

NARAYANA GRABS The Lion's Share in Jee-Adv.2022

JEE MAIN (APRIL) 2023 (06-04-2023-FN) Memory Based Duestion Paper CHEMISTRY

Toll Free: 1800 102 3344

CHEMISTRY

1. Predict expression for α in terms of K_{eq} and concentration C :

$$A_{2}B_{3}(aq) = 2A^{3+}(aq) + 3B^{2-}(aq)$$

$$(1*) \left(\frac{K_{eq}}{108C^{4}}\right)^{1/5} \qquad (2) \left(\frac{K_{eq}}{5C^{4}}\right)^{1/5} \qquad (3) \left(\frac{4K_{eq}}{5C^{4}}\right)^{1/5} \qquad (4) \left(\frac{9K_{eq}}{5C^{4}}\right)^{1/5}$$
Sol.
$$A_{2}B_{3}(aq) = 2A^{3+}(aq) + 3B^{2-}(aq)$$

$$C$$

$$C(1-\alpha) \qquad 2C\alpha \qquad 3C\alpha$$

$$K_{eq} = \frac{(2C\alpha)^{2}(3C\alpha)^{3}}{C}$$

$$K_{eq} = 108C^{4}\alpha^{5}$$

$$\alpha = \left(\frac{K_{eq}}{108C^{4}}\right)^{1/5}$$

2. Radius of first orbit of hydrogen atom is 51 pm. Determine the radius of 5^{th} orbit of Li^{2+}

Sol. $r_{\rm H} = 51 \text{ pm}$

$$(r_{\rm H}^{2+})_5 = (r_{\rm H})_1 \times \frac{n^2}{Z} = 51 \times \frac{5^2}{3} = 425 \text{ pm}$$

How many moles of Ba₃(PO₄)₂ will be formed by the reaction of 5 moles of BaCl₂ and 3 moles of Na₃(PO₄).

Ans.

 $\frac{5}{3}$

Sol. 3 BaCl₂ + 2Na₃ PO₄ \longrightarrow Ba₃(PO₄)₂ + 6NaCl

5 mole 3 mole

Moles of Ba₃(PO₄)₂ = $\frac{5}{3}$

NARAYANA EDUCATIONAL INSTITUTIONS

4.	In which of the following pairs of elements electron gain enthalpy difference is highest?				
	(1) Cl, Ar	(2) Cl, Ne	(3) F, Ar	(4) F, Ne	
Ans.	(2)				
Sol.	. Chlorine has most negative ΔH_{eg} (-349 kJ/mole) whereas Neon has most positive ΔH_{eg} (116 kJ/mole)				
5.	In an ionic solid element Y crystallises in ccp lattice and element X occupy $\frac{1}{3}$ rd of tetrahedral void.				
	Find formula of id	onic solid.			
Ans.	X ₂ Y ₃				
Sol.	For 1 unit cell,				
	No. of partic	les			
	X $\frac{1}{3} \times 8$				
	Y 4				
	∴ Formula of I	onic solid = $X_{8/3}Y_4 = X_2$	Y ₃		
6.	The value of log ₁₀	$_{0}$ K for a reaction A \equiv	\Rightarrow B is		
	(Given $\Delta H^{o}_{298K} =$	–54.67 kJmol ⁻¹			
	$\Delta S^{o}_{298K} =$	10 kJmol ⁻¹			
	and $R = 8.314$	$4 \text{ JK}^{-1} \text{mol}^{-1}$			
	2.303 × 8.314 × 2	298 = 5705)			
Ans.	10				
Sol.	$\Delta G^{o} = \Delta H^{o} - T\Delta S$	0			
	=-54.07 × 1	$000 - 298 \times 10$			
	=-57050				
	$\Delta G^{o} = -2.303 \text{ RT}$	log ₁₀ K			
	$\log K = 10$				
_					
7.			JNH_2) to be added in	1000 g of water to decrease its vapor	
	presssure by 259	%.			
~ •	$P^{\circ}-P_{s}$ n	1			

Sol.
$$\frac{P^\circ - P_S}{P^\circ} = \frac{n}{N+n} = \frac{1}{4}$$

 $\Rightarrow 4n = N+n$

$$n = \frac{N}{3} = \left(\frac{1000}{18}\right) \times \frac{1}{3}$$

 $\therefore \text{ Amount of urea is } \frac{(1000)}{18 \times 3} \times 60 = \frac{10000}{9} \text{ gm}$

≈ 1111.1 gram

8. Which of the following slows down the process of setting of the cement ?

Ans. Gypsum

- 9. Number of ambidentate ligands in given complex [M(en)(SCN)₄] :
- Ans. 4
- **Sol.** SCN^{-} is an ambidentate ligand S & N both are donor atom.

10.	$2[\operatorname{Au}(\operatorname{CN})_2]^- + \operatorname{Zn} \longrightarrow [\operatorname{Zn}(\operatorname{CN})_4]^{2-} + 2\operatorname{Au} \downarrow$			
	(A) Redox reaction		(C) Displacement reaction	
	(B) Combination reaction		(D) Decomposition reaction	
	(1*) A & B	(2) B only	(3) A & D	(4) B & D
Sol.	$2[Au(CN)_2]^- + Zn -$	\rightarrow [Zn(CN) ₄] ²⁻ + 2Au \downarrow		

- Sol. $2[Au(CN)_2] + Zn \longrightarrow [Zn(CN)_4]^2 + 2A$ It is a redox, displacement reaction.
- 11. A \Rightarrow Spin only magnetic moment of $[Fe(CN)_6]^{-3}$ is 1.73 B.M. and $[Fe(H_2O)_6]^{+3}$ is 5.92 B.M. R \Rightarrow In both cases Fe have +3 oxidation state
- Ans. Both A & R are correct but R is not the correct explanation
- **Sol.** $[Fe(CN)_6]^{-3}$: Fe⁺³ : 3d⁵ with S.F.L

$$\Rightarrow$$
 n = 1

Magnetic moment = 1.73 B.M

 $[Fe(H_2O)_6]^{+3} Fe^{+3}$: 3d⁵ with W.F.L

$$\Rightarrow$$
 n = 5

Magnetic moment =
$$5.92 \text{ B.M}$$

- **12.** Assertion: Radius of H^+ is 1.5×10^{-3} pm Reason: H^+ cannot exist independently
- Sol. Both assertion and reason are correct but reason is not a correct explanation of assertion.

Oxidation number of Mo in Ammonophosphomolybdate 13.

Ans. 6

(NH₄)₃PMo₁₂O₄₀ or (NH₄)₃PO₄.12MoO₃ Sol.

> +3 + 5 + 12x - 80 = 012x = 80 - 812x = 72x = 6

14. Which of following are reducing and oxidising agent respectively.

(1) Eu^{+2} , Ce^{+4}	(2) Ce^{+3} , Ce^{+4}
(3) Eu^{+4} , Eu^{+2}	(4) Tb^{+2} , Ce^{2+}

- Ans. (1)
- $Eu^{2+} \longrightarrow Eu^{3+} + e^{-}$ Sol.

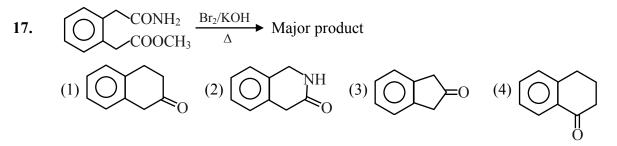
 $Eu^{2+} \longrightarrow Good reducing agent$

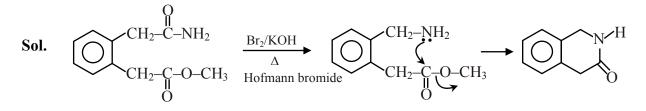
$$e^{-} + Ce^{4+} \longrightarrow Ce^{3+}$$

Ce⁴⁺ is a good oxidising agent

15.	Column-I	Column-II
	$(P) N_2O_5$	(i) N–N bond
	(Q) N ₂ O	(ii) N-O-N bond
	$(R) N_2 O_4$	(iii) N=N / N≡N bond
	(S) NO ₂	(iv) N=O bond
Ans.	P - (ii) O - (iii) R - (i) S - (iv)	

- (111), K – (1), S – (1V) Ans. (II), Q


Sol.
$$\bigcirc N & \bigcirc N & \bigcirc O \\ \odot & N & \bigcirc O \\ \vdots & N = N = \bigcirc O \\ O & \bigcirc N & \frown N & \bigcirc O \\ O & \frown N & \frown O \\ O & \bigcirc O & \bigcirc O \\ O & O \\ O & \bigcirc O \\ O & O \\ O & \bigcirc O \\ O & \bigcirc O \\ O & O \\ O$$


- 16. Polymer which is named as orlon
 - (1) Polyamide
 - (3) Polycarbamate

- (2) Polyacrylonitrile
- (4) Polyethene

Ans. (2)

Ans. (2)

- 18. Column I
 - (i) Vitamin A
 - (ii) Vitamin C (Ascorbic acid)
 - (iii) Riboflavin
 - (iv) Thiamine
 - (1) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow a$, $iv \rightarrow b$
 - (3) $i \rightarrow d$, $ii \rightarrow c$, $iii \rightarrow b$, $iv \rightarrow a$
- Ans. (2)
- **19.** Photochemical smog found mainly in
 - (1) Industrial area
 - (3) Hilly area of Himachal
- Ans. (1)

- Column II
- (a) Beri-beri
- (b) Cheilosis
- (c) Xerophthalmia
- (d) Scurvy
- (2) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow b$, $iv \rightarrow a$
- (4) $i \rightarrow c$, $ii \rightarrow b$, $iii \rightarrow d$, $iv \rightarrow a$
- (2) Marshy place(4) Cold humid climate

20.	Column I (Chemical reactions)	Column II (Enzymes used)	
	(i) Glucose \rightarrow CO ₂ + Ethanol	(a) Pepsin	
	(ii) Sucrose \rightarrow Glucose + Fructose	(b) Diastase	
	(iii) Starch \rightarrow Maltose	(c) Zymase	
	(iv) Protein \rightarrow Amino acids	(d) Invertase	
	(1) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow b$, $iv \rightarrow a$	(2) $i \rightarrow d$, $ii \rightarrow c$, $iii \rightarrow b$, $iv \rightarrow a$	
	(3) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow a$, $iv \rightarrow b$	(4) $i \rightarrow c, ii \rightarrow b, iii \rightarrow d, iv \rightarrow a$	

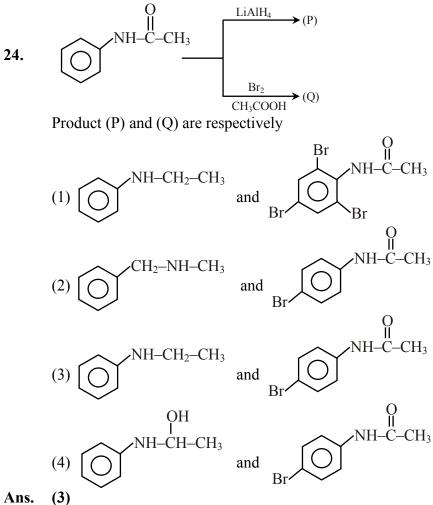
Ans. (1)

Ans.

21. How many bromo products are formed when ethane is reacted with excess of Br₂ on heating?Ans. (9)

22. Match the following with the correct name of reaction

(I) CH_3 -COOH $\xrightarrow{\text{Red-P} + Br_2}$ (P) Gattermann Koch reaction (II) CH_3 -C- $CH_3 \xrightarrow{\text{NaOI}}$ (Q) Hell Volhard Zelinsky (III) $\bigcirc \underbrace{CO + HCl + AlCl_3}$ (R) Iodoform reaction (1) (I) \rightarrow (Q), (II) \rightarrow (R), (III) \rightarrow (P) (2) (I) \rightarrow (R), (II) \rightarrow (Q), (III) \rightarrow (P) (3) (I) \rightarrow (Q), (II) \rightarrow (P), (III) \rightarrow (R) (4) (I) \rightarrow (P), (II) \rightarrow (Q), (III) \rightarrow (R) (1)



$NaI \rightarrow CH_3 - CH_2 - I + NaBr$ 23. CH₃CH₂-Br -

Which of the following statement is correct?

- (1) Acetic acid solvent can take in above reaction.
- (2) NaI is soluble in acetone but NaBr is precipitate in acetone
- (3) NaI is precipitated in acetone but NaBr is soluble in acetone
- (4) When acetone is taken in solvent transition state is highly polar

Ans. (2)

Ans.