NARAYANA GRABS

THE LION'S SHARE IN JEE-ADV. 2022

RANKS in OPEN CATEGORY omv from Nafatiana

CHEMISTRY

1. Predict expression for α in terms of K_{eq} and concentration C :
$\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{~A}^{3+}(\mathrm{aq})+3 \mathrm{~B}^{2-}(\mathrm{aq})$
$(1 *)\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{C}^{4}}\right)^{1 / 5}$
(2) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{5 \mathrm{C}^{4}}\right)^{1 / 5}$
(3) $\left(\frac{4 K_{e q}}{5 C^{4}}\right)^{1 / 5}$
(4) $\left(\frac{9 \mathrm{~K}_{\mathrm{eq}}}{5 \mathrm{C}^{4}}\right)^{1 / 5}$

Sol.

$$
\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{~A}^{3+}(\mathrm{aq})+3 \mathrm{~B}^{2-}(\mathrm{aq})
$$

C

$$
\mathrm{C}(1-\alpha) \quad 2 \mathrm{C} \alpha \quad 3 \mathrm{C} \alpha
$$

$\mathrm{K}_{\mathrm{eq}}=\frac{(2 \mathrm{C} \alpha)^{2}(3 \mathrm{C} \alpha)^{3}}{\mathrm{C}}$
$\mathrm{K}_{\mathrm{eq}}=108 \mathrm{C}^{4} \alpha^{5}$
$\alpha=\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{C}^{4}}\right)^{1 / 5}$
2. Radius of first orbit of hydrogen atom is 51 pm . Determine the radius of $5^{\text {th }}$ orbit of Li^{2+}

Ans. 425 pm
Sol. $\mathrm{r}_{\mathrm{H}}=51 \mathrm{pm}$
$\left(\mathrm{r}_{\mathrm{H}}{ }^{2+}\right)_{5}=\left(\mathrm{r}_{\mathrm{H}}\right)_{1} \times \frac{\mathrm{n}^{2}}{\mathrm{Z}}=51 \times \frac{5^{2}}{3}=425 \mathrm{pm}$
3. How many moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will be formed by the reaction of 5 moles of BaCl_{2} and 3 moles of $\mathrm{Na}_{3}\left(\mathrm{PO}_{4}\right)$.

Ans. $\frac{5}{3}$
Sol. $3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$
5 mole 3 mole
Moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}=\frac{5}{3}$
4. In which of the following pairs of elements electron gain enthalpy difference is highest?
(1) Cl, Ar
(2) Cl, Ne
(3) F, Ar
(4) F, Ne

Ans. (2)
Sol. Chlorine has most negative $\Delta \mathrm{H}_{\mathrm{eg}}(-349 \mathrm{~kJ} / \mathrm{mole})$ whereas Neon has most positive $\Delta \mathrm{H}_{\mathrm{eg}}(116 \mathrm{~kJ} / \mathrm{mole})$
5. In an ionic solid element Y crystallises in ccp lattice and element X occupy $\frac{1}{3}$ rd of tetrahedral void.

Find formula of ionic solid.
Ans. $X_{2} Y_{3}$
Sol. For 1 unit cell,

> No. of particles

X $\quad \frac{1}{3} \times 8$
Y 4
$\therefore \quad$ Formula of Ionic solid $=\mathrm{X}_{8 / 3} \mathrm{Y}_{4}=\mathrm{X}_{2} \mathrm{Y}_{3}$
6. The value of $\log _{10} \mathrm{~K}$ for a reaction $\mathrm{A} \rightleftharpoons \mathrm{B}$ is
(Given $\Delta \mathrm{H}^{\circ}{ }_{298 \mathrm{~K}}=-54.67 \mathrm{kJmol}^{-1}$

$$
\Delta \mathrm{S}_{298 \mathrm{~K}}^{\mathrm{o}_{2}}=10 \mathrm{kJmol}^{-1}
$$

and $\quad \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$2.303 \times 8.314 \times 298=5705$)
Ans. 10
Sol. $\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\circ}$

$$
\begin{aligned}
& =-54.07 \times 1000-298 \times 10 \\
& =-57050
\end{aligned}
$$

$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RTlog}_{10} \mathrm{~K}$
$\log \mathrm{K}=10$
7. Determine the amount of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ to be added in 1000 g of water to decrease its vapour presssure by 25%.

Sol. $\quad \frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{S}}}{\mathrm{P}^{\circ}}=\frac{\mathrm{n}}{\mathrm{N}+\mathrm{n}}=\frac{1}{4}$
$\Rightarrow 4 \mathrm{n}=\mathrm{N}+\mathrm{n}$
$\mathrm{n}=\frac{\mathrm{N}}{3}=\left(\frac{1000}{18}\right) \times \frac{1}{3}$
\therefore Amount of urea is $\frac{(1000)}{18 \times 3} \times 60=\frac{10000}{9} \mathrm{gm}$

$$
\approx 1111.1 \text { gram }
$$

8. Which of the following slows down the process of setting of the cement?

Ans. Gypsum

9. Number of ambidentate ligands in given complex $\left[\mathrm{M}(\mathrm{en})(\mathrm{SCN})_{4}\right]$:

Ans. 4
Sol. $\quad \mathrm{SCN}^{-}$is an ambidentate ligand $\mathrm{S} \& \mathrm{~N}$ both are donor atom.
10. $2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Zn} \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}+2 \mathrm{Au} \downarrow$
(A) Redox reaction
(C) Displacement reaction
(B) Combination reaction
(D) Decomposition reaction
(1*) A \& B
(2) B only
(3) A \& D
(4) B \& D

Sol. $\quad 2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Zn} \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}+2 \mathrm{Au} \downarrow$
It is a redox, displacement reaction.
11. $\quad A \Rightarrow$ Spin only magnetic moment of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}$ is 1.73 B.M. and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ is 5.92 B.M.
$\mathrm{R} \Rightarrow$ In both cases Fe have +3 oxidation state
Ans. Both $\mathrm{A} \& \mathrm{R}$ are correct but R is not the correct explanation
Sol. $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}: \mathrm{Fe}^{+3}: 3 \mathrm{~d}^{5}$ with S.F.L

$$
\Rightarrow \mathrm{n}=1
$$

Magnetic moment $=1.73$ B. M
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3} \mathrm{Fe}^{+3}: 3 \mathrm{~d}^{5}$ with W.F.L

$$
\Rightarrow \mathrm{n}=5
$$

Magnetic moment $=5.92$ B. M
12. Assertion: Radius of H^{+}is $1.5 \times 10^{-3} \mathrm{pm}$

Reason: H^{+}cannot exist independently
Sol. Both assertion and reason are correct but reason is not a correct explanation of assertion.
13. Oxidation number of Mo in Ammonophosphomolybdate

Ans. 6
Sol. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}$ or $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} .12 \mathrm{MoO}_{3}$
$+3+5+12 x-80=0$
$12 \mathrm{x}=80-8$
$12 \mathrm{x}=72$
$\mathrm{x}=6$
14. Which of following are reducing and oxidising agent respectively.
(1) $\mathrm{Eu}^{+2}, \mathrm{Ce}^{+4}$
(2) $\mathrm{Ce}^{+3}, \mathrm{Ce}^{+4}$
(3) $\mathrm{Eu}^{+4}, \mathrm{Eu}^{+2}$
(4) $\mathrm{Tb}^{+2}, \mathrm{Ce}^{2+}$

Ans. (1)
Sol. $\mathrm{Eu}^{2+} \longrightarrow \mathrm{Eu}^{3+}+\mathrm{e}^{-}$
$\mathrm{Eu}^{2+} \longrightarrow$ Good reducing agent
$\mathrm{e}^{-}+\mathrm{Ce}^{4+} \longrightarrow \mathrm{Ce}^{3+}$
Ce^{4+} is a good oxidising agent
15. Column-I
(P) $\mathrm{N}_{2} \mathrm{O}_{5}$
(Q) $\mathrm{N}_{2} \mathrm{O}$
(R) $\mathrm{N}_{2} \mathrm{O}_{4}$
(S) NO_{2}
(i) $\mathrm{N}-\mathrm{N}$ bond
(ii) $\mathrm{N}-\mathrm{O}-\mathrm{N}$ bond
(iii) $\mathrm{N}=\mathrm{N} / \mathrm{N} \equiv \mathrm{N}$ bond
(iv) $\mathrm{N}=\mathrm{O}$ bond

Column-II

Ans. $\quad \mathrm{P}$ - (ii), Q - (iii), R - (i), S - (iv)
Sol.

$: \ddot{\mathrm{N}}=\mathrm{N}=\ddot{\mathrm{O}} \quad \mathrm{OR} \quad \mathrm{N} \equiv \mathrm{N}-\ddot{\mathrm{O}}:$

16. Polymer which is named as orlon
(1) Polyamide
(2) Polyacrylonitrile
(3) Polycarbamate
(4) Polyethene

Ans. (2)
17.

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

18. Column I
(i) Vitamin A
(ii) Vitamin C (Ascorbic acid)
(iii) Riboflavin
(iv) Thiamine
(1) $\mathrm{i} \rightarrow \mathrm{c}$, ii $\rightarrow \mathrm{d}$, iii $\rightarrow \mathrm{a}$, iv \rightarrow b
(3) $\mathrm{i} \rightarrow \mathrm{d}$, ii $\rightarrow \mathrm{c}$, iii \rightarrow b, iv \rightarrow a

Column II

(a) Beri-beri
(b) Cheilosis
(c) Xerophthalmia
(d) Scurvy
(2) $i \rightarrow c$, ii \rightarrow d, iii \rightarrow b, iv \rightarrow a
(4) $\mathrm{i} \rightarrow \mathrm{c}, \mathrm{ii} \rightarrow \mathrm{b}, \mathrm{iii} \rightarrow \mathrm{d}, \mathrm{iv} \rightarrow \mathrm{a}$

Ans. (2)
19. Photochemical smog found mainly in
(1) Industrial area
(2) Marshy place
(3) Hilly area of Himachal
(4) Cold humid climate

Ans. (1)
20. Column I (Chemical reactions)
(i) Glucose $\rightarrow \mathrm{CO}_{2}+$ Ethanol
(ii) Sucrose \rightarrow Glucose + Fructose
(iii) Starch \rightarrow Maltose
(iv) Protein \rightarrow Amino acids
(1) $\mathrm{i} \rightarrow \mathrm{c}, \mathrm{ii} \rightarrow \mathrm{d}, \mathrm{iii} \rightarrow \mathrm{b}$, iv $\rightarrow \mathrm{a}$
(3) $\mathrm{i} \rightarrow \mathrm{c}, \mathrm{ii} \rightarrow \mathrm{d}, \mathrm{iii} \rightarrow \mathrm{a}, \mathrm{iv} \rightarrow \mathrm{b}$

Column II (Enzymes used)
(a) Pepsin
(b) Diastase
(c) Zymase
(d) Invertase
(2) $\mathrm{i} \rightarrow \mathrm{d}, \mathrm{ii} \rightarrow \mathrm{c}, \mathrm{iii} \rightarrow \mathrm{b}, \mathrm{iv} \rightarrow \mathrm{a}$
(4) $\mathrm{i} \rightarrow \mathrm{c}, \mathrm{ii} \rightarrow \mathrm{b}, \mathrm{iii} \rightarrow \mathrm{d}, \mathrm{iv} \rightarrow \mathrm{a}$

Ans. (1)
21. How many bromo products are formed when ethane is reacted with excess of Br_{2} on heating?

Ans. (9)

Sol.

22. Match the following with the correct name of reaction
(I)

(P) Gattermann Koch reaction
(II)

(Q) Hell Volhard Zelinsky
(III)

(R) Iodoform reaction
(1) (I) \rightarrow (Q), (II) \rightarrow (R), (III) \rightarrow (P)
(2) (I) \rightarrow (R), (II) \rightarrow (Q), (III) \rightarrow (P)
(3) (I) \rightarrow (Q), (II) \rightarrow (P), (III) \rightarrow (R)
(4) (I) \rightarrow (P), (II) \rightarrow (Q), (III) \rightarrow (R)

Ans. (1)
23. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[\text { Acetone }]{\mathrm{Nal}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}+\mathrm{NaBr}$

Which of the following statement is correct?
(1) Acetic acid solvent can take in above reaction.
(2) NaI is soluble in acetone but NaBr is precipitate in acetone
(3) NaI is precipitated in acetone but NaBr is soluble in acetone
(4) When acetone is taken in solvent transition state is highly polar

Ans. (2)
24.

Product (P) and (Q) are respectively

(2)

and

(3)
 and

(4)
 and

Ans. (3)

