

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Polymer which is named as Orlon is
 - (1) Polyamide
 - (2) Polyacrylonitrile
 - (3) Polycarbonate
 - (4) Polyethene

Answer (2)

Sol. Orlon is the commercial name of polyacrylonitrile

We are given with some diseases in Column-II. Column-I contains name of some vitamins and their deficiencies will cause:

Column-I

Column-II

(Deficiency)

- (A) Vitamin A
- (p) Scurvy
- (B) Vitamin B₂ (Riboflavin)
- (q) Xerophthalmia

(Thiamine)

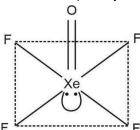
- (C) Vitamin B₁ (r) Cheilosis
- (D) Vitamin C
- (s) Beri Beri
- (1) A(q); B(r); C(s); D(p)
- (2) A(r); B(q); C(p); D(s)
- (3) A(q); B(r); C(p); D(s)
- (4) A(p); B(r); C(s); D(q)

Answer (1)

Sol. Vitamin $A \rightarrow Xerophthalmia$

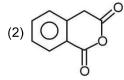
Vitamin B₂ → Cheilosis

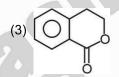
Vitamin B₁ → Beri Beri


Vitamin C → Scurvy

(NCERT ref.: Pg. No. 426, Class XII, Part-II)

- Which of the following have square pyramidal structure
 - (1) XeOF₄
 - (2) BrF₄
 - (3) XeF₄
 - (4) XeO₃


Answer (1)


Sol. XeOF₄ has sp^3d^2 hybridisation

Shape → square pyramidal

Identify the product formed in the following reaction. 4.

Answer (4)

Sol.

$$COOCH_3 \xrightarrow{Br_2/NaOH} O$$

$$COOCH_3 \xrightarrow{Br_2/NaOH} O$$

$$CH_2 - C - C$$

$$O$$

$$O$$

$$O$$

$$O$$

5.

Column-I		Column-II	
(Compound)		(Type of Bond)	
Α	N ₂ O	Р	(N—N) Bond
В	N ₂ O ₄	Q	(N—O—N) Bond
С	N ₂ O ₅	R	(N=N) or (N≡N) Bond
D	NO ₂	S	(N=O)

- (1) A-R; B-P; C-S; D-Q (2) A-P; B-R; C-Q; D-S
- (3) A-R; B-P; C-Q; D-S (4) A-P; B-R; C-S; D-Q

JEE (Main)-2023: Phase-2 (06-04-2023)-Morning

Answer (3)

Sol. A. N₂O

$$N \equiv N \rightarrow O$$

B. N₂O₄

C. N₂O₅

D. NO₂

We are 6. with reaction given $\xrightarrow{\text{Acetone}} R - I + \text{NaBr}$ $R - CH_2 - Br + Nal-$

Which of the following statement is correct?

- (1) This reaction can also take place in acetic acid
- (2) This reaction is called Swarts reaction
- (3) This reaction shifts in forward direction using principle of Le-Chatelier's principle
- (4) This Reaction will take place even if Br is replaced with F.

Answer (3)

Sol.
$$R - CH_2 - X + NaI \xrightarrow{Acetone} R - CH_2 - I + NaX$$

 $X = CI, Br$

Above reaction is called Finkelstein reaction.

NaCl and NaBr are insoluble in acetone and hence this shifts in forward reaction using Le-Chatelier's principle.

Assertion: Magnetic moment of [Fe(H₂O)₆]³⁺ is 5.92 BM and that of [Fe(CN)₆]³⁻ is 1.73 BM

Oxidation state of Fe in both the Reason: complexes is +3.

- (1) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion
- (2) Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion
- (3) Reason is correct but Assertion is not correct
- (4) Reason is incorrect but Reason is correct

Answer (2)

Sol.
$$[Fe(H_2O)_6]^{3+}$$
 – O.S. of Fe = +3

Fe³⁺:
$$3d^5$$
, $t_{2q}^3e_q^2$; $\mu = \sqrt{35} = 5.92$ M

$$[Fe(CN)_6]^{3-}$$
 – O.S. of Fe = +3

Fe³⁺ :
$$3d^5$$
, $t_{2g}^5e_g^0$; $\mu = \sqrt{3} = 1.73$ BM

8. Consider the following reaction

$$A_2B_3(g) \Longrightarrow 2A(g) + 3B(g)$$

If initial concentration of $A_2B_3(g)$ is C, find α

(1)
$$\left(\frac{k_{eq}}{27 C^4}\right)^{1/5}$$

$$(2) \left(\frac{k_{eq}}{C^4}\right)^{1/8}$$

(3)
$$\left(\frac{k_{eq}}{108 \text{ C}^4}\right)^{1/5}$$
 (4) $\left(\frac{k_{eq}}{4 \text{ C}^4}\right)^{1/5}$

(4)
$$\left(\frac{k_{eq}}{4 C^4}\right)^{1/5}$$

Answer (3)

Sol.
$$A_2B_3 \rightleftharpoons 2A + 3B_{3C\alpha}$$

$$k_{eq} = \frac{4C^2\alpha^2 \times 27C^3\alpha^3}{C(1-\alpha)}$$

$$k_{eq} = \frac{108 C^5 \alpha^5}{C(1-\alpha)}$$

$$\alpha = \left(\frac{k_{eq}}{C^4(108)}\right)^{1/5}$$

(Assuming $1 - \alpha \ll 1$)

- 9. Which compound is added to cement to increase its setting time?
 - (1) Gypsum
 - (2) Lime stone
 - (3) Clay
 - (4) Calcium carbonate

Answer (1)

- **Sol.** Gypsum is added to cement to increase its setting
- 10. Which reaction is correct with its correct enzyme used?

(1) Sucrose → glucose + fructose

enzyme: Invertase

(2) Glucose → CO₂ + ethanol

enzyme: maltase

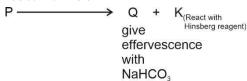
(3) Protein → Amino acid

enzyme: Zymase

(4) Starch → Maltose

enzyme: Pepsin

Answer (1)


Glucose
$$\xrightarrow{\text{zymase}} CO_2 + C_2H_5OH$$

pepsin → Amino acids Protein -

Sucrose diastase → maltose

 Compound P with molecular formula C₁₄H₁₃ON is hydrolysed to give Q and R Compound Q give effervescence with NaHCO₃ while compound R react with Hinsberg reagent to give oily liquid which react with NaOH.

The products Q and R are respectively

- (1) C₆H₅COOH and C₆H₁₃NH₂
- (2) C₆H₅COOH and C₆H₅CH₂NH₂
- (3) CH₃(CH₂)₄COOH and CH₃(CH₂)₆NH₂
- (4) CH₃(CH₂)₄CONH₂ and CH₃(CH₂)₅COOH

Answer (2)

Sol.
$$C_6H_5CONH - CH_2C_6H_5$$
 $\xrightarrow{\text{Hydrolysis}}$ $C_6H_5COOH + C_6H_5CH_2NH_2$

Q R

 $C_6H_5SO_2CI + C_6H_5 - CH_2NH_2$ \longrightarrow $C_6H_5SO_2NH - CH_2C_6H_5$

Hinsberg reagent

Soluble in NaOH

12. In following sequence of reaction, identify A and B

Answer (4)

 Column-I contains some elements and column-II contains final product obtained during their qualitative analysis.

Column-IColumn-II(A) Nitrogen(P) AgX(B) Sulphur(Q) $(NH_4)_3PO_4\cdot12MoO_3$ (C) Phosphorous(R) $Fe(SCN)_3$ (D) Halogens(S) $Fe_4[Fe(CN)_6]_3$

(1) A(P), B(R), C(Q), D(S)(2) A(Q), B(R), C(Q), D(P)

(3) A(S), B(R), C(Q), D(P)

(4) A(Q), B(R), C(P), D(S)

Answer (3)

14. For the given elements:

Ne, F, CI, Ar

Which of the following pair of element has highest difference of electronegativity?

(1) Ne — CI (2) Ne — F (3) Ne — He (4) Ne — Ar

Answer (2)

Sol. The electronegativity of F (Fluorine) is highest among all the elements of periodic table. Hence highest difference of E.N. arises between Ne and F.

- 15. Photochemical smog is most likely to be found in which of the following industrial areas?
 - (1) Marshy areas
 - (2) Himalayan valley in winters
 - (3) Warm moist climates
 - (4) Sunny dessert areas

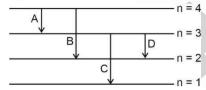
Answer (4)

JEE (Main)-2023 : Phase-2 (06-04-2023)-Morning

- **Sol.** Photochemical smog occurs in warm, dry and sunny climate. Hence the option 4 is most appropriate.
- 16. A binary compound has Y-atoms forming FCC unit cell and another type of X-atoms occupying 1/3rd of tetrahedral voids. Find out the molecular formula of the compound
 - (1) XY

- (2) X₂Y₃
- (3) X_3Y_2
- (4) XY₂

Answer (2)


- Sol. Y-atoms of a binary compound form FCC unit cell.
 - .. No. of Y-atoms per unit = 4

X-atoms of the same compound occupy 1/3rd of tetrahedral voids.

- \therefore No. of X-atoms per unit cell = $\frac{8}{3}$
- \therefore Formula of the compound $X_{\frac{8}{3}}Y_{_4}$ as X_2Y_3
- 17. The M⁺/M of an element doesn't depend on
 - (1) ΔH_{hyd}
 - (2) $\Delta H_{Sub.}$
 - (3) Ionisation enthalpy of gas
 - (4) Ionisation enthalpy of solid

Answer (4)

- **Sol.** Ionisation enthalpy is calculated for isolated gaseous atom
- 18. Shortest wavelength will be there for which of the following transition?

- (1) Transition A
- (2) Transition B
- (3) Transition C
- (4) Transition D

Answer (3)

Sol. Shortest $\lambda \Rightarrow \text{maximum } \Delta E$

$$(\Delta E)_C > (\Delta E)_B$$

Energy difference decreases while we move in higher energy levels.

- 19. Strong reducing & oxidizing agent among the following respectively.
 - (1) Ce+3 & Ce+4
- (2) Eu⁺² & Ce⁺⁴
- (3) Ce+4 & Tb+4
- (4) Ce+4 & Eu+2

Answer (2)

- **Sol.** The most stable oxidation state of lanthanides is +3.
 - \therefore Eu⁺² is a reducing agent & Ce⁺⁴ is an oxidising agent. Hence, correct answer is 2.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. If Radius of Ground State Hydrogen atom is 51 pm. Find out Radius of 5th orbit of Li²⁺ ions (in pm). (Closest Integer)

Answer (425.00)

Sol.
$$r_5 = 51 \times \frac{(5)^2}{(3)} = \frac{51 \times 25}{3} = 425 \text{ pm}$$

22. Some amount of urea is added to 1000 gm of H_2O due to which vapour pressure decreases by 25% of the original vapour pressure. Find out mass of urea added (Round off to two decimal places)

Answer (18.52)

Sol.
$$\frac{}{} 100$$

$$\Rightarrow \frac{25}{75} = \frac{n_{\text{urea}}}{\left(\frac{1000}{18}\right)}$$

$$\Rightarrow n_{\text{urea}} = \frac{1}{3} \times \frac{1000}{18} = 18.52$$

23. Find logk if $\Delta H^{\circ} = -54.07 \text{ kJ/mol}$ and T = 298 k, $\Delta S^{\circ} = 10 \text{ J/mol k}$ Also given 2.303 × 298 = 5705

Answer (01.20)

Sol.
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

-2.303 RT logk = -54070 - 298 × 10 logk = 1.2027
 \approx 1.20

- 24. Oxidation state of Mo in Ammonium phosphomolybdate is
- **Sol.** Ammonium phosphomolybdate is

 $(NH_4)_3PO_4 \cdot 12MoO_3$

Oxidation state of Mo

$$3(+1) + (-3) + 12x + 36(-2) = 0$$
 $(NH_{+}^{+}) + PO_{3}^{3-} + Mo$
Oxygen

Calculation gives x = +6

- 25.
- 26.
- 27.28.
- 29.
- 30.