Paper:	B.E_B.Tech
Set Name:	Item25
Exam Date:	29 July 2022
Exam Shift:	1
Langauge:	English

Topic:	Mathematics-Section A
Item No:	1
Question ID:	100201
Question Type:	MCQ
Question:	Let R be a relation from the set $\{1, 2, 3, \dots, 60\}$ to itself such that $R = \{(a, b) : b = pq, \text{ where } p, q \ge 3 \text{ are prime numbers}\}$. Then, the number of elements in R is:
A:	600
B:	660
C:	540
D:	720

Topic:	Mathematics-Section A
Item No:	2
Question ID:	100202
Question Type:	MCQ
Question:	If $z = 2 + 3i$, then $z^5 + (\overline{z})^5$ is equal to:
A:	244
B:	224
C:	245
D:	265

Topic:	Mathematics-Section A
Item No:	3
Question ID:	100203
Question Type:	MCQ

Question:	Let A and B be two 3×3 non-zero real matrices such that AB is a zero matrix. Then
A:	the system of linear equations $AX = 0$ has a unique solution
B:	the system of linear equations AX=0 has infinitely many solutions
C:	B is an invertible matrix
D:	adj(A) is an invertible matrix

Topic:	Mathematics-Section A
Item No:	4
Question ID:	100204
Question Type:	MCQ
Question:	If $\frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + + \frac{1}{(180-a)(200-a)} = \frac{1}{256}$, then the maximum value of a is :
A:	198
B:	202
C:	212
D:	218

Topic:	Mathematics-Section A
Item No:	5
Question ID:	100205
Question Type:	MCQ
Question:	If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$, where α , β , $\gamma \in \mathbb{R}$, then which of the following is NOT correct?
A:	$\alpha^2 + \beta^2 + \gamma^2 = 6$
B:	$\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$
C:	$\alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2 + 3 = 0$

D:	$\alpha^2 - \beta^2 + \gamma^2 = 4$
1	\$100 (180) \$ 100)

Topic:	Mathematics-Section A
Item No:	6
Question ID:	100206
Question Type:	MCQ
Question:	The integral $\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 2\sin x + \cos x} dx$ is equal to :
A:	$\tan^{-1}(2)$
B:	$\tan^{-1}(2) - \frac{\pi}{4}$
C:	$\frac{1}{2}\tan^{-1}(2) - \frac{\pi}{8}$
D:	$\frac{1}{2}$

Topic:	Mathematics-Section A
Item No:	7
Question ID:	100207
Question Type:	MCQ
Question:	Let the solution curve $y = y(x)$ of the differential equation $\left(1 + e^{2x}\right)\left(\frac{dy}{dx} + y\right) = 1$ pass through the point $\left(0, \frac{\pi}{2}\right)$. Then, $\lim_{x \to \infty} e^x y(x)$ is equal to :
A :	$\frac{\pi}{4}$
B:	$\frac{3\pi}{4}$

C:	$\frac{\pi}{2}$
D:	$\frac{3\pi}{2}$

Topic:	Mathematics-Section A
Item No:	8
Question ID:	100208
Question Type:	MCQ
Question:	Let a line L pass through the point of intersection of the lines $bx + 10y - 8 = 0$ and $2x - 3y = 0$, $b \in \mathbb{R} - \left\{\frac{4}{3}\right\}$. If the line L also passes through the point (1, 1) and touches the
	circle $17(x^2+y^2)=16$, then the eccentricity of the ellipse $\frac{x^2}{5}+\frac{y^2}{b^2}=1$ is:
A:	$\frac{2}{\sqrt{5}}$
B:	$\sqrt{\frac{3}{5}}$
C:	$\frac{1}{\sqrt{5}}$
D:	$\sqrt{\frac{2}{5}}$

Topic:	Mathematics-Section A
Item No:	9
Question ID:	100209
Question Type:	MCQ

Question:	If the foot of the perpendicular from the point A(-1, 4, 3) on the plane P: $2x + my + nz = 4$, is $\left(-2, \frac{7}{2}, \frac{3}{2}\right)$, then the distance of the point A from the plane P, measured parallel to a line with direction ratios 3, -1, -4, is equal to:
A:	1
B:	$\sqrt{26}$
C:	$2\sqrt{2}$
D:	$\sqrt{14}$

Topic:	Mathematics-Section A		
Item No:	10		
Question ID:	100210		
Question Type:	MCQ		
Question:	Let $\overrightarrow{a} = 3\hat{i} + \hat{j}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + \hat{k}$. Let \overrightarrow{c} be a vector satisfying $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} + \lambda \overrightarrow{c}$. If \overrightarrow{b} and \overrightarrow{c} are non-parallel, then the value of λ is:		
A:	-5		
B:	5		
C:	1		
D:	-1		

Topic:	Mathematics-Section A	
Item No:	11	
Question ID:	100211	
Question Type:	MCQ	
Question:	The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to :	

A:	<u>6</u> 5
B:	$\frac{9}{5}$
C:	$\frac{4}{3}$
D:	$\frac{7}{3}$

Topic:	Mathematics-Section A
Item No:	12
Question ID:	100212
Question Type:	MCQ
Question:	The statement $(p \wedge q) \Rightarrow (p \wedge r)$ is equivalent to :
A:	$q \Rightarrow (p \land r)$
B:	$p \Rightarrow (p \land r)$
C:	$(p \wedge r) \Rightarrow (p \wedge q)$
D:	$(p \land q) \Rightarrow r$

Topic:	Mathematics-Section A
Item No:	13
Question ID:	100213
Question Type:	MCQ
Question:	Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point Q(k_1 , k_2), then $k_1 + k_2$ is equal to :
A:	2
B:	$\frac{4}{7}$

C:	$\frac{2}{7}$
D:	4

Topic:	Mathematics-Section A	
Item No:	14	
Question ID:	100214	
Question Type:	MCQ	
Question:	Let \hat{a} and \hat{b} be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If θ is the angle between the vectors $(\hat{a} + \hat{b})$ and $(\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b}))$, then the value of $164 \cos^2\theta$ is equal to :	
A:	$90 + 27\sqrt{2}$	
B:	$45 + 18\sqrt{2}$	
C:	$90 + 3\sqrt{2}$	
D:	$54 + 90\sqrt{2}$	

Topic:	Mathematics-Section A	
Item No:	15	
Question ID:	100215	
Question Type:	MCQ	
Question:	If $f(\alpha) = \int_{1}^{\alpha} \frac{\log_{10} t}{1 + t} dt$, $\alpha > 0$, then $f(e^3) + f(e^{-3})$ is equal to:	
A:	9	
B:	$\frac{9}{2}$	
C:	$\frac{9}{\log_{\mathrm{e}}(10)}$	

D:	9	
	$\overline{2 \log_{\mathrm{e}} (10)}$	

Topic:	Mathematics-Section A
Item No:	16
Question ID:	100216
Question Type:	MCQ
	The area of the region
Question:	$\{(x, y): x - 1 \le y \le \sqrt{5 - x^2}\}$ is equal to:
A:	$\frac{5}{2}\sin^{-1}\left(\frac{3}{5}\right) - \frac{1}{2}$
B:	$\frac{5\pi}{4}-\frac{3}{2}$
C:	$\frac{3\pi}{4} + \frac{3}{2}$
D:	$\frac{5\pi}{4} - \frac{1}{2}$

Topic:	Mathematics-Section A
Item No:	17
Question ID:	100217
Question Type:	MCQ
Question:	Let the focal chord of the parabola $P: y^2 = 4x$ along the line $L: y = mx + c$, $m > 0$ meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $H: x^2 - y^2 = 4$. If O is the vertex of P and F is the focus of H on the positive x -axis, then the area of the quadrilateral OMFN is:
A:	$2\sqrt{6}$
B:	$2\sqrt{14}$
C:	$4\sqrt{6}$

D:	$4\sqrt{14}$
----	--------------

Topic:	Mathematics-Section A
Item No:	18
Question ID:	100218
Question Type:	MCQ
Question:	The number of points, where the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x-1 \cos x-2 \sin x-1 + (x-3) x^2-5x+4 $, is NOT differentiable, is :
A:	1
B:	2
C:	3
D:	4

Topic:	Mathematics-Section A
Item No:	19
Question ID:	100219
Question Type:	MCQ
Question:	Let $S = \{1, 2, 3,, 2022\}$. Then the probability, that a randomly chosen number n from the set S such that HCF $(n, 2022) = 1$, is:
A:	$\frac{128}{1011}$
B:	$\frac{166}{1011}$
C:	127 337
D:	112 337

Topic:	Mathematics-Section A
Item No:	20
Question ID:	100220

Question Type:	MCQ
Question:	Let $f(x) = 3^{(x^2-2)^3+4}$, $x \in \mathbb{R}$. Then which of the following statements are true ? P: $x = 0$ is a point of local minima of f Q: $x = \sqrt{2}$ is a point of inflection of f
	R: f' is increasing for $x > \sqrt{2}$
A:	Only P and Q
B:	Only P and R
C:	Only Q and R
D:	All P, Q and R

Topic:	Mathematics-Section B
Item No:	21
Question ID:	100221
Question Type:	Numeric Answer
Question:	Let $S = \{\theta \in (0, 2\pi) : 7\cos^2\theta - 3\sin^2\theta - 2\cos^22\theta = 2\}$. Then, the sum of roots of all the equations $x^2 - 2(\tan^2\theta + \cot^2\theta)x + 6\sin^2\theta = 0$, $\theta \in S$, is

Topic:	Mathematics-Section B
Item No:	22
Question ID:	100222
Question Type:	Numeric Answer
Question:	Let the mean and the variance of 20 observations x_1, x_2, \ldots, x_{20} be 15 and 9, respectively. For $\alpha \in \mathbf{R}$, if the mean of $(x_1 + \alpha)^2$, $(x_2 + \alpha)^2$,, $(x_{20} + \alpha)^2$ is 178, then the square of the maximum value of α is equal to

Topic:	Mathematics-Section B
Item No:	23
Question ID:	100223
Question Type:	Numeric Answer

	Let a line with direction ratios a, $-4a$, -7 be perpendicular to the lines with direction
Question:	ratios 3, -1, 2b and b, a, -2. If the point of intersection of the line $\frac{x+1}{a^2+b^2} = \frac{y-2}{a^2-b^2} = \frac{z}{1}$
	and the plane $x-y+z=0$ is (α, β, γ) , then $\alpha+\beta+\gamma$ is equal to

Topic:	Mathematics-Section B
Item No:	24
Question ID:	100224
Question Type:	Numeric Answer
Question:	Let a_1, a_2, a_3, \dots be an A.P. If $\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4$, then $4a_2$ is equal to

Topic:	Mathematics-Section B
Item No:	25
Question ID:	100225
Question Type:	Numeric Answer
Question:	Let the ratio of the fifth term from the beginning to the fifth term from the end in the
	binomial expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}:1$. If the
	sixth term from the beginning is $\frac{\alpha}{\sqrt[4]{3}}$, then α is equal to

Topic:	Mathematics-Section B	
Item No:	26	
Question ID:	100226	
Question Type:	Numeric Answer	
Question:	The number of matrices of order 3×3 , whose entries are either 0 or 1 and the sum of all the entries is a prime number, is	

Topic:	Mathematics-Section B
Item No:	27
Question ID:	100227

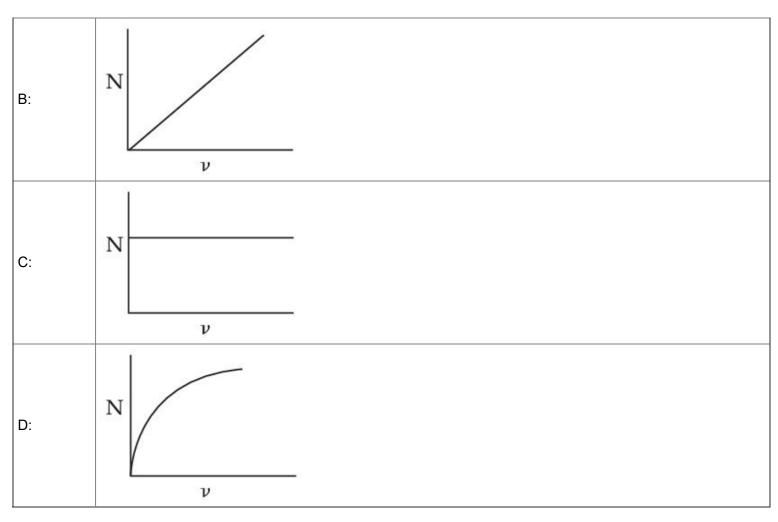
Question Type:	Numeric Answer	
Question:	Let p and p+2 be prime numbers and let $\Delta = \begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \end{vmatrix}$ Then the sum of the maximum values of α and β , such that p^{α} and $(p+2)^{\beta}$ divide Δ , is	

Topic:	Mathematics-Section B
Item No:	28
Question ID:	100228
Question Type:	Numeric Answer
Question:	If $\frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \frac{1}{4 \times 5 \times 6} + \dots + \frac{1}{100 \times 101 \times 102} = \frac{k}{101}$, then 34 k is equal to

Topic:	Mathematics-Section B	
Item No:	29	
Question ID:	00229	
Question Type:	Numeric Answer	
Question:	Let $S = \{4, 6, 9\}$ and $T = \{9, 10, 11,, 1000\}$. If $A = \{a_1 + a_2 + + a_k : k \in \mathbb{N}, a_1, a_2, a_3,, a_k \in S\}$, then the sum of all the elements in the set $T - A$ is equal to	

Topic:	Mathematics-Section B	
Item No:	30	
Question ID:	100230	
Question Type:	Numeric Answer	
Question:	Let the mirror image of a circle $c_1: x^2+y^2-2x-6y+\alpha=0$ in line $y=x+1$ be $c_2: 5x^2+5y^2+10gx+10fy+38=0$. If r is the radius of circle c_2 , then $\alpha+6r^2$ is equal to	

Topic:	Physics-Section A
Item No:	31


Question ID:	100231	
Question Type:	MCQ	
	Given below are Reason (R).	two statements : One is labelled as Assertion (A) and other is labelled as
	Assertion (A):	Time period of oscillation of a liquid drop depends on surface tension (S), if
Question:		density of the liquid is ρ and radius of the drop is r, then $T=K\sqrt{\frac{\rho r^3}{S^{1/2}}}$ is
		dimensionally correct, where K is dimensionless.
	Reason (R):	Using dimensional analysis we get R.H.S. having different dimension than that of time period.
	In the light of above statements, choose the correct answer from the options given below.	
A:	Both (A) and (R) are true and (R) is the correct explanation of (A)	
B:	Both (A) and (R) are true but (R) is not the correct explanation of (A)	
C:	(A) is true but (R) is false	
D:	(A) is false but (R) is true	

Topic:	Physics-Section A
Item No:	32
Question ID:	100232
Question Type:	MCQ
Question:	A ball is thrown up vertically with a certain velocity so that, it reaches a maximum height h. Find the ratio of the times in which it is at height $\frac{h}{3}$ while going up and coming down
	respectively.
A:	$\frac{\sqrt{2}-1}{\sqrt{2}+1}$
B:	$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

C:	$\frac{\sqrt{3}-1}{\sqrt{3}+1}$
D:	$\frac{1}{3}$

Topic:	Physics-Section A
Item No:	33
Question ID:	100233
Question Type:	MCQ
Question:	If $t = \sqrt{x} + 4$, then $\left(\frac{dx}{dt}\right)_{t=4}$ is:
A:	4
B:	zero
C:	8
D:	16

Topic:	Physics-Section A	
Item No:	34	
Question ID:	100234	
Question Type:	MCQ	
Question:	A smooth circular groove has a smooth vertical wall as shown in figure. A block of mass m moves against the wall with a speed ν . Which of the following curve represents the correct relation between the normal reaction on the block by the wall (N) and speed of the block (ν)?	
A:	$N = \frac{1}{\nu}$	

Topic:	Physics-Section A
Item No:	35
Question ID:	100235
Question Type:	MCQ
Question:	A ball is projected with kinetic energy E, at an angle of 60° to the horizontal. The kinetic energy of this ball at the highest point of its flight will become :
A:	Zero
B:	$\frac{\mathrm{E}}{2}$
C:	$\frac{\mathrm{E}}{4}$
D:	E

Topic:

Item No:	36
Question ID:	100236
Question Type:	MCQ
Question:	Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i} + 2\hat{j} + \hat{k}$ and $-3\hat{i} - 2\hat{j} + \hat{k}$ respectively. The magnitude of position vector of centre of mass of this system will be similar to the magnitude of vector:
A:	$\hat{i} + 2\hat{j} + \hat{k}$
B:	$-3\hat{i}-2\hat{j}+\hat{k}$
C:	$-2\hat{i}+2\hat{k}$
D:	$-2\hat{i} - \hat{j} + 2\hat{k}$

Topic:	Physics-Section A	
Item No:	37	
Question ID:	100237	
Question Type:	MCQ	
Question:	Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R) . Assertion (A) : Clothes containing oil or grease stains cannot be cleaned by water wash. Reason (R) : Because the angle of contact between the oil/grease and water is obtuse. In the light of the above statements, choose the correct answer from the option given below.	
A:	Both (A) and (R) are true and (R) is the correct explanation of (A)	
B:	Both (A) and (R) are true but (R) is not the correct explanation of (A)	
C:	(A) is true but (R) is false	
D:	(A) is false but (R) is true	

Topic:	Physics-Section A
Item No:	38

Question ID:	100238	
Question Type:	MCQ	
Question:	If the length of a wire is made double and radius is halved of its respective values. Then, the Young's modulus of the material of the wire will:	
A:	remain same	
B:	become 8 times its initial value	
C:	become $\frac{1}{4}^{th}$ of its initial value	
D:	become 4 times its initial value	

Topic:	Physics-Section A	
Item No:	39	
Question ID:	100239	
Question Type:	MCQ	
Question:	The time period of oscillation of a simple pendulum of length L suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination α , is given by :	
A:	$2\pi\sqrt{L/(g\cos\alpha)}$	
B:	$2\pi\sqrt{L/(g\sin\alpha)}$	
C:	$2\pi\sqrt{L/g}$	
D:	$2\pi\sqrt{L/(g\tan\alpha)}$	

Topic:	Physics-Section A
Item No:	40
Question ID:	100240
Question Type:	MCQ

	A spherically symmetric charge distribution is considered with charge density varying as
	$\rho(\mathbf{r}) = \begin{cases} \rho_0 \left(\frac{3}{4} - \frac{\mathbf{r}}{R}\right) & \text{for } \mathbf{r} \leq R\\ \text{zero} & \text{for } \mathbf{r} > R \end{cases}$
Question:	Where, $r(r < R)$ is the distance from the centre O (as shown in figure). The electric field at point P will be:
	$\rho(r)$
A:	$\frac{\rho_0\ r}{4\ \epsilon_0}\ \bigg(\frac{3}{4}-\frac{r}{R}\bigg)$
B:	$\frac{\rho_0\ r}{3\ \epsilon_0}\ \left(\frac{3}{4}-\frac{r}{R}\right)$
C:	$\frac{\rho_0\ r}{4\epsilon_0}\left(1-\frac{r}{R}\right)$
D:	$\frac{\rho_0 \ r}{5 \ \epsilon_0} \left(1 - \frac{r}{R}\right)$

Topic:	Physics-Section A	
Item No:	41	
Question ID:	100241	
Question Type:	MCQ	
Question:	Given below are	e two statements.
	Statement I:	Electric potential is constant within and at the surface of each conductor.
	Statement II :	Electric field just outside a charged conductor is perpendicular to the surface of the conductor at every point.
	In the light of the given below.	he above statements, choose the most appropriate answer from the options

A:	Both statement I and statement II are correct
B:	Both statement I and statement II are incorrect
C:	Statement I is correct but statement II is incorrect
D:	Statement I is incorrect but statement II is correct

Topic:	Physics-Section A
Item No:	42
Question ID:	100242
Question Type:	MCQ
Question:	Two metallic wires of identical dimensions are connected in series. If σ_1 and σ_2 are the conductivities of the these wires respectively, the effective conductivity of the combination is:
A:	$\frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$
B:	$\frac{2\sigma_1\sigma_2}{\sigma_1+\sigma_2}$
C:	$\frac{\sigma_1 + \sigma_2}{2\sigma_1\sigma_2}$
D:	$\frac{\sigma_1 + \sigma_2}{\sigma_1 \sigma_2}$

Topic:	Physics-Section A
Item No:	43
Question ID:	100243
Question Type:	MCQ
Question:	An alternating emf $E=440 \sin 100\pi t$ is applied to a circuit containing an inductance of $\frac{\sqrt{2}}{\pi}$ H. If an a.c. ammeter is connected in the circuit, its reading will be:
A:	4.4 A

B:	1.55 A
C:	2.2 A
D:	3.11 A

Topic:	Physics-Section A	
Item No:	44	
Question ID:	100244	
Question Type:	MCQ	
Question:	 A coil of inductance 1 H and resistance 100 Ω is connected to a battery of 6 V. Determine approximately: (a) The time elapsed before the current acquires half of its steady - state value. (b) The energy stored in the magnetic field associated with the coil at an instant 15 ms after the circuit is switched on. (Given ln2=0.693, e^{-3/2}=0.25) 	
A:	t = 10 ms; U = 2 mJ	
B:	t = 10 ms; U = 1 mJ	
C:	t = 7 ms; U = 1 mJ	
D:	t = 7 ms; U = 2 mJ	

Topic:	Physics-Section A				
Item No:	45				
Question ID:	10024	5			
Question Type:	MCQ				
	Match List - I with List - II:				
		List - I		List - II	
	(a)	UV rays	(i)	Diagnostic tool in medicine	
Question:	(b)	X-rays	(ii)	Water purification	
	(c)	Microwave	(iii)	Communication, Radar	
	(d)	Infrared wave	(iv)	Improving visibility in foggy days	
	Choose the correct answer from the options given below:				

A:	(a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
B:	(a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
C:	(a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
D:	(a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

Topic:	Physics-Section A
Item No:	46
Question ID:	100246
Question Type:	MCQ
Question:	The kinetic energy of emitted electron is E when the light incident on the metal has wavelength λ . To double the kinetic energy, the incident light must have wavelength:
A:	$\frac{hc}{E\lambda - hc}$
B:	$\frac{hc\lambda}{E\lambda + hc}$
C:	$\frac{h\lambda}{E\lambda + hc}$
D:	$\frac{hc\lambda}{E\lambda - hc}$

Topic:	Physics-Section A	
Item No:	47	
Question ID:	100247	
Question Type:	MCQ	
Question:	Find the ratio of energies of photons produced due to transition of an electron of hydrogen atom from its (i) second permitted energy level to the first level, and (ii) the highest permitted energy level to the first permitted level.	
A:	3:4	
B:	4:3	

C:	1:4
D:	4:1

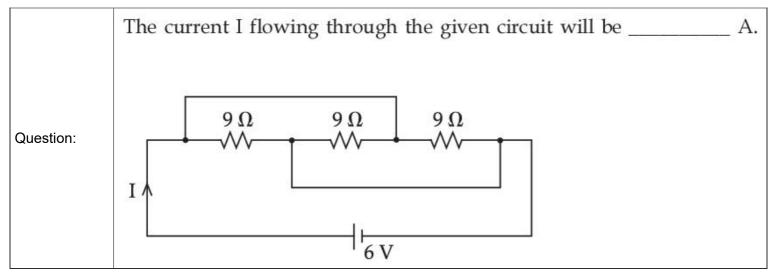
Topic:	Physics-Section A
Item No:	48
Question ID:	100248
Question Type:	MCQ
Question:	Find the modulation index of an AM wave having 8 V variation where maximum amplitude of the AM wave is 9 V.
A:	0.8
B:	0.5
C:	0.2
D:	0.1

Topic:	Physics-Section A
Item No:	49
Question ID:	100249
Question Type:	MCQ
Question:	A travelling microscope has 20 divisions per cm on the main scale while its vernier scale has total 50 divisions and 25 vernier scale divisions are equal to 24 main scale divisions, what is the least count of the travelling microscope ?
A:	0.001 cm
B:	0.002 mm
C:	0.002 cm
D:	0.005 cm

Topic:	Physics-Section A
Item No:	50
Question ID:	100250
Question Type:	MCQ

Question:	In an experiment to find out the diameter of wire using screw gauge, the following observations were noted :
	(A) Screw moves 0.5 mm on main scale in one complete rotation
	(B) Total divisions on circular scale = 50
	(C) Main scale reading is 2.5 mm
	(D) 45 th division of circular scale is in the pitch line
	(E) Instrument has 0.03 mm negative error
	Then the diameter of wire is:
A:	2.92 mm
B:	2.54 mm
C:	2.98 mm
D:	3.45 mm

Topic:	Physics-Section B
Item No:	51
Question ID:	100251
Question Type:	Numeric Answer
Question:	An object is projected in the air with initial velocity u at an angle θ . The projectile motion is such that the horizontal range R , is maximum. Another object is projected in the air with a horizontal range half of the range of first object. The initial velocity remains same in both the case. The value of the angle of projection, at which the second object is projected, will be degree.


Topic:	Physics-Section B
Item No:	52
Question ID:	100252

Question Type:	Numeric Answer
Question:	If the acceleration due to gravity experienced by a point mass at a height h above the surface of earth is same as that of the acceleration due to gravity at a depth α h (h << R_e) from the earth surface. The value of α will be (use R_e =6400 km)

Topic:	Physics-Section B
Item No:	53
Question ID:	100253
Question Type:	Numeric Answer
Question:	The pressure P_1 and density d_1 of diatomic gas $\left(\gamma = \frac{7}{5}\right)$ changes suddenly to $P_2(>P_1)$ and
	d_2 respectively during an adiabatic process. The temperature of the gas increases and becomes
	times of its initial temperature. (given $\frac{d_2}{d_1} = 32$)

Topic:	Physics-Section B
Item No:	54
Question ID:	100254
Question Type:	Numeric Answer
Question:	One mole of a monoatomic gas is mixed with three moles of a diatomic gas. The molecular
	specific heat of mixture at constant volume is $\frac{\alpha^2}{4}R$ J/mol K; then the value of α will be
	(Assume that the given diatomic gas has no vibrational mode).

Topic:	Physics-Section B
Item No:	55
Question ID:	100255
Question Type:	Numeric Answer

Topic:	Physics-Section B
Item No:	56
Question ID:	100256
Question Type:	Numeric Answer
Question:	A closely wounded circular coil of radius 5 cm produces a magnetic field of 37.68×10^{-4} T at its center. The current through the coil is A. [Given, number of turns in the coil is 100 and $\pi = 3.14$]

Topic:	Physics-Section B
Item No:	57
Question ID:	100257
Question Type:	Numeric Answer
Question:	Two light beams of intensities 4I and 9I interfere on a screen. The phase difference between these beams on the screen at point A is zero and at point B is π . The difference of resultant intensities, at the point A and B, will be I.

Topic:	Physics-Section B
Item No:	58
Question ID:	100258
Question Type:	Numeric Answer
Question:	A wire of length 314 cm carrying current of 14 A is bent to form a circle. The magnetic moment of the coil is A-m ² . [Given π =3.14]

Topic:	Physics-Section B
Item No:	59
Question ID:	100259
Question Type:	Numeric Answer
Question:	The X-Y plane be taken as the boundary between two transparent media M_1 and M_2 . M_1 in $Z\!\geqslant\!0$ has a refractive index of $\sqrt{2}$ and M_2 with $Z\!<\!0$ has a refractive index of $\sqrt{3}$. A ray of
	light travelling in M_1 along the direction given by the vector $\overrightarrow{P} = 4\sqrt{3}\hat{i} - 3\sqrt{3}\hat{j} - 5\hat{k}$, is incident on the plane of separation. The value of difference between the angle of incident in M_1 and the angle of refraction in M_2 will be degree.

Topic:	Physics-Section B
Item No:	60
Question ID:	100260
Question Type:	Numeric Answer
Question:	If the potential barrier across a p-n junction is 0.6 V. Then the electric field intensity, in the depletion region having the width of 6×10^{-6} m, will be $\times10^{5}$ N/C.

Topic:	Chemistry-Section A
Item No:	61
Question ID:	100261
Question Type:	MCQ
Question:	Which of the following pair of molecules contain odd electron molecule and an expanded octet molecule?
A:	BCl ₃ and SF ₆
B:	NO and H ₂ SO ₄
C:	SF_{6} and $\mathrm{H}_{2}\mathrm{SO}_{4}$
D:	BCl ₃ and NO

Topic:	Chemistry-Section A
--------	---------------------

Item No:	62
Question ID:	100262
Question Type:	MCQ
Question:	$N_{2(g)}+3H_{2(g)}\rightleftharpoons 2NH_{3(g)}$ $20~g~~5~g$ Consider the above reaction, the limiting reagent of the reaction and number of moles of NH $_3$ formed respectivly are :
A:	H ₂ , 1.42 moles
B:	H ₂ , 0.71 moles
C:	N ₂ , 1.42 moles
D:	N ₂ , 0.71 moles

Topic:	Chemistry-Section A
Item No:	63
Question ID:	100263
Question Type:	MCQ
Question:	100 mL of 5% (w/v) solution of NaCl in water was prepared in 250 mL beaker. Albumin from the egg was poured into NaCl solution and stirred well. This resulted in a/an :
A:	Lyophilic sol
B:	Lyophobic sol
C:	Emulsion
D:	Precipitate

Topic:	Chemistry-Section A
Item No:	64
Question ID:	100264
Question Type:	MCQ

Question:	The first ionization enthalpy of Na, Mg and Si, respectively, are : 496, 737 and 786 kJ mol^{-1} . The first ionization enthalpy (kJ mol^{-1}) of Al is :
A:	487
B:	768
C:	577
D:	856

Topic:	Chemistry-Section A
Item No:	65
Question ID:	100265
Question Type:	MCQ
Question:	In metallurgy the term "gangue" is used for :
A:	Contamination of undesired earthy materials.
B:	Contamination of metals, other than desired metal.
C:	Minerals which are naturally occuring in pure form
D:	Magnetic impurities in an ore.

Topic:	Chemistry-Section A
Item No:	66
Question ID:	100266
Question Type:	MCQ
Question:	The reaction of zinc with excess of aqueous alkali, evolves hydrogen gas and gives :
A:	$Zn(OH)_2$
B:	ZnO
C:	$[Zn(OH)_4]^{2-}$
D:	$[ZnO_2]^{2-}$

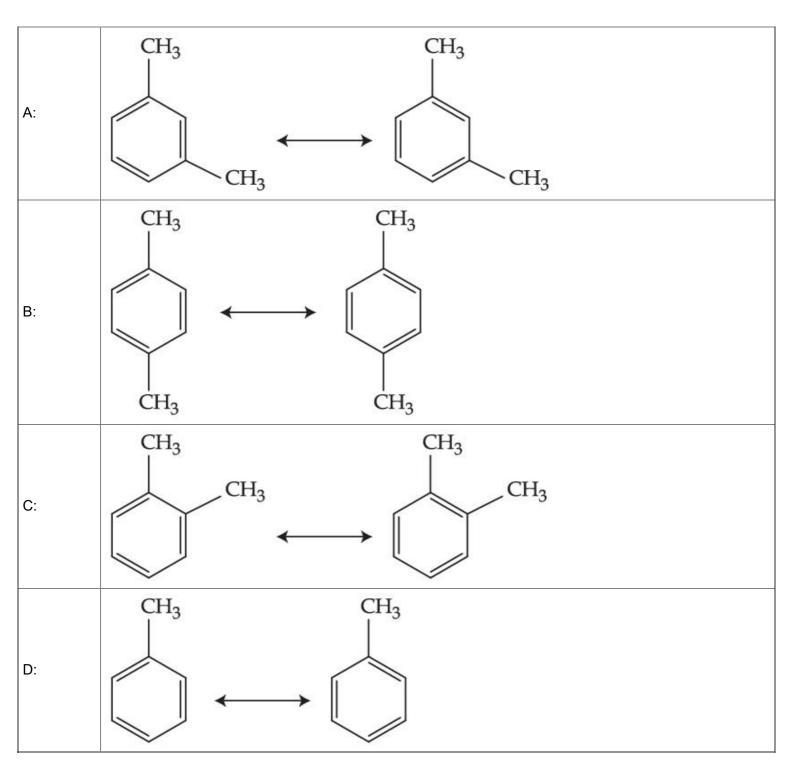
Topic:	Chemistry-Section A
Item No:	67

Question ID:	100267
Question Type:	MCQ
Question:	Lithium nitrate and sodium nitrate, when heated separately, respectively, give :
A:	LiNO ₂ and NaNO ₂
B:	Li ₂ O and Na ₂ O
C:	Li ₂ O and NaNO ₂
D:	LiNO ₂ and Na ₂ O

Topic:	Chemistry-Section A
Item No:	68
Question ID:	100268
Question Type:	MCQ
Question:	Number of lone pairs of electrons in the central atom of SCl_2 , O_3 , ClF_3 and SF_6 , respectively, are :
A:	0, 1, 2 and 2
B:	2, 1, 2 and 0
C:	1, 2, 2 and 0
D:	2, 1, 0 and 2

Topic:	Chemistry-Section A
Item No:	69
Question ID:	100269
Question Type:	MCQ
Question:	In following pairs, the one in which both transition metal ions are colourless is :
A:	Sc^{3+} , Zn^{2+}
B:	Ti ⁴⁺ , Cu ²⁺
C:	V^{2+} , Ti^{3+}

D:	Zn^{2+} , Mn^{2+}
----	-----------------------

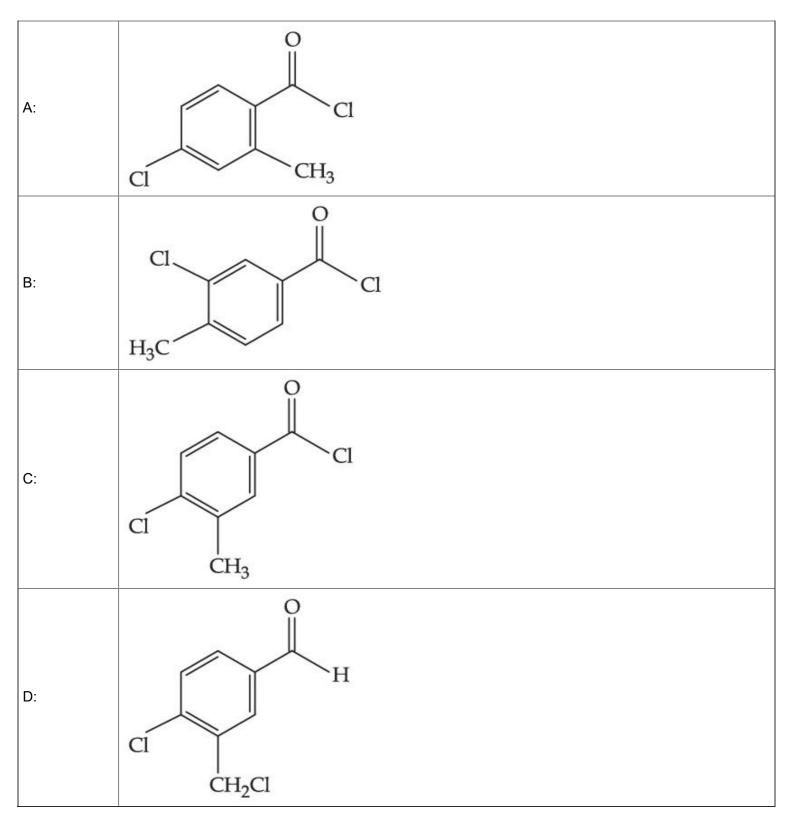

Topic:	Chemistry-Section A
Item No:	70
Question ID:	100270
Question Type:	MCQ
Question:	In neutral or faintly alkaline medium, ${\rm KMnO_4}$ being a powerful oxidant can oxidize, thiosulphate almost quantitatively, to sulphate. In this reaction overall change in oxidation state of manganese will be :
A:	5
B:	1
C:	0
D:	3

Topic:	Chemistry-Section A
Item No:	71
Question ID:	100271
Question Type:	MCQ
Question:	Which among the following pairs has only herbicides?
A:	Aldrin and Dieldrin
B:	Sodium chlorate and Aldrin
C:	Sodium arsinate and Dieldrin
D:	Sodium chlorate and sodium arsinite.

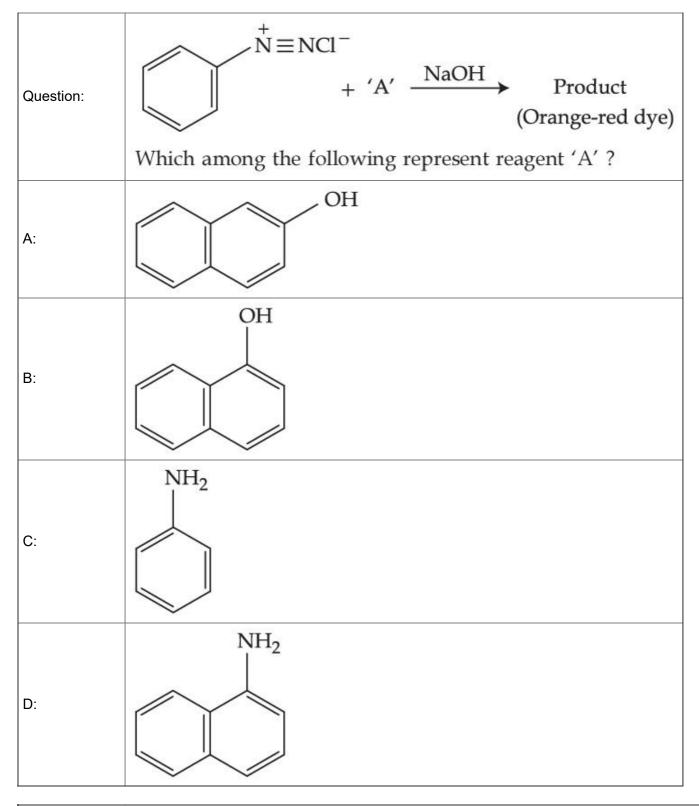
Topic:	Chemistry-Section A
Item No:	72
Question ID:	100272
Question Type:	MCQ
Question:	Which among the following is the strongest Bronsted base?

A:	H_3C CH_2 $N: CH_3$ H_2C CH_2 CH_3
B:	H ₃ C CH ₂ N: CH ₂ H CH ₃
C:	CH ₃
D:	Ü

Topic:	Chemistry-Section A
Item No:	73
Question ID:	100273
Question Type:	MCQ
Question:	Which among the following pairs of the structures will give different products on ozonolysis? (Consider the double bonds in the structures are rigid and not delocalized.)


Topic:	Chemistry-Section A
Item No:	74
Question ID:	100274
Question Type:	MCQ

Question:	$ \begin{tabular}{lll} \begin$
A:	
B:	$\bigcirc_{C \equiv N}$, $\bigcirc_{C \equiv N}$
C:	$\bigwedge_{N\equiv C}^{\oplus}{}_{,}$ $C\equiv N$
D:	$C \equiv N$, $M \equiv C$


Topic:	Chemistry-Section A
Item No:	75
Question ID:	100275
Question Type:	MCQ
Question:	OH \longrightarrow A $\xrightarrow{NH_2OH}$ B $\xrightarrow{P_2O_5}$ C CHO Consider the above reaction sequence, the Product 'C' is :
A:	Br Br CN

B:	Br Br
C:	CHO Br CHO
D:	Br Br CN

Topic:	Chemistry-Section A
Item No:	76
Question ID:	100276
Question Type:	MCQ
Question:	$ \hbox{'A' (C_8H_6Cl_2O)} \xrightarrow{NH_3} \hbox{C_8H_8ClNO} \xrightarrow{Br_2} \xrightarrow{NaOH} \hbox{Cl} $ Consider the above reaction, the compound 'A' is :

Topic:	Chemistry-Section A
Item No:	77
Question ID:	100277
Question Type:	MCQ

Topic:	Chemistry-Section A
Item No:	78
Question ID:	100278
Question Type:	MCQ

	Consider the following reaction sequence :
Question:	$ \begin{array}{c c} NH_2 \\ \hline & (i) AlH \ (i-Bu)_2 \\ \hline & (ii) H_2O \end{array} $ 'A' $ \begin{array}{c} CH_3CHO \\ \hline & dil \ NaOH, \Delta \end{array} $ B (Major Product) The product 'B' is:
A:	OHC \sim
B:	H_2N — $CH = CH - CHO$
C:	H_2N $CH_2-N=CH-CH_3$
D:	H_2N $C-N=CH$ CHO

Topic:	Chemistry-Section A
Item No:	79
Question ID:	100279
Question Type:	MCQ
Question:	Which of the following compounds is an example of hypnotic drug?
A:	Seldane
B:	Amytal

C:	Aspartame
D:	Prontosil

L	
Topic:	Chemistry-Section A
Item No:	80
Question ID:	100280
Question Type:	MCQ
Question:	A compound 'X' is acidic and it is soluble in NaOH solution, but insoluble in NaHCO $_3$ solution. Compound 'X' also gives violet colour with neutral FeCl $_3$ solution. The compound 'X' is :
A:	OH
B:	OH
C:	CH ₂ OH
D:	CH ₂ OH

Topic:	Chemistry-Section B
Item No:	81
Question ID:	100281
Question Type:	Numeric Answer
Question:	Resistance of a conductivity cell (cell constant 129 m $^{-1}$) filled with 74.5 ppm solution of KCl is 100 Ω (labelled as solution 1). When the same cell is filled with KCl solution of 149 ppm, the resistance is 50 Ω (labelled as solution 2). The ratio of molar conductivity of solution 1 and solution 2 is i.e. $\frac{\Lambda_1}{\Lambda_2} = x \times 10^{-3}$. The value of x is (Nearest integer)
	Given, molar mass of KCl is 74.5 g mol ⁻¹ .

Topic:	Chemistry-Section B
Item No:	82
Question ID:	100282
Question Type:	Numeric Answer
Question:	Ionic radii of cation A ⁺ and anion B ⁻ are 102 and 181 pm respectively. These ions are allowed to crystallize into an ionic solid. This crystal has cubic close packing for B ⁻ . A ⁺ is present in all octahedral voids. The edge length of the unit cell of the crystal AB ispm. (Nearest Integer)

Topic:	Chemistry-Section B
Item No:	83
Question ID:	100283
Question Type:	Numeric Answer
Question:	The minimum uncertainty in the speed of an electron in an one dimensional region of length $2a_o$ (Where a_o = Bohr radius 52.9 pm) is km s ⁻¹ . (Given : Mass of electron=9.1×10 ⁻³¹ kg, Planck's constant h=6.63×10 ⁻³⁴ Js)

Topic:	Chemistry-Section B
Item No:	84
Question ID:	100284

Question Type:	Numeric Answer
Question:	When 600 mL of 0.2 M HNO $_3$ is mixed with 400 mL of 0.1 M NaOH solution in a flask, the rise in temperature of the flask is ×10^{-2} °C. (Enthalpy of neutralisation=57 kJ mol $^{-1}$ and Specific heat of water=4.2 JK $^{-1}$ g $^{-1}$) (Neglect heat capacity of flask)

Topic:	Chemistry-Section B
Item No:	85
Question ID:	100285
Question Type:	Numeric Answer
Question:	If O_2 gas is bubbled through water at 303 K, the number of millimoles of O_2 gas that dissolve in 1 litre of water is (Nearest Integer)
	(Given : Henry's Law constant for O_2 at 303 K is 46.82 k bar and partial pressure of O_2 = 0.920 bar) (Assume solubility of O_2 in water is too small, nearly negligible)

Topic:	Chemistry-Section B
Item No:	86
Question ID:	100286
Question Type:	Numeric Answer
Question:	If the solubility product of PbS is 8×10^{-28} , then the solubility of PbS in pure water at 298 K is $x \times 10^{-16}$ mol L ⁻¹ . The value of x is (Nearest Integer) [Given: $\sqrt{2} = 1.41$]

Topic:	Chemistry-Section B
Item No:	87
Question ID:	100287
Question Type:	Numeric Answer

	The reaction between X and Y is first order with respect to X and zero order with respect to Y.				
Question:	Experiment	$\frac{[X]}{\operatorname{mol} L^{-1}}$	$\frac{[Y]}{\operatorname{mol} L^{-1}}$	$\frac{\text{Initial rate}}{\text{mol L}^{-1} \text{ min}^{-1}}$	
	I	0.1	0.1	2×10^{-3}	
	II	L	0.2	4×10^{-3}	
	III	0.4	0.4	$M \times 10^{-3}$	
	IV	0.1	0.2	2×10^{-3}	
	Examine the data of table and calculate ratio of numerical values of M and L. (Nearest Integer)				

Topic:	Chemistry-Section B	
Item No:	88	
Question ID:	100288	
Question Type:	Numeric Answer	
Question:	In a linear tetrapeptide (Constituted with different amino acids), (number of amino acids) – (number of peptide bonds) is	

Topic:	Chemistry-Section B	
Item No:	89	
Question ID:	100289	
Question Type:	Numeric Answer	
Question:	In bromination of Propyne, with Bromine 1, 1, 2, 2-tetrabromopropane is obtained in 27% yield. The amount of 1, 1, 2, 2-tetrabromopropane obtained from 1 g of Bromine in this reaction is $____\times 10^{-1}$ g. (Nearest integer) (Molar Mass : Bromine = 80 g/mol)	

Topic:	Chemistry-Section B	
Item No:	90	
Question ID:	100290	
Question Type:	Numeric Answer	

Question:

 $[Fe(CN)_6]^{3-}$ should be an inner orbital complex. Ignoring the pairing energy, the value of crystal field stabilization energy for this complex is (-) _____ Δ_o . (Nearest integer)