JEE-Mains-06-04-2023 [Memory Based]
 [Morning Shift]

Physics

Question: Current $\sqrt{2 I}$ in both rings, find resultant B?

Solution:

Current $=\sqrt{2} I$
$B_{1}=B_{2}=\frac{\mu_{0}(\sqrt{2} I)}{2 a}$
So,
$B_{N}=\sqrt{B_{1}^{2}+B_{2}^{2}}$
$=\frac{\mu_{0}}{2 a}(\sqrt{2} I) \sqrt{2}=\left(\frac{\mu_{0} I}{a}\right)$

Question: If rate of heat supplied to the system is 1000 watt and the rate of work done by the system is 200 watt. Find rate of change of internal energy.
Answer: 800.00

Solution:

$\frac{d Q}{d t}=+1000$ watt
$\frac{d w}{d t}=+200 \mathrm{watt}$
$\frac{d Q}{d t}=\frac{d w}{d t}+\frac{d u}{d t}$
$+1000=+200+\frac{d w}{d t}$
$\frac{d w}{d t}=+800 \mathrm{watt}$

Question: Find the ratio of energy density of E and B in EM waves.
Options:
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) None of these

Answer: (a)
Solution:
Average electric field energy density $=\frac{1}{2} \varepsilon_{0} E^{2}$
Average magnetic field energy density $=\frac{B^{2}}{2 \mu_{0}}$
As both are equal
$\frac{\frac{1}{2} \varepsilon_{0} E^{2}}{\frac{B^{2}}{2 \mu_{0}}}=1$
Question: Percentage error in equivalent resistance if connected in parallel (10 ± 0.5) ohm and (15 ± 0.5) ohm
Options:
(a) 13%
(b) 3%
(c) $13 / 5 \%$
(d) $13 / 3 \%$

Answer: (d)
Solution:
$\frac{\Delta R_{\text {eq }}}{R_{e q}^{2}}=\frac{\Delta R_{1}}{\Delta R_{1}^{2}}+\frac{\Delta R_{2}}{\Delta R_{2}^{2}}$
$\frac{\Delta R_{\mathrm{eq}}}{R_{\mathrm{eq}}}=\left(\frac{0.5}{10^{2}}+\frac{0.5}{15^{2}}\right) \times \frac{15 \times 10}{15+10}$
$=0.5\left(\frac{1}{10^{2}}+\frac{1}{15^{2}}\right) \times \frac{150}{25}$
$=3\left(\frac{1}{100}+\frac{1}{225}\right)=3\left(\frac{225+100}{225 \times 100}\right)$
$\frac{\Delta R}{R} \times 100=\frac{3 \times 325}{225 \times 100} \times 100=\frac{13}{3} \%$
Question: Assertion: Earth has atmosphere while moon does not.
Reason: Escape velocity in moon is very small than earth.

Options:

(a) A correct, R correct \& R is correct explanation
(b) A correct, R correct but not correct explanation
(c) A correct, R false
(d) A false, R false

Answer: (a)

Solution: A correct, R correct \& R is correct explanation
Question: A mass of 100 g is rotated with a spring of natural length 20 cm , with angular velocity $5 \mathrm{rads}^{-1}$. Find tension in spring $\left[\mathrm{R}=\right.$ spring constant $\left.7.5 \mathrm{~nm}^{-1}\right]$
Answer: 0.75

Solution:

kx
$T=k x=m \omega^{2}\left(l_{0}+x\right)$
$7.5 x=\frac{1}{10} \times 25(0.2+x)$
$3 x=0.2+x$
$x=0.1$
so $T=k x=7.5 \times 0.1=0.75 \mathrm{~N}$

Question: A solid infinite cylindrical wire with radius a is carrying current I find the graph of magnetic field inside \& outside the wire.

Answer:

Solution:

R
Dependency of magnetic fixed in solid current carrying wire
$B_{\text {out }}=\frac{\mu_{0} i}{2 \pi r}$
$B_{\text {surface }}=\frac{\mu_{o} i}{2 \pi R}$

Current through h loop
$i_{1}=\frac{i}{\pi R^{2}} \times \pi r^{2}$
$\oint B \cdot d l=\mu_{o} i$
$B .2 \pi r=\mu_{o} \frac{i \times \pi r^{2}}{\pi R^{2}}$
$B=\frac{\mu_{o} i}{2 \pi R^{2}} \times r$
$B \propto r$
Question: A: range is max at $\theta=45^{\circ}$
R : range is max when $\sin 2 \theta=1$

Options:

(a) R : true A : False
(b) R : true A : True
(c) R : False A : False
(d) R : False A : True

Answer: (b)
Question: Graph of electric potential inside conducting solid sphere is

Solution:

$v_{\text {inside }}=v_{\text {surface }}=\frac{k Q}{R}=$ constant

Question: In a capacitor when liquid of dielectric constant ' k ' is filled upto height $\mathrm{d} / 3$ then capacitance is $2 \mu \mathrm{~F}$. Find capacitance when it is filled till $x=2 \mathrm{~d} / 3$ Take $k=2$

Answer: 2.5
Solution:
$\frac{2 \mathrm{~d}}{3} \uparrow$ \qquad

$C_{e q}=\frac{\frac{3 A k \varepsilon}{d} \cdot \frac{3 A \varepsilon_{0}}{2 d}}{3 \frac{A \varepsilon_{0}}{d}\left[k+\frac{1}{2}\right]}$
$2=\frac{3 K}{\left(K+\frac{1}{2}\right)^{2}} \frac{A \varepsilon_{0}}{2 d} \Rightarrow 2=\frac{3 \times 2}{\frac{5}{2}} \frac{A \varepsilon_{0}}{2 d} \Rightarrow \frac{A \varepsilon_{0}}{d}=\frac{10}{6}$

$$
\begin{aligned}
& \hline \\
& \hline-\mathbf{k -}-\overline{-}-------\cdots \frac{\mathbf{d}}{3} \\
& C_{e q}=\frac{\frac{3 A K \varepsilon_{0}}{2 d} \cdot \frac{3 A \varepsilon_{0}}{d}}{\frac{3 A \varepsilon_{0}}{d}\left[\frac{k}{2}+1\right]}=\frac{3 A \varepsilon_{0}}{2 d}\left[\frac{k}{\left[\frac{k}{2}+1\right]}\right. \\
& C_{e q}=\frac{3}{2}\left(\frac{10}{6}\right)\left[\frac{2}{2}\right]=2.5 \mathrm{~F}
\end{aligned}
$$

Question: If retardation of a body of mass 10 gram is given as $2 x$, where x is the position of the particle starting from origin at rest. If loss of kinetic energy is $\left[\frac{10}{x}\right]^{-n}$ find n .
Answer: 2.00

Solution:

$\Delta K E=W=\int_{0}^{x} \operatorname{mad} x$
$\Delta K E=\frac{10}{100} \int_{0}^{x}(-2 x) d x=-\frac{1}{100} \cdot x^{2}=-\left[\frac{x^{2}}{100}\right]=\left(\frac{10}{x}\right)^{-2}$
So $\mathrm{n}=2$.
Question: Two spheres of mass 2 kg each placed on the ends of a light rod and $\mathrm{r}=10 \mathrm{~cm}$ and dist b / w the centres $=40 \mathrm{~cm}$ find MOI about centre of the rod perpendicular to the line joining centres.

Answer: 0.17

Solution:

I
I
I
$K \leftarrow 40 \mathrm{~cm} \rightarrow 1$

$$
\begin{aligned}
& I=I_{c m}+m l^{2} \\
& =\frac{2}{5} M R^{2}+M l^{2} \\
& =\frac{2}{5} \times 2 \times(0.1)^{2}+2(0.2)^{2} \\
& I=\frac{4}{500}+\frac{8}{100} \\
& I=\frac{4+40}{500}=\frac{44}{500} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

For 2 spheres

$$
I_{\text {final }}=2 \times I=2 \times \frac{44}{500}=0.176 \mathrm{~kg} \mathrm{~m}^{2}
$$

Question: Resistivity of semiconductor changes with temp according to which graph Options:
(a)

(b)

(c)

(d)

Answer: (d)

Question: Alpha, electron, proton has KE is such that $\mathrm{K}_{\alpha}=4 \mathrm{~K}, \mathrm{~K}_{\mathrm{e}}=2 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=\mathrm{K}$ write order of de broglie wave
Solution: $\lambda_{\mathrm{e}}>\lambda_{\mathrm{P}}>\lambda_{\alpha}$
Question: For the oscillations exhibited by the spring block system on the smooth surface along the spring, the time period is equal to

Options:

(a) $2 \pi \sqrt{\frac{m\left(K_{1}+K_{2}\right)}{K_{1} K_{2}}}$
(b) $2 \pi \sqrt{\frac{m\left(K_{1}+K_{2}\right)}{2 K_{1} K_{2}}}$
(c) $2 \pi \sqrt{\frac{m}{K_{1}+K_{2}}}$
(d) $\pi \sqrt{\frac{m}{K_{1}+K_{2}}}$

Answer: (c)

Solution:

Since the springs are in parallel connection
$k_{e q}=k_{1}+k_{2}$
$T=2 \pi \sqrt{\frac{M}{K_{1}+K_{2}}}$
Question: A car is moving with speed of $15 \mathrm{~m} / \mathrm{s}$ towards a stationary wall. A person in the car press the horn and experience the change in frequency of 40 Hz due to reflection from the stationary wall. Find the frequency of horn. (Use $\mathrm{v}_{\text {sound }}=330 \mathrm{~m} / \mathrm{s}$)

Answer: 420.00

Solution:

$15 \mathrm{~m} / \mathrm{s}$

f_{0}
$f^{\prime}=f_{0}\left[\frac{V}{V-V_{C}}\right]$
$f^{\prime \prime}=f^{\prime}\left[\frac{V+V_{C}}{V}\right]$

$f^{\prime \prime}=f_{0}\left[\frac{V}{V-V_{C}}\right]\left[\frac{V+V_{C}}{V}\right]$
$f^{\prime \prime}=f_{0}\left[\frac{V+V_{C}}{V-V_{C}}\right]$
$f^{\prime \prime}-f_{0}=40$
$f_{0}\left(\frac{330+15}{330-15}\right)-f_{0}=40$
$f_{0}\left[\frac{23}{21}-1\right]=40$
$f_{0}=420$
Question: Communication system
Height of the tower increased 21% percentage increase in range.

Options:

(a) 10
(b) 12
(c) 14
(d) 15

Answer: (a)

Solution:

Range $=\sqrt{2 R_{E} h}$
$R_{1}=\sqrt{2 R_{E} \cdot h}=\sqrt{2 R_{E} \cdot h}$
$R_{2}=\sqrt{2 R_{E}\left[h+\frac{21}{100} \cdot h\right]}=\sqrt{2 R_{E}(1.21 h)}$
$\frac{R_{1}}{R_{2}}=\frac{\sqrt{2 R_{E} h}}{\sqrt{2 R_{E}(1.21 h)}}=\frac{1}{\sqrt{1.21}}=\frac{1}{1.1}$
$\Rightarrow R_{2}=1.1 R_{1}$
$\%$ change in $\mathrm{R}=\frac{\left(R_{2}-R_{1}\right)}{R_{1}} \times 100$
$=\frac{1.1 R_{1}-R_{1}}{R_{1}} \times 100$
$\frac{1.1-1}{1} \times 100=10 \%$
Question: If length of wire is increased 20% and area is increased 4% the $\%$ change in resistance is

Answer: 15.00

Solution:

$R=\frac{\rho l}{A}$
$R^{\prime}=\frac{\rho(1.2 \ell)}{1.04 A} \Rightarrow R^{\prime}=\frac{12}{1.04} R=1.15 R$
$\Rightarrow \uparrow 15 \%$
Question: A Body has mass m and moving with const vel in viscous fluid having coiff. of viscosity η density is ρb liquid density $\rho \mathrm{L}$ find vel v

Solution:

$\frac{m g\left(1-\frac{\rho}{S}\right)}{6 \pi \eta r}=v$

Question: Which gate is this

Options:

(a) NOR
(b) OR
(c) AND
(d) NOT

Answer: (a)

JEE-Mains-06-04-2023 [Memory Based]
 [Morning Shift]

Chemistry

Question: Polymer which is named as orlon is?

Options:

(a) Polyacrylonitrile
(b) Polycarbonate
(c) Polyethene
(d) Polyamide

Answer: (a)
Solution: Orlon is also called Acrilan or Polyacrylonitrile

Question: The correct set of strong oxidising and reducing agent
$\mathrm{Ce}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Tb}^{4+}$ and Eu^{2+}

Options:

(a) $\mathrm{Ce}^{4+}, \mathrm{Tb}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}$
(b) $\mathrm{Tb}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Ce}^{4+}, \mathrm{Eu}^{2+}$
(c) $\mathrm{Tb}^{4+}, \mathrm{Eu}^{2+}, \mathrm{Yb}^{2+}, \mathrm{Ce}^{4+}$
(d) $\mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}, \mathrm{Tb}^{4+}, \mathrm{Ce}^{4+}$

Answer: (a)
Solution: $\mathrm{Ce}^{4+}, \mathrm{Tb}^{4+}$ act as oxidising agent and $\mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}$ act as reducing agent

Question: Match column I (Deficiency) with column II (Disease)

Vitamins Deficiency	Disease
(P) Vitamin A	(1) Scurvy
(Q) Vitamin C	(2) Xeropthalmia
(R) Vitamin B 1	(3) Cheilosis
(S) Vitamin B ${ }_{2}$	(4) Beri-Beri

Options:

(a) P-2, Q-1, R-4, S-3
(b) P-2, Q-4, R-3, S-1
(c) P-4, Q-2, R-4, S-1
(d) P-3, Q-2, R-4, S-1

Answer: (a)
Solution: Fact based

Question: Y form FCC lattice in which X occupies $1 / 3$ of tetrahedral Voids. Then formula of the compound will be

Options:

(a) $\mathrm{X}_{3} \mathrm{Y}_{2}$
(b) XY_{3}
(c) $\mathrm{X}_{2} \mathrm{Y}_{3}$
(d) $X_{3} Y$

Answer: (c)

Solution: tetrahedral voids are 8 in count in FCC thus X is $8 / 3$ and $\mathrm{Y}=4$ hence the formula

Question: Which of the following have highest electron gain enthalpy difference?
Options:
(a) F, Ne
(b) Ar, F
(c) Ne, Cl
(d) Ar, Cl

Answer: (a)
Solution: Fact based
EA values are $\mathrm{F}=-333, \mathrm{Cl}=-349, \mathrm{Ne}=116, \mathrm{Ar}=96$

Question: Name reactions Matching

Name Reaction	Reagents
(P) Etard Reaction	(1) NaOI
(Q) Iodoform	(2) $\mathrm{CO} / \mathrm{HCl}, \mathrm{Anh} . \mathrm{AlCl}_{3}$
(R) Gatterman aldehyde	(3) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{CS}_{2}, \mathrm{H}_{3} \mathrm{O}^{+}$
(S) HVZ	(4) $\mathrm{X}_{2} /$ red $\mathrm{P}, \mathrm{H}_{2} \mathrm{O}$

Options:

(a) P-3, Q-1, R-2, S-4
(b) P-3, Q-2, R-1, S-4
(c) P-3, Q-4, R-2, S-1
(d) P-1, Q-3, R-2, S-4

Answer: (a)
Solution: Fact based

Question: Match column I (Compound) with column II (Type of Bond)

Nitrogen oxides	Type of Bonds
(P) $\mathrm{N}_{2} \mathrm{O}$	(1) N-N bond
(Q) $\mathrm{N}_{2} \mathrm{O}_{5}$	(2) N-O-N bond
(R) NO_{2}	(3) $\mathrm{N}=\mathrm{N}$ or N triple bond N
(S) $\mathrm{N}_{2} \mathrm{O}_{4}$	(4) $\mathrm{N}=\mathrm{O}$

Options:

(a) P-1, Q-4, R-2, S-3
(b) P-3, Q-2, R-4, S-1
(c) P-1, Q-2, R-4, S-3
(d) P-1, Q-3, R-2, S-4

Answer: (b)
Solution: structure-based question

Question: Photochemical smog is maximum in Options:
(a) Himalayan Region
(b) Green Healthy vegetation
(c) Marshy Lands
(d) Industrial Region

Answer: (d)
Solution: Hydrocarbons and nitrogen oxides produced by automobiles and factories.

Question: Which of the reaction is correct among the following with appropriate enzyme? Options:
(a) Sucrose \rightarrow Glucose + fructose : Enzyme - Invertase
(b) Glucose $\rightarrow \mathrm{CO}_{2}+$ Ethanol : Enzyme : Maltase
(c) Protein \rightarrow Amino acid : Enzyme : Zymase
(d) Starch \rightarrow Maltose : Enzyme : Pepsin

Answer: (a)
Solution: Sucrose \rightarrow Glucose + fructose : Enzyme - Invertase

Question: Which of the following is used for settling of cement?
Options:
(a) Gypsum
(b) Limestone
(c) Clay
(d) Silica

Answer: (a)
Solution: Setting of cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement.

Question: which of the following is having square Pyramidal shape Options:
(a) XeOF_{4}
(b) BrF_{5}
(c) IF_{5}
(d) ICl_{4}^{-}

Answer: (a)
Solution: XeOF_{4} has geometry of $\mathrm{Sp}^{3} \mathrm{~d}^{2}$ and shape of square pyramidal

Question: Assertion: Loss of the electron from hydrogen atom results in nucleus $\left(\mathrm{H}^{+}\right)$of \sim $1.5 \times 10^{-3} \mathrm{pm}$ size.
Reason: H^{+}does not exist freely and is always associated with other atoms or molecules.
Options:
(a) Both assertion and reason are correct but reason is not correct explanation
(b) Both assertion and reason are correct but reason is correct explanation
(c) Both assertion and reason are incorrect
(d) Assertion is correct and reason is incorrect

Answer: (b)

Solution: Loss of the electron from hydrogen atom results in nucleus $\left(\mathrm{H}^{+}\right)$of $\sim 1.5 \times 10^{-3} \mathrm{pm}$ size. This is extremely small as compared to normal atomic and ionic sizes of 50 to 200 pm . As a consequence, H^{+}does not exist freely and is always associated with other atoms or molecules. Thus, it is unique in behavior.

Question: Assertion: The magnetic Moment of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ are 5.92 BM and 1.74 BM respectively.
Reason: The oxidation state Fe is +3 .

Options:

(a) Both assertion and reason are correct but reason is not correct explanation
(b) Both assertion and reason are correct but reason is correct explanation
(c) Both assertion and reason are incorrect
(d) Assertion is correct and reason is incorrect

Answer: (a)
Solution: water as ligand do not cause pairing in complex but CN - does

Question: If radius of ground state hydrogen is 51 pm , find out the radius of $5^{\text {th }}$ orbit of Li^{2+} (closest integer)

Options:

(a) 170 pm
(b) 180 pm
(c) 120 pm
(d) 425 pm

Answer: (d)
Solution: Apply r $=51 * 5 * 5 / 3$

Question: Identify the product formed in the following reaction.

$\xrightarrow[\text { Heat }]{\mathrm{Br}_{2} / \mathrm{NaOH}}$?

Options:

(a)

(b)

(c)

(d)

Answer: (d)
Solution:

Question: Matrix match for detection of element

Column-I	Column-II
(A) Nitrogen	(P) AgX
(B) Sulphur	(Q) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}$
(C) Phosphorous	(R) $\mathrm{Fe}(\mathrm{SCN})_{3}$
(D) Halogens	(S) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$

Options:

(a) A-P, B-R, C-Q, D-S
(b) A-R, Q, B-P, C-Q, D-S
(c) A-S, B-R, C-Q, D-P
(d) A-Q, B-R, C-P, D-S

Answer: (c)
Solution: A-S, B-R, C-Q, D-P

Question: Consider the following reaction.
$\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g})$

If the initial concentration of $\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{~g})$ is c , find the value of α
Options:
(a) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{27 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(b) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{\mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(c) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(d) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{4 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$

Answer: (c)
Solution:
$\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$

JEE-Mains-06-04-2023 [Memory Based]
 [Morning Shift]

Mathematics

Question: $\int \frac{x^{2}\left(x \sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$ is equal to
Answer: $\frac{-x^{2}}{x \tan x+1}+2 \ln |x \sin x+\cos x|+c$
Solution:
$\int \frac{x^{2}\left(x \sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$
Integrating by parts
$I=x^{2} \cdot \frac{-1}{x \tan x+1}-\int 2 x\left(\frac{-1}{x \tan x+1}\right) d x$
$=\frac{-x^{2}}{x \tan x+1}+2 \int \frac{x \cos x}{x \sin x+\cos x} d x$
$=\frac{-x^{2}}{x \tan x+1}+2 \ln |x \sin x+\cos x|+c$

Question: The coefficient of x^{18} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
Options:
(a) ${ }^{14} C_{7}$
(b) ${ }^{15} C_{8}$
(c) ${ }^{15} C_{6}$
(d) ${ }^{14} C_{8}$

Answer: (c)
Solution:
$\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$
$T_{r+1}={ }^{15} C_{r}\left(x^{4}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}={ }^{15} C_{r}(-1)^{r} x^{60-7 r}$
$60-7 r=18$
$\Rightarrow 7 r=42$
$\Rightarrow r=6$
Coefficient of $x^{18}={ }^{15} C_{6}$

Question: The number of ways of distributing 70 distinct oranges among three children such that each child gets atleast one orange is
Answer: $3^{70}-3\left(2^{70}-2\right)-3$

Solution:

Number of ways $=3^{70}-{ }^{3} C_{1} \cdot 2^{70}+{ }^{3} C_{2} \cdot 1^{70}$
$=3^{70}-3\left(2^{70}-2\right)-3$

Question: Sum of first 20 terms of the series $5,11,19,29,41, \ldots \ldots$ is
Answer: 3250.00

Solution:

Let $S_{n}=5+11+19+29+41+\ldots t_{n}$
$t_{n}=a n^{2}+b n+c$
$a+b+c=5$
$4 a+2 b+c=11$
$\underline{9 a+3 b+c=19}$
$5 a+b=8$
$3 a+b=6$
$2 a=2$
$a=1$
$b=3$
$c=1$
$t_{n}=n^{2}+3 n+1$
$S_{n}=\sum t_{n}$
$S_{n}=\frac{n(n+1)(2 n+1)}{6}+\frac{3 n(n+1)}{2}+n$
$S_{20}=\frac{20 \cdot 21 \cdot 41}{6}+\frac{2 \cdot 20 \cdot 21}{2}+20$
$=2870+630+20$
$=3520$

Question: Number of ways in which 20 chocolates can be given to 3 children such that each gets atleast one is \qquad .
Answer: ${ }^{19} C_{2}$
Solution:
$x+y+z=20$
$x, y, z \geq 1$
$X+Y+Z=17$
$X, Y, Z \geq 0$
${ }^{n+r-1} C_{r-1}$ i.e. ${ }^{19} C_{2}$

Question: If 5 pairs of dice are thrown. Success is getting a sum 5. If the probability of getting atleast 4 success is $\frac{K}{3^{11}}$, then the value of K is
Answer: 123.00
Solution:
$(1,4),(2,3),(3,2),(4,1)$
$p=\frac{4}{6}=\frac{1}{9}, q=\frac{8}{9}$
$\frac{K}{3^{11}}=P($ atleast 4 success $)={ }^{5} C_{4} p^{4} q^{1}+{ }^{5} C_{5} p^{5}$
$\frac{K}{3^{11}}=5 \cdot \frac{1}{9^{4}} \cdot \frac{8}{9}+\frac{1}{9^{5}}$
$\Rightarrow \frac{K}{3^{11}}=\frac{40}{3^{10}}+\frac{1}{3^{10}}$
$\Rightarrow \frac{K}{3}=41$
$\Rightarrow K=123$

Question: If the ratio of the $5^{\text {th }}$ term from the start to the $5^{\text {th }}$ term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$. Find the $3^{\text {rd }}$ term from start.
Answer: $60 \sqrt{3}$

Solution:

$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$
$\frac{{ }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}}{{ }^{n} C_{4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n 4}}=\frac{\sqrt{6}}{1}$
$\frac{(\sqrt[4]{2})^{n-8}}{\left(\frac{1}{\sqrt[4]{3}}\right)^{n-8}}=\sqrt{6}$
$(\sqrt[4]{6})^{n-8}=\sqrt{6}$
$(\sqrt{6})^{\frac{n-8}{2}}=\sqrt{6}$
$n=10$
${ }^{10} C_{2}\left(2^{\frac{1}{4}}\right)^{8} \times\left(\frac{1}{3^{\frac{1}{4}}}\right)^{2}$
$=45 \times 4 \times \frac{1}{\sqrt{3}}$
$=60 \sqrt{3}$

Question: Mean of 15 observations is 12 and its variance is 14 . Mean of another 15 observations is 14 and variance σ^{2}. Combined variance is 13 . Find σ^{2}.

Answer: 10.00

Solution:

Subtract each entry by 13
So $14=\frac{\sum x_{i}{ }^{2}}{15}-(-1)^{2} \Rightarrow \sum x_{i}{ }^{2}=2.25$
$\& \sigma^{2}=\frac{\sum y_{i}{ }^{2}}{15}-1^{2} \Rightarrow \sum y_{i}{ }^{2}=15\left(\sigma^{2}\right)+1$
$13=\frac{225+15 \sigma^{2}+15}{30}$
$\Rightarrow 8+\frac{\sigma^{2}}{2}=0$
$\sigma^{2}=10$

Question: A 2×2 matrix A is such that none of its elements is 0 , and $A^{2}=I$. ' a ' is the sum of diagonal elements and ' b ' is $|A|$. Find $3 a^{2}+4 b^{2}$.

Answer: 4.00

Solution:

$A^{2}=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]^{2}=\left[\begin{array}{ll}p^{2}+q r & p q+q s \\ p r+r s & q r+s^{2}\end{array}\right]$
$(p+s) q=r(p+s)=0$
$p+s=0 \quad p=-s$
$p^{2}+q r=1$
So, $a=0, \quad b=p s-q r$

$$
=-\left(p^{2}+q r\right)=-1
$$

So $3 a^{2}+4 b^{2}=4$

Question: If $2 x^{y}+3 y^{x}=20$. Find $\frac{d y}{d x}$ at (2, 2).

Answer:

Solution:

$2 x^{y}+3 y^{x}=20$
$\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$
$=-\frac{2 y x^{y-1}+3 y^{x} \ln y}{2 x^{y} \cdot \ln x+3 x y x-1}$
$=-\frac{2+3 \ln 2}{1 \ln 2+3}$
$=-\frac{2+\ln 8}{\ln 4+3}$

Question: If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P.
$\lim _{n \rightarrow \infty} \frac{\sqrt{d}}{\sqrt{n}}\left(\frac{1}{\sqrt{a_{2}}+\sqrt{a_{1}}}+\frac{1}{\sqrt{a 3}+\sqrt{a_{2}}} \cdots\right)$
Answer: 1.00
Solution:
a_{1}, a_{2}, a_{3} are in A.P.
$\lim _{n \rightarrow \infty} \frac{\sqrt{d}}{\sqrt{n}}\left(\frac{1}{\sqrt{a_{2}}+\sqrt{a_{1}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{2}}} \cdots\right)$
$=\lim _{n \rightarrow \infty} \frac{\sqrt{d}}{\sqrt{n}}\left[\frac{\sqrt{a_{n}}-\sqrt{a_{1}}}{d}\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{\sqrt{a_{1}+(n-1) d}}{\sqrt{n} \cdot \sqrt{d}}-\frac{\sqrt{d} \sqrt{a_{1}}}{\sqrt{n} d}\right]$
$=1$

Question: $f=[9+13 \sin x]$ when $x \in[0, \pi]$. Find the number of points where f is not differentiable.
Answer: 25.00

Solution:

$[a+b \sin x] ; x \in[0, \pi]$
Non-differentiable at $2 b-1$ points
$2 b-1=2 \times 13-1=25$

Question: Image of point $P(1,2,3)$ about the plane $2 x-y+3 z=2$ is Q, then the area of $\triangle P Q R=$? where $R=(4,10,12)$
Answer: $\frac{\sqrt{1531}}{2}$

Solution:

$\frac{\alpha-1}{2}=\frac{\beta-2}{-1}=\frac{\alpha-3}{3}=\frac{-2(7)}{14}$
$\frac{\alpha-1}{2}=\frac{\beta-2}{-1}=\frac{\alpha-3}{3}=-1$
$Q(-1,3,0)$

$Q(-1,3,0)$
$R(4,10,12)$
Area $=\frac{1}{2} \times|\overline{P Q} \times \overline{P R}|$
$=\frac{\sqrt{1531}}{2}$

Question: If $5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3$, then $18 \int_{1}^{2} f(x) d x$ is:
Answer: $10 \log _{e} 2-6$

Solution:

$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3$
$5 f(x)+4 f\left(\frac{1}{x}\right)$
Take $x=\frac{1}{x}$
$5 f\left(\frac{1}{x}\right)+4 f(x)=x+3$
(1) $\times 5-4 \times(2)$
$9 f(x)=\frac{5}{x}+15-4 x-12$
$9 f(x)=\frac{5}{x}-4 x+3$
By integrating
$9 \int_{1}^{2} f(x) d x=\int_{1}^{2} \frac{5}{x}-4 x+3 d x$
$2 \times 9 \int_{1}^{2} f(x)=\int_{1}^{2} \frac{10}{x}-8 x+6$
$=10 \ln |x|-\frac{8 x^{2}}{2}+\left.6 x\right|_{1} ^{2}$
$=(10 \ln 2-16+12)-(0-4+6)$
$=10 \log _{e} 2-6$

Question: The sum of roots of $\left|x^{2}-8 x+15\right|-2 x+7=0$ is
Answer: $9+\sqrt{3}$

Solution:

$\left|x^{2}-8 x+15\right|-2 x+7=0$
$|(x-3)(x-5)|-2 x+7=0$
$x \leq 3$ or $x \geq 5$
$x^{2}-8 x+15-2 x+7=0$
$x^{2}-10 x+22=0$
$x=\frac{10 \pm \sqrt{100-88}}{2}$
$=5 \pm \sqrt{3}$
Take intersection
$x=5+\sqrt{3}$
$3<x<5$
$-x^{2}+8 x-15-2 x+7=0$
$x^{2}-6 x+8=0$
$(x-2)(x-4)=0$
$x=2,4$
$x=4$
So, sum of roots is $9+\sqrt{3}$

Question: $(P \Rightarrow Q) \vee(R \Rightarrow Q)$ is equivalent to:

Options:

(a) $(P \wedge R) \Rightarrow Q$
(b) $(P \vee R) \Rightarrow Q$
(c) $(Q \Rightarrow R) \vee(P \Rightarrow R)$
(d) $(R \Rightarrow P) \vee(Q \Rightarrow R)$

Answer: (a)

Solution:

$$
\begin{aligned}
& (P \Rightarrow Q) \vee(R \Rightarrow Q) \\
& \equiv(\sim P \vee Q) \vee(\sim R \vee Q) \\
& \equiv(\sim P \vee \sim R) \vee Q \\
& \equiv \sim(P \wedge R) \vee Q \\
& \equiv(P \wedge R) \Rightarrow Q
\end{aligned}
$$

Question: Let $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}, \vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$ and \vec{d} is a vector perpendicular to both \vec{b} and \vec{c} and $\vec{a} \cdot \vec{d}=18$, then $|\vec{a} \times \vec{d}|^{2}$ is

Answer: 720.00

Solution:

$\vec{d}=\lambda(\vec{b} \times \vec{c})$
$=\lambda\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -2 \\ -1 & 4 & 3\end{array}\right|$
$=\lambda(2 \hat{i}-\hat{j}+2 \hat{k})$
$\vec{a} \cdot \vec{d}=18$
$\Rightarrow \lambda(4-3+8)=18$
$\Rightarrow \lambda=2$

$$
\begin{aligned}
|\vec{a} \times \vec{d}|^{2} & =a^{2} d^{2}-(\vec{a} \cdot \vec{d})^{2} \\
& =29 \times 36-18^{2} \\
& =18(58-18) \\
& =18 \times 40 \\
& =720
\end{aligned}
$$

Question: If ${ }^{2 n} C_{3}:{ }^{n} C_{3}=10$, then $\frac{n^{2}+3 n}{n^{2}-3 n+4}$ is equal to
Answer: 2.00
Solution:

$$
\begin{aligned}
& { }^{2 n} C_{3}:{ }^{n} C_{3}=10 \\
& \frac{2 n(2 n-1)(2 n-2)}{n(n-1)(n-2)}=10 \\
& \Rightarrow \frac{2(2 n-1) \cdot 2(n-1)}{(n-1)(n-2)}=10 \\
& 4 n-2=5 n-10 \\
& \Rightarrow n=8 \\
& \frac{n^{2}+3 n}{n^{2}-3 n+4}=\frac{64+24}{64-24+4}=\frac{88}{44}=2
\end{aligned}
$$

