Paper:	B.E_B.Tech	
Set Name:	Set 20	
Exam Date:	27 July 2022	
Exam Shift:	1	
Langauge:	English	

Topic:	Mathematics-Section A
Item No:	1
Question ID:	1169401
Question Type:	MCQ
Question:	Let R_1 and R_2 be two relations defined on \mathbb{R} by $a R_1 b \Leftrightarrow ab \geq 0$ and $a R_2 b \Leftrightarrow a \geq b$ Then,
A:	R_1 is an equivalence relation but not R_2
B:	R_2 is an equivalence relation but not R_1
C:	both R_1 and R_2 are equivalence relations
D:	neither R_1 nor R_2 is an equivalence relation

Topic:	Mathematics-Section A
Item No:	2
Question ID:	1169402
Question Type:	MCQ
Question:	Let $f, g: \mathbb{N} - \{1\} \to \mathbb{N}$ be functions defined by $f(a) = a$, where a is the maximum of the powers of those primes p such that p^{α} divides a , and $g(a) = a + 1$, for all $a \in \mathbb{N} - \{1\}$. Then, the function $f + g$ is
A:	one-one but not onto
B:	onto but not one-one
C:	both one-one and onto
D:	neither one-one nor onto

Topic:	Mathematics-Section A
Item No:	3
Question ID:	1169403
Question Type:	MCQ
Question:	Let the minimum value v_0 of $v = z ^2 + z - 3 ^2 + z - 6i ^2$, $z \in \mathbb{C}$ is attained at $z = z_0$. Then $\left 2z_0^2 - \overline{z_0}^3 + 3\right ^2 + v_0^2$ is equal to
A:	1000

B:	1024
C:	1105
D:	1196

Topic:	Mathematics-Section A
Item No:	4
Question ID:	1169404
Question Type:	MCQ
Question:	Let $A = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix}$. Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^2 + \beta A = 2I$. Then $\alpha + \beta$ is equal to
A:	-10
B:	-6
C:	6
D:	10

Topic:	Mathematics-Section A
Item No:	5
Question ID:	1169405
Question Type:	MCQ
Question:	The remainder when $(2021)^{2022} + (2022)^{2021}$ is divided by 7 is
A:	0
B:	1
C:	2
D:	6

Topic:	Mathematics-Section A
Item No:	6
Question ID:	1169406
Question Type:	MCQ
Question:	Suppose $a_1, a_2,, a_n$, be an arithmetic progression of natural numbers. If the ratio of the sum of first five terms to the sum of first nine terms of the progression is $5:17$ and $110 \le a_{15} \le 120$, then the sum of the first ten terms of the progression is equal to
A:	290
B:	380
C:	460
D:	510

Topic:	Mathematics-Section A	
Item No:	7	
Question ID:	1169407	
Question Type:	MCQ	
Question:	Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as $f(x) = a \sin\left(\frac{\pi[x]}{2}\right) + [2-x], \ a \in \mathbb{R}, \text{ where } [t] \text{ is the greatest integer less than}$ or equal to t . If $\lim_{x \to -1} f(x)$ exists, then the value of $\int_0^4 f(x) dx$ is equal to	
A:	-1	
B:	-2	
C:	1	
D:	2	

Topic:	Mathematics-Section A
Item No:	8
Question ID:	1169408
Question Type:	MCQ
Question:	Let $I = \int_{\pi/4}^{\pi/3} \left(\frac{8 \sin x - \sin 2x}{x} \right) dx$. Then
A:	$\frac{\pi}{2} < I < \frac{3\pi}{4}$
B:	$\frac{\pi}{5} < I < \frac{5\pi}{12}$
C:	$\frac{5\pi}{12} < I < \frac{\sqrt{2}}{3}\pi$
D:	$\frac{3\pi}{4} < I < \pi$

Topic:	Mathematics-Section A
Item No:	9
Question ID:	1169409
Question Type:	MCQ
Question:	The area of the smaller region enclosed by the curves $y^2 = 8x + 4$ and $x^2 + y^2 + 4\sqrt{3}x - 4 = 0$ is equal to
A:	$\frac{1}{3}(2-12\sqrt{3}+8\pi)$

B:	$\frac{1}{3}\left(2-12\sqrt{3}+6\pi\right)$
C:	$\frac{1}{3} \left(4 - 12\sqrt{3} + 8\pi \right)$
D:	$\frac{1}{3}(4-12\sqrt{3}+6\pi)$

Topic:	Mathematics-Section A
Item No:	10
Question ID:	11694010
Question Type:	MCQ
Question:	Let $y = y_1(x)$ and $y = y_2(x)$ be two distinct solutions of the differential equation $\frac{dy}{dx} = x + y$, with $y_1(0) = 0$ and $y_2(0) = 1$ respectively. Then, the number of points of intersection of $y = y_1(x)$ and $y = y_2(x)$ is
A:	0
B:	1
C:	2
D:	3

Topic:	Mathematics-Section A
Item No:	11
Question ID:	11694011
Question Type:	MCQ
Question:	Let $P(a,b)$ be a point on the parabola $y^2 = 8x$ such that the tangent at P passes through the centre of the circle $x^2 + y^2 - 10x - 14y + 65 = 0$. Let A be the product of all possible values of a and a be the product of all possible values of a . Then the value of a is equal to
A:	0
B:	25
C:	40
D:	65

Topic:	Mathematics-Section A	
Item No:	12	
Question ID:	11694012	
Question Type:	MCQ	
Question:	Let $\overrightarrow{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 5\hat{j} + 4\hat{k}$ be two vectors, such that $\overrightarrow{a} \times \overrightarrow{b} = -\hat{i} + 9\hat{i} + 12\hat{k}$. Then the projection of $\overrightarrow{b} - 2\overrightarrow{a}$ on $\overrightarrow{b} + \overrightarrow{a}$ is equal to	

A:	2
B:	$\frac{39}{5}$
C:	9
D:	$\frac{46}{5}$

Topic:	Mathematics-Section A
Item No:	13
Question ID:	11694013
Question Type:	MCQ
Question:	Let $\vec{a} = 2 \overset{\widehat{i}}{i} - \overset{\widehat{j}}{j} + 5 \overset{\widehat{k}}{k}$ and $\vec{b} = \alpha \overset{\widehat{i}}{i} + \beta \overset{\widehat{j}}{j} + 2 \overset{\widehat{k}}{k} \cdot \operatorname{If}\left(\left(\vec{a} \times \vec{b}\right) \times \overset{\widehat{i}}{i}\right) \cdot \overset{\widehat{k}}{k} = \frac{23}{2}$, then $ \vec{b} \times 2 \overset{\widehat{j}}{j} $ is equal to
A:	4
B:	5
C:	$\sqrt{21}$
D:	$\sqrt{17}$

Topic:	Mathematics-Section A
Item No:	14
Question ID:	11694014
Question Type:	MCQ
Question:	Let S be the sample space of all five digit numbers. It p is the probability that a randomly selected number from S, is a multiple of 7 but not divisible by 5, then 9p is equal to
A:	1.0146
B:	1.2085
C:	1.0285
D:	1.1521

Topic:	Mathematics-Section A
Item No:	15
Question ID:	11694015
Question Type:	MCQ

Question:	Let a vertical tower AB of height $2h$ stands on a horizontal ground. Let from a point P on the ground a man can see upto height h of the tower with an angle of elevation 2α . When from P , he moves a distance d in the direction of \overrightarrow{AP} , he can see the top B of the tower with an angle of elevation α . If $d = \sqrt{7}h$, then tan α is equal to
A:	$\sqrt{5}-2$
B:	$\sqrt{3}-1$
C:	√7 - 2
D:	$\sqrt{7}-\sqrt{3}$

Topic:	Mathematics-Section A
Item No:	16
Question ID:	11694016
Question Type:	MCQ
Question:	$(p \wedge r) \Leftrightarrow (p \wedge (\sim q))$ is equivalent to $(\sim p)$ when r is
A:	p
B:	~p
C:	q
D:	~q

Topic:	Mathematics-Section A
Item No:	17
Question ID:	11694017
Question Type:	MCQ
Question:	If the plane P passes through the intersection of two mutually perpendicular planes $2x + ky - 5z = 1$ and $3kx - ky + z = 5$, $k < 3$ and intercepts a unit length on positive x -axis, then the intercept made by the plane P on the y -axis is
A:	$\frac{1}{11}$
B:	$\frac{5}{11}$
C:	6
D:	7

Topic:	Mathematics-Section A
Item No:	18
Question ID:	11694018
Question Type:	MCQ

Question:	Let $A(1, 1)$, $B(-4, 3)$, $C(-2, -5)$ be vertices of a triangle ABC , P be a point on side BC , and Δ_1 and Δ_2 be the areas of triangles APB and ABC , respectively. If $\Delta_1 : \Delta_2 = 4 : 7$, then the area enclosed by the lines AP , AC and the x -axis is
A:	$\frac{1}{4}$
B:	$\frac{3}{4}$
C:	$\frac{1}{2}$
D:	1

Topic:	Mathematics-Section A
Item No:	19
Question ID:	11694019
Question Type:	MCQ
Question:	If the circle $x^2 + y^2 - 2gx + 6y - 19c = 0$, $g, c \in \mathbb{R}$ passes through the point $(6,1)$ and its centre lies on the line $x - 2cy = 8$, then the length of intercept made by the circle on x-axis is
A:	$\sqrt{11}$
B:	4
C:	3
D:	2√23

Topic:	Mathematics-Section A
Item No:	20
Question ID:	11694020
Question Type:	MCQ
Question:	Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined as: $f(x) = \begin{cases} \int_0^x (5- t-3) dt , & x > 4 \\ x^2 + bx , & x \le 4 \end{cases}$ where $b \in \mathbb{R}$. If f is continuous at $x = 4$, then which of the following statements is NOT true?
A:	f is not differentiable at $x = 4$
B:	$f'(3) + f'(5) = \frac{35}{4}$
C:	f is increasing in $\left(-\infty, \frac{1}{8}\right) \cup \left(8, \infty\right)$
D:	f has a local minima at $x = \frac{1}{8}$

Topic:	Mathematics-Section B
Item No:	21
Question ID:	11694021
Question Type:	Numeric Answer
Question:	For $k \in \mathbb{R}$, let the solutions of the equation $\cos(\sin^{-1}(x \cot(\tan^{-1}(\cos(\sin^{-1}x))))) = k$, $0 < x < \frac{1}{\sqrt{2}}$ be α and β , where the inverse trigonometric functions take only principal values. If the solutions of the equation $x^2 - bx - 5 = 0$ are $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^2}$ is equal to

Topic:	Mathematics-Section B
Item No:	22
Question ID:	11694022
Question Type:	Numeric Answer
Question:	The mean and variance of 10 observations were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is

Topic:	Mathematics-Section B
Item No:	23
Question ID:	11694023
Question Type:	Numeric Answer
Question:	Let the line $\frac{x-3}{7} = \frac{y-2}{-1} = \frac{z-3}{-4}$ intersect the plane containing the lines $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $4ax - y + 5z - 7a = 0 = 2x - 5y - z - 3$, $a \in \mathbb{R}$ at the point $P(\alpha, \beta, \gamma)$. Then the value of $\alpha + \beta + \gamma$ equals

Topic:	Mathematics-Section B
Item No:	24
Question ID:	11694024
Question Type:	Numeric Answer
Question:	An ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the vertices of the hyperbola $H: \frac{x^2}{49} - \frac{y^2}{64} = -1$. Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H , respectively. Let the product of the eccentricities of E and H be $\frac{1}{2}$. If I is the length of the latus rectum of the ellipse E , then the value of 113 I is equal to

Topic:	Mathematics-Section B
Item No:	25
Question ID:	11694025
Question Type:	Numeric Answer
Question:	Let $y = y(x)$ be the solution curve of the differential equation $\sin\left(2x^2\right)\log_e\left(\tan x^2\right)dy + \left(4xy - 4\sqrt{2}x\sin\left(x^2 - \frac{\pi}{4}\right)\right)dx = 0$, $0 < x < \sqrt{\frac{\pi}{2}}$, which passes through the point $\left(\sqrt{\frac{\pi}{6}}, 1\right)$. Then $\left y\left(\sqrt{\frac{\pi}{3}}\right)\right $ is equal to

Topic:	Mathematics-Section B
Item No:	26
Question ID:	11694026
Question Type:	Numeric Answer
Question:	Let M and N be the number of points on the curve $y^5 - 9xy + 2x = 0$, where the tangents to the curve are parallel to x -axis and y -axis, respectively. Then the value of $M + N$ equals

Topic:	Mathematics-Section B
Item No:	27
Question ID:	11694027
Question Type:	Numeric Answer
Question:	Let $f(x) = 2x^2 - x - 1$ and $S = \{n \in \mathbb{Z} : f(n) \le 800\}$. Then, the value of $\sum_{n \in S} f(n)$ is equal to

Topic:	Mathematics-Section B
Item No:	28
Question ID:	11694028
Question Type:	Numeric Answer
Question:	Let S be the set containing all 3×3 matrices with entries from $\{-1, 0, 1\}$. The total number of matrices $A \in S$ such that the sum of all the diagonal elements of $A^T A$ is 6 is

Topic:	Mathematics-Section B
Item No:	29
Question ID:	11694029
Question Type:	Numeric Answer

LUHESHON	If the length of the latus rectum of the ellipse $x^2 + 4y^2 + 2x + 8y - \lambda = 0$ is 4, and l
	is the length of its major axis, then $\lambda + l$ is equal to

Topic:	Mathematics-Section B
Item No:	30
Question ID:	11694030
Question Type:	Numeric Answer
Question:	Let $S = \{z \in \mathbb{C} : z^2 + \bar{z} = 0\}$. Then $\sum_{z \in S} (\text{Re}(z) + \text{Im}(z))$ is equal to

Topic:	Physics-Section A
Item No:	31
Question ID:	11694031
Question Type:	MCQ
Question:	A torque meter is calibrated to reference standards of mass, length and time each with 5% accuracy. After calibration, the measured torque with this torque meter will have net accuracy of:
A:	15%
B:	25%
C:	75%
D:	5%

Topic:	Physics-Section A
Item No:	32
Question ID:	11694032
Question Type:	MCQ
Question:	A bullet is shot vertically downwards with an initial velocity of 100 m/s from a certain height. Within 10s, the bullet reaches the ground and instantaneously comes to rest due to the perfectly inelastic collision. The velocity-time curve for total time $t=20s$ will be: (Take $g=10m/s^2$).
A:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Topic:	Physics-Section A
Item No:	33
Question ID:	11694033
Question Type:	MCQ
Question:	Sand is being dropped from a stationary dropper at a rate of 0.5 kgs ⁻¹ on a conveyor belt moving with a velocity of 5 ms ⁻¹ . The power needed to keep the belt moving with the same velocity will be:
A:	1.25 W
B:	2.5 W
C:	6.25 W
D:	12.5 W

Topic:	Physics-Section A
Item No:	34
Question ID:	11694034
Question Type:	MCQ
Question:	A bag is gently dropped on a conveyor belt moving at a speed of 2 m/s. The coefficient of friction between the conveyor belt and bag is 0.4. Initially, the bag slips on the belt before it stops due to friction. The distance travelled by the bag on the belt during slipping motion, is : [Take $g = 10 \text{ m/s}^{-2}$]

A:	2 m
B:	0.5 m
C:	3.2 m
D:	0.8 ms

Topic:	Physics-Section A
Item No:	35
Question ID:	11694035
Question Type:	MCQ
Question:	Two cylindrical vessels of equal cross-sectional area $16~\rm cm^2$ contain water upto heights $100~\rm cm$ and $150~\rm cm$ respectively. The vessels are interconnected so that the water levels in them become equal. The work done by the force of gravity during the process, is [Take, density of water = $10^3~\rm kg/m^3$ and g = $10~\rm ms^{-2}$]:
A:	0.25 J
B:	1 J
C:	8 J
D:	12 J

Topic:	Physics-Section A
Item No:	36
Question ID:	11694036
Question Type:	MCQ
Question:	Two satellites A and B, having masses in the ratio 4:3, are revolving in circular orbits of radii 3r and 4r respectively around the earth. The ratio of total mechanical energy of A to B is:
A:	9:16
B:	16:9
C:	1:1
D:	4:3

Topic:	Physics-Section A
Item No:	37
Question ID:	11694037
Question Type:	MCQ

Question:	If K_1 and K_2 are the thermal conductivities, L_1 and L_2 are the lengths and A_1 and A_2 are the cross sectional areas of steel and copper rods respectively such that $\frac{K_2}{K_1} = 9 , \frac{A_1}{A_2} = 2, \frac{L_1}{L_2} = 2.$ Then, for the arrangement as shown in the figure, the value of temperature T of the steel - copper junction in the steady state will be: $\frac{T}{\text{Furnace}} = \frac{T}{450^{\circ}\text{C}} = \frac{T}{\text{Copper}} = \frac{T}{0^{\circ}\text{C}} = \frac{T}{100^{\circ}\text{C}} = \frac{T}{100^{\circ}\text{C}$
A:	18°C
B:	14°C
C:	45°C
D:	150°C

Topic:	Physics-Section A
Item No:	38
Question ID:	11694038
Question Type:	MCQ
Question:	Read the following statements: A. When small temperature difference between a liquid and its surrounding is doubled, the rate of loss of heat of the liquid becomes twice. B. Two bodies P and Q having equal surface areas are maintained at temperature 10°C and 20°C. The thermal radiation emitted in a given time by P and Q are in the ratio 1:1.15. C. A Carnot Engine working between 100K and 400K has an efficiency of 75%. D. When small temperature difference between a liquid and its surrounding is quadrupled, the rate of loss of heat of the liquid becomes twice. Choose the correct answer from the options given below:
A:	A, B, C only
B:	A, B only
C:	A, C only
D:	B, C, D only

Topic:	Physics-Section A
Item No:	39
Question ID:	11694039
Question Type:	MCQ

Question:	Same gas is filled in two vessels of the same volume at the same temperature. If the ratio of the number of molecules is 1:4, then A. The r.m.s. velocity of gas molecules in two vessels will be the same. B. The ratio of pressure in these vessels will be 1:4. C. The ratio of pressure will be 1:1. D The r.m.s. velocity of gas molecules in two vessels will be in the ratio of 1:4. Choose the correct answer from the options given below:
A:	A and C only
B:	B and D only
C:	A and B only
D:	C and D only

Topic:	Physics-Section A
Item No:	40
Question ID:	11694040
Question Type:	MCQ
Question:	Two identical positive charges Q each are fixed at a distance of '2a' apart from each other. Another point charge q_0 with mass 'm' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge q_0 executes SHM. The time period of oscillation of charge q_0 will be :
A:	$\sqrt{\frac{4\pi^3\varepsilon_0 ma^3}{q_0 Q}}$
B:	$\sqrt{\frac{q_0 Q}{4\pi^3 \varepsilon_0 ma^3}}$
C:	$\sqrt{\frac{4\pi^3 \varepsilon_0 ma^3}{\sqrt{\frac{2\pi^2 \varepsilon_0 ma^3}{q_0 Q}}}}$
D:	$\sqrt{\frac{8\pi^3\varepsilon_0 ma^3}{q_0 Q}}$

Topic:	Physics-Section A
Item No:	41
Question ID:	11694041

Question Type:	MCQ
Question:	Two sources of equal emfs are connected in series. This combination is connected to an external resistance R. The internal resistances of the two sources are r_1 and r_2 $(r_1 > r_2)$. If the potential difference across the source of internal resistance r_1 is zero, then the value of R will be:
A:	$r_1 - r_2$
B:	$\frac{r_1r_2}{r_1+r_2}$
C:	$\frac{r_1+r_2}{2}$
D:	$r_2 - r_1$

Topic:	Physics-Section A
Item No:	42
Question ID:	11694042
Question Type:	MCQ
Question:	Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3s and 4s respectively. If their moments of inertia are in the ratio of 3:2, then the ratio of their magnetic moments will be:
A:	2:1
B:	8:3
C:	1:3
D:	27:16

Topic:	Physics-Section A
Item No:	43
Question ID:	11694043
Question Type:	MCQ
Question:	A magnet hung at 45° with magnetic meridian makes an angle of 60° with the horizontal. The actual value of the angle of dip is -
A:	$\tan^{-1}\left(\sqrt{\frac{3}{2}}\right)$
B:	$\tan^{-1}\left(\sqrt{6}\right)$
C:	$\tan^{-1}\left(\sqrt{\frac{2}{3}}\right)$
D:	$\tan^{-1}\left(\sqrt{\frac{1}{2}}\right)$

Topic:	Physics-Section A
Item No:	44
Question ID:	11694044
Question Type:	MCQ
Question:	A direct current of 4 A and an alternating current of peak value 4 A flow through resistance of 3 Ω and 2 Ω respectively. The ratio of heat produced in the two resistances in same interval of time will be:
A:	3:2
B:	3:1
C:	3:4
D:	4:3

Topic:	Physics-Section A
Item No:	45
Question ID:	11694045
Question Type:	MCQ
Question:	A beam of light travelling along X-axis is described by the electric field $E_y = 900 \sin \omega (t - x/c)$. The ratio of electric force to magnetic force on a charge q moving along Y-axis with a speed of $3 \times 10^7 \text{ ms}^{-1}$ will be: (Given speed of light = $3 \times 10^8 \text{ ms}^{-1}$
A:	1:1
B:	1:10
C:	10:1
D:	1:2

Topic:	Physics-Section A
Item No:	46
Question ID:	11694046
Question Type:	MCQ
Question:	A microscope was initially placed in air (refractive index 1). It is then immersed in oil (refractive index 2). For a light whose wavelength in air is λ , calculate the change of microscope's resolving power due to oil and choose the correct option.
A:	Resolving power will be $\frac{1}{4}$ in the oil than it was in the air.
B:	Resolving power will be twice in the oil than it was in the air.
C:	Resolving power will be four times in the oil than it was in the air.
D:	Resolving power will be $\frac{1}{2}$ in the oil than it was in the air.

Topic:	Physics-Section A
--------	-------------------

Item No:	47
Question ID:	11694047
Question Type:	MCQ
Question:	An electron (mass m) with an initial velocity $\overrightarrow{v} = v_0 \hat{i}$ ($v_0 > 0$) is moving in an electric field $\overrightarrow{E} = -E_0 \hat{i}$ ($E_0 > 0$) where E_0 is constant. If at t=0 de Broglie wavelength is $\lambda_0 = \frac{h}{mv_0}$, then its de Broglie wavelength after time t is given by
A:	λ_0
B:	$\lambda_0 \left(1 + \frac{eE_0t}{mv_0} \right)$
C:	$\lambda_0 t$
D:	$\frac{\lambda_0}{\left(1 + \frac{eE_0t}{mv_0}\right)}$

Topic:	Physics-Section A
Item No:	48
Question ID:	11694048
Question Type:	MCQ
Question:	What is the half-life period of a radioactive material if its activity drops to 1/16 th of its initial value in 30 years?
A:	9.5 years
B:	8.5 years
C:	7.5 years
D:	10.5 years

Topic:	Physics-Section A
Item No:	49
Question ID:	11694049
Question Type:	MCQ

Topic:	Physics-Section A
Item No:	50
Question ID:	11694050
Question Type:	MCQ
Question:	At a particular station, the TV transmission tower has a height of 100 m. To triple its coverage range, height of the tower should be increased to
A:	200 m
B:	300 m
C:	600 m
D:	900 m

Topic:	Physics-Section B
Item No:	52
Question ID:	11694052
Question Type:	Numeric Answer
Question:	The one division of main scale of Vernier callipers reads 1mm and 10 divisions of Vernier scale is equal to the 9 divisions on main scale. When the two jaws of the instrument touch each other, the zero of the Vernier lies to the right of zero of the main scale and its fourth division coincides with a main scale division. When a spherical bob is tightly placed between the two jaws, the zero of the Vernier scale lies in between 4.1cm and 4.2cm and 6^{th} Vernier division coincides with a main scale division. The diameter of the bob will be × 10^{-2} cm.

Topic:	Physics-Section B
Item No:	53
Question ID:	11694053
Question Type:	Numeric Answer
Question:	Two beams of light having intensities I and 4I interfere to produce a fringe pattern on a screen. The phase difference between the two beams are $\pi/2$ and $\pi/3$ at points A and B respectively. The difference between the resultant intensities at the two points is xI . The value of x will be

Topic:	Physics-Section B
Item No:	54
Question ID:	11694054
Question Type:	Numeric Answer
Question:	To light, a 50 W, 100 V lamp is connected, in series with a capacitor of capacitance $\frac{50}{\pi\sqrt{x}}\mu F$, with 200V, 50Hz AC source. The value of x will be

Topic:	Physics-Section B
Item No:	55
Question ID:	11694055
Question Type:	Numeric Answer
Question:	A 1 m long copper wire carries a current of 1 A. If the cross section of the wire is 2.0 mm^2 and the resistivity of copper is $1.7 \times 10^{-8} \Omega \text{m}$, the force experienced by moving electron in the wire is $\underline{} \times 10^{-23} \text{ N}$. (charge on electorn = $1.6 \times 10^{-19} \text{ C}$)

Topic:	Physics-Section B
Item No:	56

Question ID:	11694056
Question Type:	Numeric Answer
Question:	A long cylindrical volume contains a uniformly distributed charge of density ρ Cm ⁻³ . The electric field inside the cylindrical volume at a distance $x = \frac{2\varepsilon_0}{\rho}$ m from its axis is Vm ⁻¹ .

Topic:	Physics-Section B
Item No:	57
Question ID:	11694057
Question Type:	Numeric Answer
Question:	A mass 0.9 kg, attached to a horizontal spring, executes SHM with an amplitude A_1 . When this mass passes through its mean position, then a smaller mass of 124 g is placed over it and both masses move together with amplitude A_2 . If the ratio $\frac{A_1}{A_2}$ is $\frac{\alpha}{\alpha - 1}$, then the value of α will be

Topic:	Physics-Section B
Item No:	58
Question ID:	11694058
Question Type:	Numeric Answer
Question:	A square aluminum (shear modulus is $25 \times 10^9 \text{ Nm}^{-2}$) slab of side 60 cm and thickness 15 cm is subjected to a shearing force (on its narrow face) of 18.0×10^4 N. The lower edge is riveted to the floor. The displacement of the upper edge ismm.

Topic:	Physics-Section B
Item No:	59
Question ID:	11694059
Question Type:	Numeric Answer

Question:	A pulley of radius 1.5 m is rotated about its axis by a force $F=(12t-3t^2) N$ applied tangentially (while t is measured in seconds). If moment of inertia of the pulley about its axis of rotation is 4.5 kg m ² , the number of rotations made by the pulley
	before its direction of motion is reversed, will be $\frac{K}{\pi}$. The value of K is

Topic:	Physics-Section B
Item No:	60
Question ID:	11694060
Question Type:	Numeric Answer
Question:	A ball of mass m is thrown vertically upward. Another ball of mass 2 m is thrown at an angle θ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $\frac{1}{x}$. The value of x is

Topic:	Chemistry-Section A
Item No:	61
Question ID:	11694061
Question Type:	MCQ
Question:	250 g solution of D-glucose in water contains 10.8% of carbon by weight. The molality of the solution is nearest to (Given: Atomic Weights are, H,1 u; C,12 u; O,16 u)
A:	1.03
B:	2.06
C:	3.09
D:	5.40

Topic:	Chemistry-Section A
Item No:	62
Question ID:	11694062
Question Type:	MCQ
Question:	Given below are two statements. Statement I: O ₂ , Cu ²⁺ , and Fe ³⁺ are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field. Statement II: NaCl and H ₂ O are weakly magnetized in opposite direction to magnetic field. In the light of the above statements, choose the <i>most appropriate</i> answer from the options given below.
A:	Both Statement I and Statement II are correct.

B:	Both Statement I and Statement II are incorrect.
C:	Statement I is correct but Statement II is incorrect.
D:	Statement I is incorrect but Statement II is correct.

Topic:	Chemistry-Section A
Item No:	63
Question ID:	11694063
Question Type:	MCQ
Question:	Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R .
	Assertion A: Energy of 2s orbital of hydrogen atom is greater than that of 2s orbital of lithium. Reason R: Energies of the orbitals in the same subshell decrease with increase in the atomic number.
	In the light of the above statements, choose the <i>correct</i> answer from the options given below.
A:	Both A and R are true and R is the correct explanation of A.
B:	Both A and R are true but R is NOT the correct explanation of A.
C:	A is true but R is false.
D:	A is false but R is true.

Topic:	Chemistry-Section A
Item No:	64
Question ID:	11694064
Question Type:	MCQ
Question:	Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R.
	Assertion A: Activated charcoal adsorbs SO ₂ more efficiently than CH ₄ . Reason R: Gases with lower critical temperatures are readily adsorbed by activated charcoal.
	In the light of the above statements, choose the <i>correct</i> answer from the options given below.
A:	Both A and R are correct and R is the correct explanation of A.
B:	Both A and R are correct but R is NOT the correct explanation of A.
C:	A is correct but R is not correct.
D:	A is not correct but R is correct.

Topic:	Chemistry-Section A
--------	---------------------

Item No:	65
Question ID:	11694065
Question Type:	MCQ
Question:	Boiling point of a 2% aqueous solution of a non-volatile solute A is equal to the boiling point of 8% aqueous solution of a non-volatile solute B. The relation between molecular weights of A and B is
A:	$M_A = 4M_B$
B:	$M_B = 4M_A$
C:	$M_A = 8M_B$
D:	$M_B = 8M_A$

Topic:	Chemistry-Section A
Item No:	66
Question ID:	11694066
Question Type:	MCQ
Question:	The incorrect statement is
A:	The first ionization enthalpy of K is less than that of Na and Li.
B:	Xe does not have the lowest first ionization enthalpy in its group.
C:	The first ionization enthalpy of element with atomic number 37 is lower than that of the element with atomic number 38.
D:	The first ionization enthalpy of Ga is higher than that of the d-block element with atomic number 30.

Topic:	Chemistry-Section A
Item No:	67
Question ID:	11694067
Question Type:	MCQ
Question:	Which of the following methods are not used to refine any metal? A. Liquation B. Calcination C. Electrolysis D. Leaching E. Distillation Choose the correct answer from the options given below:
A:	B and D only
B:	A, B, D and E only
C:	B, D and E only
D:	A, C and E only

Topic:	Chemistry-Section A
Item No:	68
Question ID:	11694068
Question Type:	MCQ
Question:	Given below are two statements. Statement I: Hydrogen peroxide can act as an oxidizing agent in both acidic and basic conditions. Statement II: Density of hydrogen peroxide at 298 K is lower than that of D ₂ O. In the light of the above statements, choose the <i>correct</i> answer from the options given below.
A:	Both Statement I and Statement II are true.
B:	Both Statement I and Statement II are false.
C:	Statement I is true but Statement II is false.
D:	Statement I is false but Statement II is true.

Topic:	Chemistry-Section A
Item No:	69
Question ID:	11694069
Question Type:	MCQ
Question:	Given below are two statements. Statement I: The chlorides of Be and Al have Cl-bridged structure. Both are soluble in organic solvents and act as Lewis bases. Statement II: Hydroxides of Be and Al dissolve in excess alkali to give beryllate and aluminate ions. In the light of the above statements, choose the <i>correct</i> answer from the options given below.
A:	Both Statement I and Statement II are true.
B:	Both Statement I and Statement II are false.
C:	Statement I is true but Statement II is false.
D:	Statement I is false but Statement II is true.

Topic:	Chemistry-Section A
Item No:	70
Question ID:	11694070
Question Type:	MCQ
Question:	Which oxoacid of phosphorous has the highest number of oxygen atoms present in its chemical formula?
A:	Pyrophosphorus acid

B:	Hypophosphoric acid
C:	Phosphoric acid
D:	Pyrophosphoric acid

Topic:	Chemistry-Section A
Item No:	71
Question ID:	11694071
Question Type:	MCQ
Question:	Given below are two statements. Statement I: Iron (III) catalyst, acidified $K_2Cr_2O_7$ and neutral KMnO ₄ have the ability to oxidise I ⁻ to I ₂ independently. Statement II: Manganate ion is paramagnetic in nature and involves $p\pi - p\pi$ bonding. In the light of the above statements, choose the <i>correct</i> answer from the options given below.
A:	Both Statement I and Statement II are true.
B:	Both Statement I and Statement II are false.
C:	Statement I is true but Statement II is false.
D:	Statement I is false but Statement II is true.

Topic:	Chemistry-Section A
Item No:	72
Question ID:	11694072
Question Type:	MCQ
Question:	The total number of Mn=O bonds in Mn ₂ O ₇ is
A:	4
B:	5
C:	6
D:	3

Topic:	Chemistry-Section A
Item No:	73
Question ID:	11694073
Question Type:	MCQ

	List I	List II
	Pollutant	Disease/sickness
	A. Sulphate (>500 ppm)	I. Methemoglobinemia
Question:	B. Nitrate (>50 ppm)	II. Brown mottling of teeth
	C. Lead (>50 ppb)	III. Laxative effect
	D. Fluoride (> 2ppm)	IV. Kidney damage
A:	Choose the correct answer from A-IV, B-I, C-II, D-III	om the options given below:
B:	A-III, B-I, C-IV, D-II	
D:	A-II, B-IV, C-I, D-III	
D:	A-II, B-IV, C-III, D-I	

Topic:	Chemistry-Section A	
Item No:	74	
Question ID:	11694074	
Question Type:	MCQ	
Question:	Given below are two statements: one is labelled as Assertion A and, the other is labelled as Reason R. Assertion A: [6] Annulene, [8] Annulene and cis-[10] Annulene, are respectively aromatic, not-aromatic and aromatic. [6] Annulene [8] Annulene cis-[10] Annulene Reason R: Planarity is one of the requirements of aromatic systems. In the light of the above statements, choose the most appropriate answer from the options given below.	
A:	Both A and R are correct and R is the correct explanation of A.	
B:	Both A and R are correct but R is NOT the correct explanation of A.	
C:	A is correct but R is not correct.	
D:	A is not correct but R is correct.	

Topic:	Chemistry-Section A
Item No:	75
Question ID:	11694075
Question Type:	MCQ
Question:	CH_2OH $+HCl \xrightarrow{\Delta} A \xrightarrow{Nal} B$ OH In the above reaction product B is: Product B is
A:	CH ₂ I OH
B:	CH ₂ I
C:	CH ₂ CI OH
D:	CH ₂ CI

Topic:	Chemistry-Section A
Item No:	76
Question ID:	11694076
Question Type:	MCQ

	Match List I with List II.	
	List I	List II
	Polymers	Commercial names
	A. Phenol-formaldehyde resin	I. Glyptal
Question:	B. Copolymer of 1,3-butadiene and styrene	II. Novolac
	C. Polyester of glycol and phthalic acid	III. Buna-S
	D. Polyester of glycol and terephthalic acid	IV. Dacron
	Choose the correct answer from the options given below:	
A:	A-II, B-III, C-IV, D-I	
B:	A-II, B-III, C-I, D-IV	
C:	A-II, B-I, C-III, D-IV	
D:	A-III, B-II, C-IV, D-I	

Topic:	Chemistry-Section A
Item No:	77
Question ID:	11694077
Question Type:	MCQ
Question:	A sugar 'X' dehydrates very slowly under acidic condition to give furfural which on further reaction with resorcinol gives the coloured product after sometime. Sugar 'X' is
A:	Aldopentose
B:	Aldotetrose
C:	Oxalic acid
D:	Ketotetrose

Topic:	Chemistry-Section A
Item No:	78
Question ID:	11694078
Question Type:	MCQ

	Match List I with List II.		
	List I	List II	
	A. HOON OH	I. Anti-depressant	
Question:	CH ₃ CH ₃ CH ₃	II. 550 times sweeter than cane sugar.	
	C. NHNH ₂	III. Narcotic analgesic	
	D. ONH SOO Choose the correct answer from the op	IV. Antiseptic	
A:	A-IV, B-III, C-II, D-I		
B:	A-III, B-I, C-II, D-IV		
C:	A-III, B-IV, C-I, D-II		
D:	A-III, B-I, C-IV, D-II		

Topic:	Chemistry-Section A	
Item No:	79	
Question ID:	11694079	
Question Type:	MCQ	
Question:	In Carius method of estimation of halogen, 0.45 g of an organic compound gave 0.36 g of AgBr. Find out the percentage of bromine in the compound. (Molar masses: AgBr = 188 g mol ⁻¹ ; Br = 80 g mol ⁻¹)	
A:	34.04%	
B:	40.04%	
C:	36.03%	

) :	38.04%	
--	------------	--------	--

Topic:	Chemistry-Section A		
Item No:	80		
Question ID:	11694080		
Question Type:	MCQ		
	Match List I with List II.		
	List I	List II	
	A. Benzenesulphonyl chloride	I. Test for primary amines	
Question:	B. Hoffmann bromamide reaction	II. Anti Saytzeff	
	C. Carbylamine reaction	III. Hinsberg reagent	
	D. Hoffmann orientation	IV. Known reaction of Isocyanates.	
	Choose the correct answer from the options given below:		
A:	A-IV, B-III, C-II, D-I		
B:	A-IV, B-II, C-I, D-III		
C:	A-III, B-IV, C-I, D-II		
D:	A-IV, B-III, C-I, D-II		

Topic:	Chemistry-Section B	
Item No:	81	
Question ID:	11694081	
Question Type:	Numeric Answer	
Question:	20 mL of 0.02 M $\rm K_2Cr_2O_7$ solution is used for the titration of 10 mL of $\rm Fe^{2+}$ solution in the acidic medium. The molarity of $\rm Fe^{2+}$ solution is \times 10 ⁻² M. (Nearest Integer)	

Topic:	Chemistry-Section B
Item No:	82
Question ID:	11694082
Question Type:	Numeric Answer

	$2NO + 2H_2 \rightarrow N_2 + 2H_2O$ The above reaction has been studied at 800°C. The related data are get the table below			related data are giv
Question:	Reaction serial number	Initial Pressure of H ₂ / kPa	Initial Pressure of NO/kPa	Initial rate $ \frac{\left(-\frac{dp}{dt}\right)}{\left(kPa/s\right)} $
	1	65.6	40.0	0.135
	2	65.6	20.1	0.033
	3	38.6	65.6	0.214
	4	19.2	65.6	0.106

Topic:	Chemistry-Section B
Item No:	83
Question ID:	11694083
Question Type:	Numeric Answer
Question:	Amongst the following, the number of oxide(s) which are paramagnetic in nature is Na ₂ O, KO ₂ , NO ₂ , N ₂ O, ClO ₂ , NO, SO ₂ , Cl ₂ O

Topic:	Chemistry-Section B	
Item No:	84	
Question ID:	11694084	
Question Type:	Numeric Answer	
Question:	The molar heat capacity for an ideal gas at constant pressure is $20.785 \text{ J K}^{-1}\text{mol}^{-1}$. The change in internal energy is 5000 J upon heating it from 300 K to 500 K. The number of moles of the gas at constant volume is [Nearest integer] (Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)	

Topic:	Chemistry-Section B	
Item No:	85	
Question ID:	11694085	
Question Type:	Numeric Answer	
Question:	According to MO theory, number of species/ions from the following having identical bond order is CN^-, NO^+, O ₂ , O ₂ ^+, O ₂ ²⁺	

Topic:	Chemistry-Section B
Item No:	86

Question ID:	11694086	
Question Type:	Numeric Answer	
Question:	At 310 K, the solubility of CaF_2 in water is 2.34×10^{-3} g/100 mL. The solubility product of CaF_2 is × 10^{-8} (mol/L) ³ . (Give molar mass : $CaF_2 = 78$ g mol ⁻¹)	

Topic:	Chemistry-Section B
Item No:	87
Question ID:	11694087
Question Type:	Numeric Answer
Question:	The conductivity of a solution of complex with formula CoCl ₃ (NH ₃) ₄ corresponds to 1:1 electrolyte, then the primary valency of central metal ion is

Topic:	Chemistry-Section B
Item No:	88
Question ID:	11694088
Question Type:	Numeric Answer
Question:	In the titration of KMnO ₄ and oxalic acid in acidic medium, the change in oxidation number of carbon at the end point is

Topic:	Chemistry-Section B
Item No:	89
Question ID:	11694089
Question Type:	Numeric Answer
Question:	Optical activity of an enantiomeric mixture is +12.6° and the specific rotation of (+) isomer is +30°. The optical purity is%.

Topic:	Chemistry-Section B
Item No:	90
Question ID:	11694090
Question Type:	Numeric Answer
Question:	In the following reaction SO ₃ H Oleum NaOH (excess) I II The % yield for reaction I is 60% and that of reaction II is 50%. The overall yield of the complete reaction is%. [nearest integer]