given below are two statements, one is **Assertion (A)** and other is **Reason (R)**.

Assertion (A): Natural rubber is a linear polymer of isoprene called *cis*-polyisoprene with

elastic properties.

Reason (R): The cis-polyisoprene molecules consist of various chains held together by

strong polar interactions with coiled structure.

In the light of the above statements, choose the correct one from the options given below:

Both (A) and (R) are true and (R) is the correct explanation of (A).

Both (A) and (R) are true but (R) is not the correct explanation of (A).

(A) is true but (R) is false.

(A) is false but (R) is true.

Topic Name: Chemistry-Section A

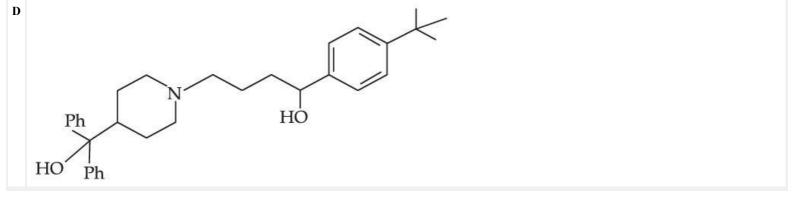
ItemCode:101249

When sugar 'X' is boiled with dilute H₂SO₄ in alcoholic solution, two isomers 'A' and 'B' are formed. 'A' on oxidation with HNO₃ yields saccharic acid where as 'B' is laevorotatory. The Question: compound 'X' is:

Maltose

Sucrose

Lactose


Strach

Topic Name: Chemistry-Section A

ItemCode:101250

The drug tegamet is: **Question:**

 \mathbf{C}

Q:81

Topic Name: Chemistry-Section B

ItemCode:101251

Question: (Given : $R = 0.083 \text{ L bar } K^{-1} \text{ mol}^{-1}$)

Q:82

Topic Name: Chemistry-Section B

ItemCode:101252

For combustion of one mole of magnesium in an open container at 300 K and 1 bar pressure, $\Delta_C H^{\ominus} = -601.70 \text{ kJ mol}^{-1} \text{, the magnitude of change in internal energy for the reaction is } \\ \underline{ \qquad } \text{kJ . (Nearest integer)}$

Question: (Given : $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$)

Q:83

Topic Name: Chemistry-Section B

ItemCode:101253

2.5 g of protein containing only glycine ($C_2H_5NO_2$) is dissolved in water to make 500 mL of solution. The osmotic pressure of this solution at 300 K is found to be 5.03×10^{-3} bar. The total number of glycine units present in the protein is ______.

Question: (Given : $R = 0.083 \text{ L bar } K^{-1} \text{ mol}^{-1}$)

Q:84

Topic Name: Chemistry-Section B

ItemCode:101254

For the given reactions

$$Sn^{2+} + 2e^{-} \rightarrow Sn$$

$$\operatorname{Sn}^{4+} + 4e^{-} \rightarrow \operatorname{Sn}$$

the electrode potentials are ; $E_{Sn^{2+}/Sn}^{o} = -0.140 \text{ V}$ and $E_{Sn^{4+}/Sn}^{o} = 0.010 \text{ V}$. The magnitude

of standard electrode potential for Sn^{4+}/Sn^{2+} i.e. $E^o_{Sn^{4+}/Sn^{2+}}$ is _____ $\times 10^{-2}$ V.

Question: (Nearest integer)

O:85

Topic Name: Chemistry-Section B

ItemCode:1	
	A radioactive element has a half life of 200 days. The percentage of original activity remaining
	ofter 83 days is (Nearest integer)
	Given: antilog $0.125 = 1.333$,
Question:	antilog $0.693 = 4.93$)
Q:86 Fopic Name:0	Chemistry-Section B
ItemCode:1	
	$Fe(CN)_6]^{4-}$
	$Fe(CN)_6]^{3-}$
(a)	$Ti(CN)_6]^{3-}$
(a)	$Ni(CN)_4]^{2-}$
	$Co(CN)_6]^{3-}$
Question:	Among the given complexes, number of paramagnetic complexes is
Q:87	Chamister Section D
ItemCode:1	Chemistry-Section B 01257
(a) $CoCl_3.4 \text{ NH}_3$, (b) $CoCl_3.5 \text{NH}_3$, (c) $CoCl_3.6 \text{NH}_3$ and (d) $CoCl(NO_3)_2.5 \text{NH}_3$.
Question: 1	Number of complex(es) which will exist in <i>cis-trans</i> form is/are
Q:88 Fopic Name:0	Chemistry-Section B
ItemCode:1	01258 The complete combustion of 0.492 g of an organic compound containing 'C', 'H' and 'O'
	gives $0.793g$ of CO_2 and 0.442 g of H_2O . The percentage of oxygen composition in the organic
	compound is (nearest integer)
Question: Q:89	
Горіс Name:(Chemistry-Section B
ItemCode:1	The major product of the following reaction contains bromine atom(s).
	Br_2
Question:	$0 \longrightarrow Major Product$ $h\nu$
Q: 90	
Fopic Name:(ItemCode:1	Chemistry-Section B
	0.01 M KMnO ₄ solution was added to 20.0 mL of 0.05 M Mohr's salt solution through a
b	burette. The initial reading of 50 mL burette is zero. The volume of KMnO_4 solution left in the
Question: b	ourette after the end point is mL. (nearest integer)

(