Paper:	B.E_B.Tech
SET:	Item21

Topic:	Mathematics-Section A
Item No:	1
Question ID:	100001
Question Type:	MCQ
Question:	The total number of functions, $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ such that $f(1) + f(2) = f(3)$, is equal to:
A:	60
B:	90
C:	108
D:	126

Topic:	Mathematics-Section A
Item No:	2
Question ID:	100002
Question Type:	MCQ
Question:	If α , β , γ , δ are the roots of the equation $x^4+x^3+x^2+x+1=0$, then $\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021}$ is equal to :
A:	-4
B:	-1
C:	1
D:	4

Topic:	Mathematics-Section A
Item No:	3
Question ID:	100003
Question Type:	MCQ

Question:	For $n \in \mathbb{N}$, let $S_n = \left\{ z \in \mathbb{C} : z - 3 + 2i = \frac{n}{4} \right\}$ and $T_n = \left\{ z \in \mathbb{C} : z - 2 + 3i = \frac{1}{n} \right\}$. Then the number of elements in the set $\{n \in \mathbb{N} : S_n \cap T_n = \emptyset\}$ is :
A:	0
B:	2
C:	3
D:	4

Topic:	Mathematics-Section A
Item No:	4
Question ID:	100004
Question Type:	MCQ
Question:	The number of $\theta \in (0, 4\pi)$ for which the system of linear equations $3 (\sin 3\theta) x - y + z = 2$ $3 (\cos 2\theta) x + 4y + 3z = 3$ $6x + 7y + 7z = 9$ has no solution, is :
A:	6
B:	7
C:	8
D:	9

Topic:	Mathematics-Section A
Item No:	5
Question ID:	100005
Question Type:	MCQ
Question:	If $\lim_{n\to\infty}\left(\sqrt{n^2-n-1}+n\alpha+\beta\right)=0$, then $8(\alpha+\beta)$ is equal to :
A:	4
B:	-8
C:	-4
D:	8

Topic:	Mathematics-Section A
Item No:	6
Question ID:	100006
Question Type:	MCQ
Question:	If the absolute maximum value of the function $f(x) = (x^2 - 2x + 7) e^{(4x^3 - 12x^2 - 180x + 31)}$ in the interval $[-3, 0]$ is $f(\alpha)$, then:
A:	$\alpha = 0$
B:	$\alpha = -3$
C:	$\alpha \in (-1, 0)$
D:	$\alpha \in (-3, -1]$

Topic:	Mathematics-Section A
Item No:	7
Question ID:	100007
Question Type:	MCQ
Question:	The curve $y(x) = ax^3 + bx^2 + cx + 5$ touches the <i>x</i> -axis at the point $P(-2, 0)$ and cuts the <i>y</i> -axis at the point Q , where y' is equal to 3. Then the local maximum value of $y(x)$ is :
A:	$\frac{27}{4}$
B:	$\frac{29}{4}$
C:	$\frac{37}{4}$
D:	$\frac{9}{2}$

Topic:	Mathematics-Section A
Item No:	8
Question ID:	100008

Question Type:	MCQ
Question:	The area of the region given by $A = \{(x, y) : x^2 \le y \le \min \{x + 2, 4 - 3x\}\}$ is :
A:	<u>31</u> 8
B:	$\frac{17}{6}$
C:	$\frac{19}{6}$
D:	<u>27</u> 8

Topic:	Mathematics-Section A
Item No:	9
Question ID:	100009
Question Type:	MCQ
	For any real number x , let $[x]$ denote the largest integer less than equal to x . Let f be a real
Question:	valued function defined on the interval $[-10, 10]$ by $f(x) = \begin{cases} x - [x], & \text{if } [x] \text{ is odd} \\ 1 + [x] - x, & \text{if } [x] \text{ is even}. \end{cases}$ Then the value of $\frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x dx$ is:
A:	4
B:	2
C:	1
D:	0

Topic:	Mathematics-Section A
Item No:	10
Question ID:	100010

Question Type:	MCQ
Question:	The slope of the tangent to a curve C : $y = y(x)$ at any point (x, y) on it is $\frac{2e^{2x} - 6e^{-x} + 9}{2 + 9e^{-2x}}$.
	If C passes through the points $\left(0, \frac{1}{2} + \frac{\pi}{2\sqrt{2}}\right)$ and $\left(\alpha, \frac{1}{2} e^{2\alpha}\right)$, then e^{α} is equal to :
A:	$\frac{3+\sqrt{2}}{3-\sqrt{2}}$
B:	$\frac{3}{\sqrt{2}} \left(\frac{3 + \sqrt{2}}{3 - \sqrt{2}} \right)$
C:	$\frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}+1}{\sqrt{2}-1} \right)$
D:	$\frac{\sqrt{2}+1}{\sqrt{2}-1}$

Topic:	Mathematics-Section A
Item No:	11
Question ID:	100011
Question Type:	MCQ
Question:	The general solution of the differential equation $(x - y^2)dx + y(5x + y^2)dy = 0$ is :
A:	$(y^2 + x)^4 = C (y^2 + 2x)^3 $
B:	$(y^2 + 2x)^4 = C (y^2 + x)^3 $
C:	$ (y^2+x)^3 = C (2y^2+x)^4$
D:	$ (y^2 + 2x)^3 = C (2y^2 + x)^4$

Topic:	Mathematics-Section A
Item No:	12
Question ID:	100012

Question Type:	MCQ
Question:	A line, with the slope greater than one, passes through the point A(4, 3) and intersects the
	line $x-y-2=0$ at the point B. If the length of the line segment AB is $\frac{\sqrt{29}}{3}$, then B also lies
	on the line :
A:	2x + y = 9
B:	3x - 2y = 7
C:	x + 2y = 6
D:	2x - 3y = 3

Topic:	Mathematics-Section A
Item No:	13
Question ID:	100013
Question Type:	MCQ
Question:	Let the locus of the centre (α, β) , $\beta > 0$, of the circle which touches the circle $x^2 + (y-1)^2 = 1$ externally and also touches the <i>x</i> -axis be L. Then the area bounded by L and the line $y = 4$ is:
A:	$\frac{32\sqrt{2}}{3}$
B:	$\frac{40\sqrt{2}}{3}$
C:	$\frac{64}{3}$
D:	$\frac{32}{3}$

Topic:	Mathematics-Section A
Item No:	14
Question ID:	100014

Question Type:	MCQ
Question:	Let P be the plane containing the straight line $\frac{x-3}{9} = \frac{y+4}{-1} = \frac{z-7}{-5}$ and perpendicular
	to the plane containing the straight lines $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ and $\frac{x}{3} = \frac{y}{7} = \frac{z}{8}$. If d is the distance of P from the point $(2, -5, 11)$, then d^2 is equal to:
A:	$\frac{147}{2}$
B:	96
C:	$\frac{32}{3}$
D:	54

Topic:	Mathematics-Section A
Item No:	15
Question ID:	100015
Question Type:	MCQ
Question:	Let ABC be a triangle such that $\overrightarrow{BC} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$, $ \overrightarrow{a} = 6\sqrt{2}$, $ \overrightarrow{b} = 2\sqrt{3}$ and $ \overrightarrow{b} \cdot \overrightarrow{c} = 12$. Consider the statements: (S1): $ (\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{c} \times \overrightarrow{b}) - \overrightarrow{c} = 6(2\sqrt{2} - 1)$ (S2): $\angle ACB = \cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$
A:	both (S1) and (S2) are true
B:	only (S1) is true
C:	only (S2) is true
D:	both (S1) and (S2) are false

Topic:	Mathematics-Section A
Item No:	16
Question ID:	100016
Question Type:	MCQ
Question:	If the sum and the product of mean and variance of a binomial distribution are 24 and 128 respectively, then the probability of one or two successes is :
A:	$\frac{33}{2^{32}}$
B:	$\frac{33}{2^{29}}$
C:	$\frac{33}{2^{28}}$
D:	$\frac{33}{2^{27}}$

Topic:	Mathematics-Section A
Item No:	17
Question ID:	100017
Question Type:	MCQ
Question:	If the numbers appeared on the two throws of a fair six faced die are α and β , then the probability that $x^2 + \alpha x + \beta > 0$, for all $x \in \mathbf{R}$, is :
A:	$\frac{17}{36}$
B:	$\frac{4}{9}$
C:	$\frac{1}{2}$
D:	$\frac{19}{36}$

Topic:	Mathematics-Section A
Item No:	18
Question ID:	100018
Question Type:	MCQ
Question:	The number of solutions of $ \cos x = \sin x$, such that $-4\pi \le x \le 4\pi$ is:
A:	4
B:	6
C:	8
D:	12

Topic:	Mathematics-Section A
Item No:	19
Question ID:	100019
Question Type:	MCQ
Question:	A tower PQ stands on a horizontal ground with base Q on the ground. The point R divides the tower in two parts such that $QR = 15$ m. If from a point A on the ground the angle of elevation of R is 60° and the part PR of the tower subtends an angle of 15° at A, then the height of the tower is :
A:	$5(2\sqrt{3}+3)$ m
B:	$5(\sqrt{3}+3)$ m
C:	$10(\sqrt{3}+1)$ m
D:	$10(2\sqrt{3}+1)$ m

Topic:	Mathematics-Section A
Item No:	20
Question ID:	100020
Question Type:	MCQ
Question:	Which of the following statements is a tautology?
A:	$((\sim p) \lor q) \Rightarrow p$

B:	$p \Rightarrow ((\sim p) \lor q)$
C:	$((\sim p) \lor q) \Rightarrow q$
D:	$q \Rightarrow ((\sim p) \lor q)$

Topic:	Mathematics-Section B
Item No:	21
Question ID:	100021
Question Type:	Numeric Answer
Question:	Let $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ and $B = A - I$. If $\omega = \frac{\sqrt{3}i - 1}{2}$, then the number of elements in the set $\left\{n \in \{1, 2,, 100\}: A^n + (\omega B)^n = A + B\right\}$ is equal to

Topic:	Mathematics-Section B	
Item No:	22	
Question ID:	100022	
Question Type:	Numeric Answer	
Question:	The letters of the word 'MANKIND' are written in all possible orders and arranged in serial order as in an English dictionary. Then the serial number of the word 'MANKIND' is	

Topic:	Mathematics-Section B
Item No:	23
Question ID:	100023
Question Type:	Numeric Answer
Question:	If the maximum value of the term independent of t in the expansion of $ \left(t^2 x^{\frac{1}{5}} + \frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}, x \ge 0, \text{ is K, then 8 K is equal to} \underline{\hspace{1cm}}. $

Topic: Mathematics-Section B

Item No:	24	
Question ID:	100024	
Question Type:	Numeric Answer	
Question:	Let a, b be two non-zero real numbers. If p and r are the roots of the equation $x^2 - 8ax + 2a = 0$ and q and s are the roots of the equation $x^2 + 12bx + 6b = 0$, such that $\frac{1}{p}$, $\frac{1}{q}$, $\frac{1}{r}$, $\frac{1}{s}$ are in A.P., then $a^{-1} - b^{-1}$ is equal to	

Topic:	Mathematics-Section B	
Item No:	25	
Question ID:	100025	
Question Type:	Numeric Answer	
Question:	Let $a_1 = b_1 = 1$, $a_n = a_{n-1} + 2$ and $b_n = a_n + b_{n-1}$ for every natural number $n \ge 2$. Then $\sum_{n=1}^{15} a_n \cdot b_n \text{ is equal to } \underline{\hspace{1cm}}.$	

Topic:	Mathematics-Section B
Item No:	26
Question ID:	100026
Question Type:	Numeric Answer
Question:	Let $f(x) = \begin{cases} \left 4x^2 - 8x + 5 \right , & \text{if } 8x^2 - 6x + 1 \ge 0 \\ \left[4x^2 - 8x + 5 \right], & \text{if } 8x^2 - 6x + 1 < 0, \end{cases}$ where $[\alpha]$ denotes the greatest integer less than or equal to α . Then the number of points in \mathbb{R} where f is not differentiable is

Topic:	Mathematics-Section B
Item No:	27
Question ID:	100027
Question Type:	Numeric Answer

Topic:	Mathematics-Section B
Item No:	28
Question ID:	100028
Question Type:	Numeric Answer
Question:	Let the equation of two diameters of a circle $x^2+y^2-2x+2fy+1=0$ be $2px-y=1$ and $2x+py=4p$. Then the slope $m\epsilon(0, \infty)$ of the tangent to the hyperbola $3x^2-y^2=3$ passing through the centre of the circle is equal to

Topic:	Mathematics-Section B
Item No:	29
Question ID:	100029
Question Type:	Numeric Answer
Question:	The sum of diameters of the circles that touch (i) the parabola $75x^2 = 64(5y - 3)$ at the point $\left(\frac{8}{5}, \frac{6}{5}\right)$ and (ii) the <i>y</i> -axis, is equal to

Topic:	Mathematics-Section B
Item No:	30
Question ID:	100030
Question Type:	Numeric Answer

	The line of shortest distance between the lines $\frac{x-2}{0} = \frac{y-1}{1} = \frac{z}{1}$ and
Question:	$\frac{x-3}{2} = \frac{y-5}{2} = \frac{z-1}{1}$ makes an angle of $\cos^{-1}\left(\sqrt{\frac{2}{27}}\right)$ with the plane P: $ax-y-z=0$,
	(a > 0). If the image of the point (1, 1, -5) in the plane P is (α , β , γ), then $\alpha + \beta - \gamma$ is equal to

Topic:	Physics-Section A
Item No:	31
Question ID:	100031
Question Type:	MCQ
Question:	If momentum [P], area [A] and time [T] are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is :
A:	$[P A^{-1} T^{0}]$
B:	$[P A T^{-1}]$
C:	[P A ⁻¹ T]
D:	$[P A^{-1} T^{-1}]$

Topic:	Physics-Section A
Item No:	32
Question ID:	100032
Question Type:	MCQ
Question:	Which of the following physical quantities have the same dimensions?
A:	Electric displacement $(\stackrel{\rightarrow}{D})$ and surface charge density
B:	Displacement current and electric field
C:	Current density and surface charge density
D:	Electric potential and energy

Topic:

Item No:	33
Question ID:	100033
Question Type:	MCQ
Question:	A person moved from A to B on a circular path as shown in figure. If the distance travelled by him is 60 m, then the magnitude of displacement would be : (Given $\cos 135^\circ = -0.7$)
A:	42 m
B:	47 m
C:	19 m
D:	40 m

Topic:	Physics-Section A
Item No:	34
Question ID:	100034
Question Type:	MCQ
Question:	A body of mass 0.5 kg travels on straight line path with velocity $v = (3x^2 + 4)$ m/s. The net workdone by the force during its displacement from $x = 0$ to $x = 2$ m is :
A:	64 J
B:	60 J
C:	120 J
D:	128 J

Topic:	Physics-Section A
Item No:	35
Question ID:	100035

Question Type:	MCQ
Question:	A solid cylinder and a solid sphere, having same mass M and radius R, roll down the same inclined plane from top without slipping. They start from rest. The ratio of velocity of the solid cylinder to that of the solid sphere, with which they reach the ground, will be:
A:	$\sqrt{\frac{5}{3}}$
B:	$\sqrt{\frac{4}{5}}$
C:	$\sqrt{\frac{3}{5}}$
D:	$\sqrt{\frac{14}{15}}$

Topic:	Physics-Section A
Item No:	36
Question ID:	100036
Question Type:	MCQ
Question:	Three identical particles A, B and C of mass 100 kg each are placed in a straight line with AB=BC=13 m. The gravitational force on a fourth particle P of the same mass is F, when placed at a distance 13 m from the particle B on the perpendicular bisector of the line AC. The value of F will be approximately:
A:	21 G
B:	100 G
C:	59 G
D:	42 G

Topic:	Physics-Section A
Item No:	37
Question ID:	100037

Question Type:	MCQ
Question:	A certain amount of gas of volume V at 27°C temperature and pressure 2×10^7 Nm $^{-2}$ expands isothermally until its volume gets doubled. Later it expands adiabatically until its volume gets redoubled. The final pressure of the gas will be (Use $\gamma=1.5$):
A:	$3.536 \times 10^5 \text{ Pa}$
B:	$3.536 \times 10^6 \text{ Pa}$
C:	$1.25 \times 10^6 \text{ Pa}$
D:	$1.25 \times 10^5 \text{ Pa}$

Topic:	Physics-Section A
Item No:	38
Question ID:	100038
Question Type:	MCQ
	Following statements are given:
	(A) The average kinetic energy of a gas molecule decreases when the temperature is reduced.
	(B) The average kinetic energy of a gas molecule increases with increase in pressure at constant temperature.
Question:	(C) The average kinetic energy of a gas molecule decreases with increase in volume.
	(D) Pressure of a gas increases with increase in temperature at constant pressure.
	(E) The volume of gas decreases with increase in temperature.
	Choose the correct answer from the options given below:
A:	(A) and (D) only
B:	(A), (B) and (D) only
C:	(B) and (D) only
D:	(A), (B) and (E) only

Topic:	Physics-Section A
Item No:	39
Question ID:	100039

Question Type:	MCQ
Question:	k 2k (B) In figure (A), mass '2 m' is fixed on mass 'm' which is attached to two springs of spring constant k. In figure (B), mass 'm' is attached to two springs of spring constant 'k' and '2k'. If mass 'm' in (A) and in (B) are displaced by distance 'x' horizontally and then released, then time period T ₁ and T ₂ corresponding to (A) and (B) respectively follow the relation.
A:	$\frac{T_1}{T_2} = \frac{3}{\sqrt{2}}$
B:	$\frac{T_1}{T_2} = \sqrt{\frac{3}{2}}$
C:	$\frac{T_1}{T_2} = \sqrt{\frac{2}{3}}$
D:	$\frac{T_1}{T_2} = \frac{\sqrt{2}}{3}$

Topic:	Physics-Section A
Item No:	40
Question ID:	100040
Question Type:	MCQ
Question:	A condenser of 2 μF capacitance is charged steadily from 0 to 5 C. Which of the following graph represents correctly the variation of potential difference (V) across it's plates with respect to the charge (Q) on the condenser?

Topic:	Physics-Section A
Item No:	41
Question ID:	100041

Question Type:	MCQ
Question:	Two charged particles, having same kinetic energy, are allowed to pass through a uniform magnetic field perpendicular to the direction of motion. If the ratio of radii of their circular paths is 6 : 5 and their respective masses ratio is 9 : 4. Then, the ratio of their charges will be :
A:	8:5
B:	5:4
C:	5:3
D:	8:7

Topic:	Physics-Section A
Item No:	42
Question ID:	100042
Question Type:	MCQ
Question:	To increase the resonant frequency in series LCR circuit,
A:	source frequency should be increased.
B:	another resistance should be added in series with the first resistance.
C:	another capacitor should be added in series with the first capacitor.
D:	the source frequency should be decreased.

Topic:	Physics-Section A
Item No:	43
Question ID:	100043
Question Type:	MCQ

Question:	A small square loop of wire of side l is placed inside a large square loop of wire L (L >> l). Both loops are coplanar and their centres coincide at point O as shown in figure. The mutual inductance of the system is: $\begin{array}{c c} L & \\ l & \\ \hline & L & \\$
A:	$\frac{2\sqrt{2} \ \mu_0 L^2}{\pi l}$
B:	$\frac{\mu_0 l^2}{2\sqrt{2} \pi L}$
C:	$\frac{2\sqrt{2} \ \mu_0 l^2}{\pi L}$
D:	$\frac{\mu_0 L^2}{2\sqrt{2} \pi l}$

Topic:	Physics-Section A
Item No:	44
Question ID:	100044
Question Type:	MCQ
Question:	The rms value of conduction current in a parallel plate capacitor is 6.9 μ A. The capacity of this capacitor, if it is connected to 230 V ac supply with an angular frequency of 600 rad/s, will be :
A:	5 pF
B:	50 pF
C:	100 pF

D. 200 PI

Topic:	Physics-Section A		
Item No:	45		
Question ID:	100045		
Question Type:	MCQ		
Question:	Which of the following statement is correct?		
A:	In primary rainbow, observer sees red colour on the top and violet on the bottom		
B:	In primary rainbow, observer sees violet colour on the top and red on the bottom		
C:	In primary rainbow, light wave suffers total internal reflection twice before coming out of water drops.		
D:	Primary rainbow is less bright than secondary rainbow.		

Topic:	Physics-Section A		
Item No:	46		
Question ID:	100046		
Question Type:	MCQ		
Question:	Time taken by light to travel in two different materials A and B of refractive indices μ_A and μ_B of same thickness is t_1 and t_2 respectively. If $t_2-t_1=5\times 10^{-10}\mathrm{s}$ and the ratio of μ_A to μ_B is 1 : 2. Then, the thickness of material, in meter is : (Given v_A and v_B are velocities of light in A and B materials respectively.)		
A:	$5 \times 10^{-10} v_{\rm A} {\rm m}$		
B:	$5 \times 10^{-10} \text{ m}$		
C:	$1.5 \times 10^{-10} \text{ m}$		
D:	$5 \times 10^{-10} v_{\rm B} {\rm m}$		

Topic:	Physics-Section A
Item No:	47
Question ID:	100047

Question Type:	MCQ
Question:	A metal exposed to light of wavelength 800 nm and and emits photoelectrons with a certain kinetic energy. The maximum kinetic energy of photo-electron doubles when light of wavelength 500 nm is used. The workfunction of the metal is : (Take $hc = 1230 eV-nm$).
A:	1.537 eV
B:	2.46 eV
C:	0.615 eV
D:	1.23 eV

Topic:	Physics-Section A
Item No:	48
Question ID:	100048
Question Type:	MCQ
Question:	The momentum of an electron revolving in n^{th} orbit is given by : (Symbols have their usual meanings)
A:	$\frac{nh}{2\pi r}$
B:	$\frac{\mathrm{nh}}{\mathrm{2r}}$
C:	$\frac{nh}{2\pi}$
D:	$\frac{2\pi r}{nh}$

Topic:	Physics-Section A			
Item No:	.9			
Question ID:	100049			
Question Type:	MCQ			
Question:	The magnetic moment of an electron (e) revolving in an orbit around nucleus with an orangular momentum is given by :			

A:	$\stackrel{\rightarrow}{\mu_L} = \frac{\stackrel{\rightarrow}{eL}}{2m}$
B:	$\stackrel{\rightarrow}{\mu_L} = - \; \frac{\stackrel{\rightarrow}{eL}}{2m}$
C:	$\vec{\mu}_l = -\frac{\vec{eL}}{m}$
D:	$\vec{\mu}_l = \frac{2\vec{eL}}{m}$

T				
Topic:	Physics-Section A			
Item No:	50	50		
Question ID:	10005	0		
Question Type:	MCQ			
Question:	In the circuit, the logical value of $A=1$ or $B=1$ when potential at A or B is 5 V and the logical value of $A=0$ or $B=0$ when potential at A or B is 0 V. $A $			
	The t	ruth tal	ole of th	ne given circuit will be :
	A	В	Y	
	0	0	0	
A:	1	0	0	
	0	1	0	
	1	1	1	

	Α	В	Υ
	0	0	0
B:	1	0	1
	0	1	1
	1	1	1
	A	В	Υ
C:	0	0	0
	1	0	0
	0	1	0
	1	1	0
	A	В	Υ
D:	0	0	1
	1	0	1
	0	1	1
	1	1	0

Topic:	Physics-Section B
Item No:	51
Question ID:	100051
Question Type:	Numeric Answer
Question:	A car is moving with speed of 150 km/h and after applying the break it will move 27 m before it stops. If the same car is moving with a speed of one third the reported speed then it will stop after travelling m distance.

Topic:	Physics-Section B		
Item No:	52		
Question ID:	100052		
Question Type:	Numeric Answer		

Topic:	Physics-Section B		
Item No:	53		
Question ID:	100053		
Question Type:	Numeric Answer		
Question:	A wire of length L and radius r is clamped rigidly at one end. When the other end of the wire is pulled by a force F, its length increases by 5 cm. Another wire of the same material of length 4L and radius 4r is pulled by a force 4F under same conditions. The increase in length of this wire is cm.		

Topic:	Physics-Section B
Item No:	54
Question ID:	100054
Question Type:	Numeric Answer
Question:	A unit scale is to be prepared whose length does not change with temperature and remains 20 cm, using a bimetallic strip made of brass and iron each of different length. The length of both components would change in such a way that difference between their lengths remains constant. If length of brass is 40 cm and length of iron will be cm. $ (\alpha_{iron} = 1.2 \times 10^{-5} \ K^{-1} \ and \ \alpha_{brass} = 1.8 \times 10^{-5} \ K^{-1}). $

Topic:	Physics-Section B
Item No:	55
Question ID:	100055
Question Type:	Numeric Answer

Question:

Topic:	Physics-Section B
Item No:	56
Question ID:	100056
Question Type:	Numeric Answer
Question:	The volume charge density of a sphere of radius 6 m is 2 μ C cm ⁻³ . The number of lines of force per unit surface area coming out from the surface of the sphere is×10 ¹⁰ NC ⁻¹ . [Given: Permittivity of vacuum ϵ_0 =8.85×10 ⁻¹² C ² N ⁻¹ -m ⁻²)

Topic:	Physics-Section B
Item No:	57
Question ID:	100057
Question Type:	Numeric Answer
Question:	In the given figure, the value of V_o will be V. $ \begin{array}{c c} 2V & 1k\Omega \\ \hline 4V & 1k\Omega \\ \hline \hline 6V & 1k\Omega \\ \hline \hline \end{array} $

Topic:	Physics-Section B
Item No:	58
Question ID:	100058

Question Type:	Numeric Answer
Question:	Eight copper wire of length <i>l</i> and diameter d are joined in parallel to form a single composite conductor of resistance R. If a single copper wire of length 2 <i>l</i> have the same resistance (R) then its diameter will bed.

Topic:	Physics-Section B
Item No:	59
Question ID:	100059
Question Type:	Numeric Answer
Question:	The energy band gap of semiconducting material to produce violet (wavelength = 4000 Å) LED is eV. (Round off to the nearest integer).

Topic:	Physics-Section B
Item No:	60
Question ID:	100060
Question Type:	Numeric Answer
Question:	The required height of a TV tower which can cover the population of 6.03 lakh is h. If the average population density is 100 per square km and the radius of earth is 6400 km, then the value of h will be m.

Topic:	Chemistry-Section A
Item No:	61
Question ID:	100061
Question Type:	MCQ
Question:	SO_2Cl_2 on reaction with excess of water results into acidic mixture $SO_2Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCl$ 16 moles of NaOH is required for the complete neutralisation of the resultant acidic mixture. The number of moles of SO_2Cl_2 used is :
A:	16
B:	8
C:	4

|--|

Topic:	Chemistry-Section A
Item No:	62
Question ID:	100062
Question Type:	MCQ
Question:	Which of the following sets of quantum numbers is not allowed?
A:	$n=3, 1=2, m_l=0, s=+\frac{1}{2}$
B:	$n=3$, $l=2$, $m_l=-2$, $s=+\frac{1}{2}$
C:	$n=3$, $l=3$, $m_l=-3$, $s=-\frac{1}{2}$
D:	$n=3, 1=0, m_l=0, s=-\frac{1}{2}$

Topic:	Chemistry-Section A
Item No:	63
Question ID:	100063
Question Type:	MCQ
Question:	The depression in freezing point observed for a formic acid solution of concentration 0.5 mL L^{-1} is 0.0405°C. Density of formic acid is 1.05 g m L^{-1} . The Van't Hoff factor of the formic acid solution is nearly : (Given for water $k_f = 1.86$ k kg mol $^{-1}$)
A:	0.8
B:	1.1
C:	1.9
D:	2.4

Topic:	Chemistry-Section A
Item No:	64
Question ID:	100064

Question Type:	MCQ
Question:	20 mL of 0.1 M $\mathrm{NH_4OH}$ is mixed with 40 mL of 0.05 M HCl. The pH of the mixture is nearest
	to:
	(Given: $K_b(NH_4OH) = 1 \times 10^{-5}$, $\log 2 = 0.30$, $\log 3 = 0.48$, $\log 5 = 0.69$, $\log 7 = 0.84$, $\log 11 = 0.84$
	1.04)
A:	3.2
B:	4.2
C:	5.2
D:	6.2

Topic:	Chemistry-Section A			
Item No:	65			
Question ID:	100065			
Question Type:	MCQ			
	Mato	ch List - I with List - II		
		List - I		List - II
	(A)	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	(I)	Cu
Question:	(B)	$CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)$	(II)	$Cu/ZnO-Cr_2O_3$
	(C)	$CO(g) + H_2(g) \rightarrow HCHO(g)$	(III)	$Fe_xO_y + K_2O + Al_2O_3$
	(D)	$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$	(IV)	Ni
	Choo	ose the correct answer from the options	given	below:
A:	(A) -	· (II), (B) - (IV), (C) - (I), (D) - (III)		
B:	(A) -	· (II), (B) - (I), (C) - (IV), (D) - (III)		
C:	(A) -	· (III), (B) - (IV), (C) - (I), (D) - (II)		
D:	(A) -	· (III), (B) - (I), (C) - (IV), (D) - (II)		

Topic:	Chemistry-Section A
Item No:	66
Question ID:	100066

Question Type:	MCQ
Question:	The IUPAC nomenclature of an element with electronic configuration [Rn] $5 f^{14} 6 d^1 7 s^2$ is :
A:	Unnilbium
B:	Unnilunium
C:	Unnilquadium
D:	Unniltrium

Topic:	Chemistry-Section A		
Item No:	67		
Question ID:	100067		
Question Type:	MCQ		
Question:	The compound(s) that is(are) removed as slag during the extraction of copper is : $ (A) \text{CaO} $ $ (B) \text{FeO} $ $ (C) \text{Al}_2\text{O}_3 $ $ (D) \text{ZnO} $ $ (E) \text{NiO} $ Choose the correct answer from the options given below :		
A:	(C), (D) only		
B:	(A), (B), (E) only		
C:	(A), (B) only		
D:	(B) only		

Topic:	Chemistry-Section A
Item No:	68
Question ID:	100068
Question Type:	MCQ
Question:	The reaction of $\rm H_2O_2$ with potassium permanganate in acidic medium leads to the formation of mainly :

A:	Mn^{2+}
B:	Mn ⁴⁺
C:	Mn^{3+}
D:	Mn ⁶⁺

Topic:	Chemistry-Section A
Item No:	69
Question ID:	100069
Question Type:	MCQ
Question:	Choose the correct order of density of the alkali metals :
A:	Li < K < Na < Rb < Cs
B:	Li < Na < K < Rb < Cs
C:	Cs < Rb < K < Na < Li
D:	Li < Na < K < Cs < Rb

Topic:	Chemistry-Section A
Item No:	70
Question ID:	100070
Question Type:	MCQ
Question:	The geometry around boron in the product 'B' formed from the following reaction is $BF_3 + NaH \xrightarrow{ 450 \text{ K} } A + NaF$ $A + NMe_3 \to B$
A:	trigonal planar
B:	tetrahedral
C:	pyramidal
D:	square planar

Topic:	Chemistry-Section A
Item No:	71

Question ID:	100071
Question Type:	MCQ
Question:	The interhalogen compound formed from the reaction of bromine with excess of fluorine is a :
A:	hypohalite
B:	halate
C:	perhalate
D:	halite

Topic:	Chemistry-Section A
Item No:	72
Question ID:	100072
Question Type:	MCQ
Question:	The photochemical smog does not generally contain:
A:	NO
B:	NO ₂
C:	SO ₂
D:	НСНО

Topic:	Chemistry-Section A
Item No:	73
Question ID:	100073
Question Type:	MCQ

Question:	A compound 'A' on reaction with 'X' and 'Y' produces the same major product but different by product 'a' and 'b'. Oxidation of 'a' gives a substance produced by ants.
	$CH_3 CH_3 CH_3$ $H_2C = C - CH_2 - C - CH_3$ $CH_3 CH_3$ $Y b + O = C - CH_2 - C - CH_3$ $CH_3 CH_3$ $Y cH_3 C$
A:	$\rm KMnO_4/H^+$ and dil. $\rm KMnO_4$, 273 K
B:	KMnO ₄ (dilute), 273 K and KMnO ₄ /H ⁺
C:	$\rm KMnO_4/H^+$ and $\rm O_3$, $\rm H_2O/Zn$
D:	O_3 , H_2O/Zn and $KMnO_4/H^+$

Topic:	Chemistry-Section A
Item No:	74
Question ID:	100074
Question Type:	MCQ
Question:	Most stable product of the following reaction is :
A:	CN

Topic:	Chemistry-Section A
Item No:	75
Question ID:	100075
Question Type:	MCQ
Question:	Which one of the following reactions does not represent correct combination of substrate and product under the given conditions?
A :	$\begin{array}{c c} & & & & \\ \hline \\ \hline \\ \hline \\ Pd.BaSO_4 \end{array} \end{array} \longrightarrow \begin{array}{c} O \\ H \end{array}$

Topic:	Chemistry-Section A
Item No:	76
Question ID:	100076
Question Type:	MCQ
Question:	An organic compound 'A' on reaction with $\mathrm{NH_3}$ followed by heating gives compound B. Which on further strong heating gives compound C ($\mathrm{C_8H_5NO_2}$). Compound C on sequential reaction with ethanolic KOH, alkyl chloride and hydrolysis with alkali gives a primary amine. The compound A is :
A:	CHO
В:	CHO

Topic:	Chemistry-Section A
Item No:	77
Question ID:	100077
Question Type:	MCQ
Question:	Melamine polymer is formed by the condensation of :
A:	H_2N NH_2 NH_2 NH_2
B:	H_2N NH_2 $+$ HCHO NH_2
C:	H ₂ N + HCHO

Topic:	Chemistry-Section A
Item No:	78
Question ID:	100078
Question Type:	MCQ
Question:	During the denaturation of proteins, which of these structures will remain intact?
A:	Primary
B:	Secondary
C:	Tertiary
D:	Quaternary

Topic:	Chemistry-Section A
Item No:	79
Question ID:	100079
Question Type:	MCQ
Question:	Drugs used to bind to receptors, inhibiting its natural function and blocking a message are called :
A:	Agonists
B:	Antagonists
C:	Allosterists
D:	Anti histaminists

Topic:	Chemistry-Section A
Item No:	80

Question ID:	100080
Question Type:	MCQ
Question:	Given below are two statements:
	Statement I : On heating with KHSO ₄ , glycerol is dehydrated and acrolein is formed.
	Statement II: Acrolein has fruity odour and can be used to test glycerol's presence.
	Choose the correct option.
A:	Both Statement I and Statement II are correct.
B:	Both Statement I and Statement II are incorrect.
C:	Statement I is correct but Statement II is incorrect.
D:	Statement I is incorrect but Statement II is correct.

Topic:	Chemistry-Section B
Item No:	81
Question ID:	100081
Question Type:	Numeric Answer
	Among the following species
Question:	N ₂ , N ₂ ⁺ , N ₂ ⁻ , N ₂ ²⁻ , O ₂ , O ₂ ⁺ , O ₂ ⁻ , O ₂ ²⁻
	the number of species showing diamagnesim is

Topic:	Chemistry-Section B	
Item No:	82	
Question ID:	100082	
Question Type:	Numeric Answer	
Question:	The enthalpy of combustion of propane, graphite and dihydrogen at 298 K are $-2220.0 \text{ kJ mol}^{-1}$, $-393.5 \text{ kJ mol}^{-1}$ and $-285.8 \text{ kJ mol}^{-1}$ respectively. The magnitude of enthalpy of formation of propane (C_3H_8) is kJ mol $^{-1}$. (Nearest integer)	

Topic:	Chemistry-Section B
Item No:	83
Question ID:	100083

Question Type:	Numeric Answer
Question:	The pressure of a moist gas at 27°C is 4 atm. The volume of the container is doubled at the same temperature. The new pressure of the moist gas is $____\times 10^{-1}$ atm. (Nearest integer) (Given : The vapour pressure of water at 27°C is 0.4 atm.)

Topic:	Chemistry-Section B
Item No:	84
Question ID:	100084
Question Type:	Numeric Answer
Question:	The cell potential for $Zn Zn^{2+}(aq) Sn^{x+} $ Sn is 0.801 V at 298 K. The reaction quotient for the above reaction is 10^{-2} . The number of electrons involved in the given electrochemical cell reaction is (Given: $E_{Zn^{2+} Zn}^{o} = -0.763 V$, $E_{Sn^{x+} Sn}^{o} = +0.008 V$ and $\frac{2.303RT}{F} = 0.06 V$)

Topic:	Chemistry-Section B
Item No:	85
Question ID:	100085
Question Type:	Numeric Answer
Question:	The half life for the decomposition of gaseous compound A is 240 s when the gaseous pressure was 500 Torr initially. When the pressure was 250 Torr, the half life was found to be 4.0 min. The order of the reaction is (Nearest integer)

Topic:	Chemistry-Section B
Item No:	86
Question ID:	100086
Question Type:	Numeric Answer

	Consider the following metal complexes:
	$[Co(NH_3)_6]^{3+}$
	$[Co(NH_3)_6]^{3+}$ $[CoCl(NH_3)_5]^{2+}$ $[Co(CN)_6]^{3-}$
Question:	$[Co(CN)_6]^{3-}$
	$[Co(NH_3)_5(H_2O)]^{3+}$
	The spin-only magnetic moment value of the complex that absorbes light with shortest
	wavelength is B.M. (Nearest integer)

Topic:	Chemistry-Section B
Item No:	87
Question ID:	100087
Question Type:	Numeric Answer
Question:	Among Co^{3+} , Ti^{2+} , V^{2+} and Cr^{2+} ions, one if used as a reagent cannot liberate H_2 from dilute mineral acid solution, its spin-only magnetic moment in gaseous state is

Topic:	Chemistry-Section B
Item No:	88
Question ID:	100088
Question Type:	Numeric Answer
Question:	While estimating the nitrogen present in an organic compound by Kjeldahl's method, the ammonia evolved from 0.25 g of the compound neutralized 2.5 mL of 2 M $\rm H_2SO_4$. The percentage of nitrogen present in organic compound is

Topic:	Chemistry-Section B
Item No:	89
Question ID:	100089
Question Type:	Numeric Answer
Question:	The number of ${\rm sp^3}$ hybridised carbons in an acyclic neutral compound with molecular formula ${\rm C_4H_5N}$ is

Topic:	Chemistry-Section B
Item No:	90

Question ID:	100090
Question Type:	Numeric Answer
Question:	In the given reaction $\begin{array}{cccccccccccccccccccccccccccccccccccc$