

JEE-Mains-06-04-2023 [Memory Based] [Morning Shift]

Physics

Question: Current $\sqrt{2I}$ in both rings, find resultant B?

Current =
$$\sqrt{2I}$$

 $B_1 = B_2 = \frac{\mu_0(\sqrt{2I})}{2a}$
So,
 $B_N = \sqrt{B_1^2 + B_2^2}$

$$=\frac{\mu_0}{2a}\left(\sqrt{2}I\right)\sqrt{2}=\left(\frac{\mu_0I}{a}\right)$$

Question: If rate of heat supplied to the system is 1000 watt and the rate of work done by the system is 200 watt. Find rate of change of internal energy. Answer: 800.00 Solution:

$$\frac{dQ}{dt} = +1000 \text{ watt}$$
$$\frac{dw}{dt} = +200 \text{ watt}$$
$$\frac{dQ}{dt} = \frac{dw}{dt} + \frac{du}{dt}$$
$$+1000 = +200 + \frac{dw}{dt}$$
$$\frac{dw}{dt} = +800 \text{ watt}$$

Question: Find the ratio of energy density of E and B in EM waves. **Options:**

(a) 1 : 1
(b) 1 : 2
(c) 2 : 1
(d) None of these Answer: (a)
Solution:

Average electric field energy density = $\frac{1}{2}\varepsilon_0 E^2$

Average magnetic field energy density = $\frac{B^2}{2\mu_0}$

As both are equal

$$\frac{\frac{1}{2}\varepsilon_0 E^2}{\frac{B^2}{2\mu_0}} = 1$$

Question: Percentage error in equivalent resistance if connected in parallel (10 ± 0.5) ohm and (15 ± 0.5) ohm

Options: (a) 13 % (b) 3 % (c) 13/5 % (d) 13/3 %

Answer: (d) Solution:

$$\frac{\Delta R_{eq}}{R_{eq}^2} = \frac{\Delta R_1}{\Delta R_1^2} + \frac{\Delta R_2}{\Delta R_2^2}$$

$$\frac{\Delta R_{eq}}{R_{eq}} = \left(\frac{0.5}{10^2} + \frac{0.5}{15^2}\right) \times \frac{15 \times 10}{15 + 10}$$

$$= 0.5 \left(\frac{1}{10^2} + \frac{1}{15^2}\right) \times \frac{150}{25}$$

$$= 3 \left(\frac{1}{100} + \frac{1}{225}\right) = 3 \left(\frac{225 + 100}{225 \times 100}\right)$$

$$\frac{\Delta R}{R} \times 100 = \frac{3 \times 325}{225 \times 100} \times 100 = \frac{13}{3}\%$$

Question: Assertion: Earth has atmosphere while moon does not. Reason: Escape velocity in moon is very small than earth. **Options:**

(a) A correct, R correct & R is correct explanation

(b) A correct, R correct but not correct explanation

(c) A correct, R false

(d) A false, R false

Answer: (a)

Solution: A correct, R correct & R is correct explanation

Question: A mass of 100 g is rotated with a spring of natural length 20 cm, with angular velocity 5 rads⁻¹. Find tension in spring [R = spring constant 7.5 nm⁻¹] Answer: 0.75

Solution:

$$\begin{array}{c}
 & \downarrow l_{0} \\
 & \downarrow \\
 & \downarrow$$

Question: A solid infinite cylindrical wire with radius a is carrying current I find the graph of magnetic field inside & outside the wire.

Answer: Solution:

Dependency of magnetic fixed in solid current carrying wire

$$B_{\rm out} = \frac{\mu_0 i}{2\pi r}$$

$$B_{\rm surface} = \frac{\mu_o i}{2\pi R}$$

$$B_{\text{inside}}$$

$$B \propto r$$

Current through h loop

$$i_{1} = \frac{i}{\pi R^{2}} \times \pi r^{2}$$

$$\oint B \cdot dl = \mu_{o}i$$

$$B.2\pi r = \mu_{o} \frac{i \times \pi r^{2}}{\pi R^{2}}$$

$$B = \frac{\mu_{o}i}{2\pi R^{2}} \times r$$

$$B \propto r$$

Question: A: range is max at $\theta = 45^{\circ}$ R : range is max when sin $2\theta = 1$ Options: (a) R : true A : False (b) R : true A : True (c) R : False A : False (d) R : False A : True Answer: (b)

Question: Graph of electric potential inside conducting solid sphere is

Question: In a capacitor when liquid of dielectric constant 'k' is filled upto height d/3 then capacitance is 2μ F. Find capacitance when it is filled till x = 2d/3 Take k = 2

$$C_{eq} = \frac{\frac{3AK\varepsilon_0}{2d} \cdot \frac{3A\varepsilon_0}{d}}{\frac{3A\varepsilon_0}{d} \left[\frac{k}{2} + 1\right]} = \frac{3A\varepsilon_0}{2d} \frac{k}{\left[\frac{k}{2} + 1\right]}$$

$$C_{eq} = \frac{3}{2} \left(\frac{10}{6}\right) \left[\frac{2}{2}\right] = 2.5 F$$

Question: If retardation of a body of mass 10 gram is given as 2x, where x is the position of

the particle starting from origin at rest. If loss of kinetic energy is $\left[\frac{10}{x}\right]^{-n}$ find n.

Answer: 2.00 Solution:

$$\Delta KE = W = \int_{0}^{x} mad x$$

$$\Delta KE = \frac{10}{100} \int_{0}^{x} (-2x) dx = -\frac{1}{100} \cdot x^{2} = -\left[\frac{x^{2}}{100}\right] = \left(\frac{10}{x}\right)^{-2}$$

So n = 2

Question: Two spheres of mass 2 kg each placed on the ends of a light rod and r = 10 cm and dist b/w the centres = 40 cm find MOI about centre of the rod perpendicular to the line joining centres.

Answer: 0.17 Solution:

$$I = I_{cm} + ml^{2}$$

= $\frac{2}{5}MR^{2} + Ml^{2}$
= $\frac{2}{5} \times 2 \times (0.1)^{2} + 2(0.2)^{2}$
 $I = \frac{4}{500} + \frac{8}{100}$
 $I = \frac{4+40}{500} = \frac{44}{500}$ kg m²
For 2 spheres

$$I_{final} = 2 \times I = 2 \times \frac{44}{500} = 0.176 \text{ kg m}^2$$

Question: Resistivity of semiconductor changes with temp according to which graph Options: (a)

Question: Alpha, electron, proton has KE is such that $K_{\alpha} = 4K$, $K_e = 2K$, $K_p = K$ write order of de broglie wave **Solution:** $\lambda_e > \lambda_P > \lambda_{\alpha}$

Question: For the oscillations exhibited by the spring block system on the smooth surface along the spring, the time period is equal to

$$T = 2\pi \sqrt{\frac{M}{K_1 + K_2}}$$

Question: A car is moving with speed of 15 m/s towards a stationary wall. A person in the car press the horn and experience the change in frequency of 40 Hz due to reflection from the stationary wall. Find the frequency of horn. (Use $v_{sound} = 330$ m/s)

Answer: 420.00 Solution:

Question: Communication system

Height of the tower increased 21% percentage increase in range. Options:

- (a) 10
- (b) 12
- (c) 14
- (d) 15

Answer: (a) Solution:

Range = $\sqrt{2R_E h}$

$$R_{1} = \sqrt{2R_{E} \cdot h} = \sqrt{2R_{E} \cdot h}$$

$$R_{2} = \sqrt{2R_{E} \left[h + \frac{21}{100} \cdot h \right]} = \sqrt{2R_{E} (1.21h)}$$

$$\frac{R_{1}}{R_{2}} = \frac{\sqrt{2R_{E}h}}{\sqrt{2R_{E} (1.21h)}} = \frac{1}{\sqrt{1.21}} = \frac{1}{1.1}$$

$$\Rightarrow R_{2} = 1.1R_{1}$$
% change in R = $\frac{(R_{2} - R_{1})}{R_{1}} \times 100$

$$=\frac{1.1R_1 - R_1}{R_1} \times 100$$
$$\frac{1.1 - 1}{1} \times 100 = 10\%$$

Question: If length of wire is increased 20% and area is increased 4% the % change in resistance is

Answer: 15.00 Solution:

$$R = \frac{\rho l}{A}$$

$$R' = \frac{\rho(1.2\ell)}{1.04A} \Rightarrow R' = \frac{12}{1.04}R = 1.15R$$

$$\Rightarrow \uparrow 15\%$$

Question: A Body has mass m and moving with const vel in viscous fluid having coiff. of viscosity η density is ρ b liquid density ρ L find vel v Solution:

 $\frac{mg\left(1-\frac{\rho}{S}\right)}{6\pi\eta r} = v$

Question: Which gate is this

Options:

(a) NOR
(b) OR
(c) AND
(d) NOT
Answer: (a)

JEE-Mains-06-04-2023 [Memory Based] [Morning Shift]

Chemistry

Question: Polymer which is named as orlon is?
Options:

(a) Polyacrylonitrile
(b) Polycarbonate
(c) Polyethene

(d) Polyamide

Answer: (a)

Solution: Orlon is also called Acrilan or Polyacrylonitrile

Question: The correct set of strong oxidising and reducing agent

Ce⁴⁺, Yb²⁺, Tb⁴⁺ and Eu²⁺ **Options:** (a) Ce⁴⁺, Tb⁴⁺, Yb²⁺, Eu²⁺ (b) Tb⁴⁺, Yb²⁺, Ce⁴⁺, Eu²⁺ (c) Tb⁴⁺, Eu²⁺, Yb²⁺, Ce⁴⁺ (d) Yb²⁺, Eu²⁺, Tb⁴⁺, Ce⁴⁺ **Answer:** (a) **Solution:** Ce⁴⁺, Tb⁴⁺ act as oxidising agent and Yb²⁺, Eu²⁺ act as reducing agent

Vitamins Deficiency	Disease
(P) Vitamin A	(1) Scurvy
(Q) Vitamin C	(2) Xeropthalmia
(R) Vitamin B_1	(3) Cheilosis
(S) Vitamin B ₂	(4) Beri-Beri
Options:	

Question: Match column I (Deficiency) with column II (Disease)

 (S) Vitamin B2

 Options:

 (a) P-2, Q-1, R-4, S-3

 (b) P-2, Q-4, R-3, S-1

 (c) P-4, Q-2, R-4, S-1

 (d) P-3, Q-2, R-4, S-1

 Answer: (a)

 Solution: Fact based

Question: Y form FCC lattice in which X occupies 1/3 of tetrahedral Voids. Then formula of the compound will be **Options:**

(a) X₃Y₂ (b) XY₃

(c) X₂Y₃
(d) X₃Y
Answer: (c)
Solution: tetrahedral voids are 8 in count in FCC thus X is 8/3 and Y = 4 hence the formula

Question: Which of the following have highest electron gain enthalpy difference? **Options:**

(a) F, Ne
(b) Ar, F
(c) Ne, Cl
(d) Ar, Cl
Answer: (a)
Solution: Fact based

EA values are F = -333, C1 = -349, Ne = 116, Ar = 96

Questione i tame reactions Mateming		
Name Reaction	Reagents	
(P) Etard Reaction	(1) NaOI	
(Q) Iodoform	(2) CO/HCl, Anh. AlCl ₃	
(R) Gatterman aldehyde	(3) CrO_2Cl_2 , CS_2 , H_3O^+	
(S) HVZ	(4) X_2 /red P, H ₂ O	
Ontinue		

Question: Name reactions Matching

Options: (a) P-3, Q-1, R-2, S-4 (b) P-3, Q-2, R-1, S-4 (c) P-3, Q-4, R-2, S-1 (d) P-1, Q-3, R-2, S-4 Answer: (a) Solution: Fact based

Ouestion: Match	column I (Compound) with	column II (Type of Bond)

Question: Watch controlling with column in (Type of Dond)		
Nitrogen oxides	Type of Bonds	
$(P) N_2O$	(1) N-N bond	
$(Q) N_2 O_5$	(2) N-O-N bond	
$(R) NO_2$	(3) N=N or N triple bond N	
$(S) N_2O_4$	(4) N=O	

Options:

(a) P-1, Q-4, R-2, S-3
(b) P-3, Q-2, R-4, S-1
(c) P-1, Q-2, R-4, S-3
(d) P-1, Q-3, R-2, S-4
Answer: (b)
Solution: structure-based question

Question: Photochemical smog is maximum in **Options:**

(a) Himalayan Region
(b) Green Healthy vegetation
(c) Marshy Lands
(d) Industrial Region
Answer: (d)
Solution: Hydrocarbons and nitrogen oxides produced by automobiles and factories.

Question: Which of the reaction is correct among the following with appropriate enzyme? **Options:**

(a) Sucrose \rightarrow Glucose + fructose : Enzyme – Invertase

(b) Glucose \rightarrow CO₂ + Ethanol : Enzyme : Maltase

(c) Protein \rightarrow Amino acid : Enzyme : Zymase

(d) Starch \rightarrow Maltose : Enzyme : Pepsin

Answer: (a)

Solution: Sucrose \rightarrow Glucose + fructose : Enzyme – Invertase

Question: Which of the following is used for settling of cement?

Options:

(a) Gypsum

(b) Limestone

(c) Clay

(d) Silica

Answer: (a)

Solution: Setting of cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement.

Question: which of the following is having square Pyramidal shape

Options:

(a) XeOF₄

(b) BrF_5

(c) IF_5

(d) ICl_4^-

Answer: (a)

Solution: XeOF₄ has geometry of Sp³d² and shape of square pyramidal

Question: Assertion: Loss of the electron from hydrogen atom results in nucleus (H⁺) of ~ 1.5×10^{-3} pm size.

Reason: H^+ does not exist freely and is always associated with other atoms or molecules. **Options:**

(a) Both assertion and reason are correct but reason is not correct explanation

(b) Both assertion and reason are correct but reason is correct explanation

(c) Both assertion and reason are incorrect

(d) Assertion is correct and reason is incorrect

Answer: (b)

Solution: Loss of the electron from hydrogen atom results in nucleus (H^+) of $\sim 1.5 \times 10^{-3}$ pm size. This is extremely small as compared to normal atomic and ionic sizes of 50 to 200pm. As a consequence, H^+ does not exist freely and is always associated with other atoms or molecules. Thus, it is unique in behavior.

Question: Assertion: The magnetic Moment of $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ are 5.92 BM and 1.74 BM respectively.

Reason: The oxidation state Fe is +3.

Options:

(a) Both assertion and reason are correct but reason is not correct explanation

- (b) Both assertion and reason are correct but reason is correct explanation
- (c) Both assertion and reason are incorrect
- (d) Assertion is correct and reason is incorrect

Answer: (a)

Solution: water as ligand do not cause pairing in complex but CN- does

Question: If radius of ground state hydrogen is 51 pm, find out the radius of 5^{th} orbit of Li^{2+} (closest integer)

Options: (a) 170 pm (b) 180 pm (c) 120 pm (d) 425 pm Answer: (d) Solution: Apply r = 51*5*5/3

Question: Identify the product formed in the following reaction.

(b)

Answer: (d) Solution:

Question: Matrix match for detection of element

Column-I	Column-II
(A) Nitrogen	(P) AgX
(B) Sulphur	$(Q) (NH_4)_3 PO_4.12 MoO_3$
(C) Phosphorous	(R) $Fe(SCN)_3$
(D) Halogens	(S) $Fe_4[Fe(CN)_6]_3$

Options:

(a) A-P, B-R, C-Q, D-S
(b) A-R, Q, B-P, C-Q, D-S
(c) A-S, B-R, C-Q, D-P
(d) A-Q, B-R, C-P, D-S
Answer: (c)
Solution: A-S, B-R, C-Q, D-P

Question: Consider the following reaction.

 $A_2B_3(g) \rightleftharpoons 2A(g) + 3B(g)$

If the initial concentration of $A_2B_3(g)$ is c, find the value of α

Options:

Answer: (c) Solution:

JEE-Mains-06-04-2023 [Memory Based] [Morning Shift]

Mathematics

Question: $\int \frac{x^2 (x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx$ is equal to $-x^2$

Answer: $\frac{-x^2}{x\tan x + 1} + 2\ln|x\sin x + \cos x| + c$ Solution:

$$\int \frac{x^2 \left(x \sec^2 x + \tan x\right)}{\left(x \tan x + 1\right)^2} dx$$

Integrating by parts

$$I = x^{2} \cdot \frac{-1}{x \tan x + 1} - \int 2x \left(\frac{-1}{x \tan x + 1}\right) dx$$
$$= \frac{-x^{2}}{x \tan x + 1} + 2\int \frac{x \cos x}{x \sin x + \cos x} dx$$
$$= \frac{-x^{2}}{x \tan x + 1} + 2\ln|x \sin x + \cos x| + c$$

Question: The coefficient of x^{18} in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$ is

Options:

(a) ${}^{14}C_7$

- (b) ${}^{15}C_8$
- (c) ${}^{15}C_6$
- (d) ${}^{14}C_8$
- Answer: (c) Solution:

$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$

$$T_{r+1} = {}^{15}C_r \left(x^4\right)^{15-r} \left(-\frac{1}{x^3}\right)^r = {}^{15}C_r \left(-1\right)^r x^{60-7r}$$

60 - 7r = 18

 $\Rightarrow 7r = 42$

 $\Rightarrow r = 6$

Coefficient of $x^{18} = {}^{15}C_6$

Question: The number of ways of distributing 70 distinct oranges among three children such that each child gets atleast one orange is

Answer: $3^{70} - 3(2^{70} - 2) - 3$

Solution:

Number of ways $= 3^{70} - {}^{3}C_{1} \cdot 2^{70} + {}^{3}C_{2} \cdot 1^{70}$

 $=3^{70}-3(2^{70}-2)-3$

Question: Sum of first 20 terms of the series 5,11,19,29,41,..... is Answer: 3250.00 Solution:

```
Let S_n = 5 + \frac{11 + 19 + 29 + 41 + \dots t_n}{1 + 19 + 29 + 41 + \dots + 19}
t_n = an^2 + bn + c
a + b + c = 5
4a + 2b + c = 11
9a + 3b + c = 19
5a + b = 8
3a + b = 6
2a = 2
a = 1
b = 3
c = 1
t_n = n^2 + 3n + 1
S_n = \sum t_n
S_n = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2} + n
S_{20} = \frac{20 \cdot 21 \cdot 41}{6} + \frac{2 \cdot 20 \cdot 21}{2} + 20
= 2870 + 630 + 20
=3520
```


Question: Number of ways in which 20 chocolates can be given to 3 children such that each gets atleast one is _____. Answer: ${}^{19}C_2$

Solution:

x + y + z = 20 $x, y, z \ge 1$ X + Y + Z = 17 $X, Y, Z \ge 0$ $^{n+r-1}C_{r-1}$ i.e. $^{19}C_2$

Question: If 5 pairs of dice are thrown. Success is getting a sum 5. If the probability of getting at least 4 success is $\frac{K}{3^{11}}$, then the value of K is

Answer: 123.00 Solution:

(1,4), (2,3), (3,2), (4,1) $p = \frac{4}{6} = \frac{1}{9}, \ q = \frac{8}{9}$ $\frac{K}{3^{11}} = P(\text{atleast 4 success}) = {}^{5}C_{4}p^{4}q^{1} + {}^{5}C_{5}p^{5}$ $\frac{K}{3^{11}} = 5 \cdot \frac{1}{9^{4}} \cdot \frac{8}{9} + \frac{1}{9^{5}}$ $\Rightarrow \frac{K}{3^{11}} = \frac{40}{3^{10}} + \frac{1}{3^{10}}$ $\Rightarrow \frac{K}{3} = 41$ $\Rightarrow K = 123$

Question: If the ratio of the 5th term from the start to the 5th term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}:1$. Find the 3rd term from start. **Answer:** $60\sqrt{3}$ **Solution:**

$$\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$$

$$\frac{{}^{n}C_{4}\left(\sqrt[4]{2}\right)^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}}{{}^{n}C_{4}\left(\sqrt[4]{2}\right)^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n+4}} = \frac{\sqrt{6}}{1}$$
$$\frac{\left(\sqrt[4]{2}\right)^{n-8}}{\left(\frac{4}{\sqrt{2}}\right)^{n-8}} = \sqrt{6}$$
$$\left(\sqrt{6}\right)^{n-8} = \sqrt{6}$$
$$\left(\sqrt{6}\right)^{n-8} = \sqrt{6}$$
$$n = 10$$
$${}^{10}C_{2}\left(2^{\frac{1}{4}}\right)^{8} \times \left(\frac{1}{3^{\frac{1}{4}}}\right)^{2}$$
$$= 45 \times 4 \times \frac{1}{\sqrt{3}}$$
$$= 60\sqrt{3}$$

Question: Mean of 15 observations is 12 and its variance is 14. Mean of another 15 observations is 14 and variance σ^2 . Combined variance is 13. Find σ^2 . **Answer: 10.00** Solution:

Subtract each entry by 13

So
$$14 = \frac{\sum x_i^2}{15} - (-1)^2 \Rightarrow \sum x_i^2 = 2.25$$

& $\sigma^2 = \frac{\sum y_i^2}{15} - 1^2 \Rightarrow \sum y_i^2 = 15(\sigma^2) + 1$
 $13 = \frac{225 + 15\sigma^2 + 15}{30}$
 $\Rightarrow 8 + \frac{\sigma^2}{2} = 0$
 $\sigma^2 = 10$

Question: A 2×2 matrix A is such that none of its elements is 0, and $A^2 = I \cdot a'$ is the sum of diagonal elements and b' is |A|. Find $3a^2 + 4b^2$.

Answer: 4.00 Solution:

$$A^{2} = \begin{bmatrix} p & q \\ r & s \end{bmatrix}^{2} = \begin{bmatrix} p^{2} + qr & pq + qs \\ pr + rs & qr + s^{2} \end{bmatrix}$$

$$(p+s)q = r(p+s) = 0$$

$$p+s = 0 \qquad p = -s$$

$$p^{2} + qr = 1$$
So, $a = 0$, $b = ps - qr$

$$= -(p^{2} + qr) = -1$$
So $3a^{2} + 4b^{2} = 4$
Question: If $2x^{y} + 3y^{x} = 20$. Find $\frac{dy}{dx}$ at $(2, 2)$.
Answer:
Solution:
$$2x^{y} + 3y^{x} = 20$$

$$\frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

$$= -\frac{2y x^{y-1} + 3y^{x} \ln y}{2x^{y} \cdot \ln x + 3xyx - 1}$$

$$= -\frac{2 + 3\ln 2}{\ln 2 + 3}$$

$$= -\frac{2 + \ln 8}{\ln 4 + 3}$$

Question: If $a_1, a_2, a_3, \dots, a_n$ are in A.P.

$$\lim_{n \to \infty} \frac{\sqrt{d}}{\sqrt{n}} \left(\frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} \dots \right)$$

Answer: 1.00 Solution:

 a_1, a_2, a_3 are in A.P.

$$\lim_{n \to \infty} \frac{\sqrt{d}}{\sqrt{n}} \left(\frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} \dots \right)$$
$$= \lim_{n \to \infty} \frac{\sqrt{d}}{\sqrt{n}} \left[\frac{\sqrt{a_n} - \sqrt{a_1}}{d} \right]$$
$$= \lim_{n \to \infty} \left[\frac{\sqrt{a_1 + (n-1)d}}{\sqrt{n} \cdot \sqrt{d}} - \frac{\sqrt{d}\sqrt{a_1}}{\sqrt{nd}} \right]$$
$$= 1$$

Question: $f = [9+13\sin x]$ when $x \in [0, \pi]$. Find the number of points where f is not differentiable. **Answer: 25.00** Solution:

 $[a+b\sin x]; x \in [0,\pi]$

Non-differentiable at 2b-1 points

 $2b - 1 = 2 \times \frac{13 - 1}{25}$

Question: Image of point P(1,2,3) about the plane 2x - y + 3z = 2 is Q, then the area of $\Delta PQR = ?$ where R = (4,10,12)

Answer: $\frac{\sqrt{1531}}{2}$

Solution:

Question: If
$$5f(x) + 4f\left(\frac{1}{x}\right) = \frac{1}{x} + 3$$
, then $18\int_{1}^{2} f(x) dx$ is:

Answer: $10\log_e 2-6$ Solution:

$$5f(x) + 4f\left(\frac{1}{x}\right) = \frac{1}{x} + 3$$

$$5f(x) + 4f\left(\frac{1}{x}\right) \qquad \dots (1)$$

Take $x = \frac{1}{x}$

$$5f\left(\frac{1}{x}\right) + 4f(x) = x + 3 \qquad \dots (2)$$

$$(1) \times 5 - 4 \times (2)$$

$$9f(x) = \frac{5}{x} + 15 - 4x - 12$$

$$9f\left(x\right) = \frac{5}{x} - 4x + 3$$

By integrating

$$9\int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{5}{x} - 4x + 3 dx$$

$$2 \times 9\int_{1}^{2} f(x) = \int_{1}^{2} \frac{10}{x} - 8x + 6$$

$$= 10 \ln |x| - \frac{8x^{2}}{2} + 6x \Big|_{1}^{2}$$

$$= (10 \ln 2 - 16 + 12) - (0 - 4 + 6)$$

$$= 10 \log_{e} 2 - 6$$

Question: The sum of roots of $|x^2 - 8x + 15| - 2x + 7 = 0$ is Answer: $9 + \sqrt{3}$ Solution: $|x^2 - 8x + 15| - 2x + 7 = 0$ |(x - 3)(x - 5)| - 2x + 7 = 0 $x \le 3$ or $x \ge 5$ $x^2 - 8x + 15 - 2x + 7 = 0$ $x^2 - 10x + 22 = 0$ $x = \frac{10 \pm \sqrt{100 - 88}}{2}$

$$=5\pm\sqrt{3}$$

Take intersection

$$x = 5 + \sqrt{3}$$

3 < x < 5
-x² + 8x - 15 - 2x + 7 = 0
x² - 6x + 8 = 0
(x-2)(x-4) = 0

x = 2, 4

$$x = 4$$

So, sum of roots is $9 + \sqrt{3}$

Question: $(P \Rightarrow Q) \lor (R \Rightarrow Q)$ is equivalent to: Options: (a) $(P \land R) \Rightarrow Q$ (b) $(P \lor R) \Rightarrow Q$ (c) $(Q \Rightarrow R) \lor (P \Rightarrow R)$ (d) $(R \Rightarrow P) \lor (Q \Rightarrow R)$ Answer: (a) Solution: $(P \Rightarrow Q) \lor (R \Rightarrow Q)$ $\equiv (\sim P \lor Q) \lor (\sim R \lor Q)$ $\equiv (\sim P \lor \sim R) \lor Q$ $\equiv \sim (P \land R) \lor Q$ $\equiv (P \land R) \Rightarrow Q$

Question: Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} - 2\hat{k}$, $\vec{c} = -\hat{i} + 4\hat{j} + 3\hat{k}$ and \vec{d} is a vector perpendicular to both \vec{b} and \vec{c} and $\vec{a} \cdot \vec{d} = 18$, then $|\vec{a} \times \vec{d}|^2$ is

Answer: 720.00 Solution:

 $\vec{d} = \lambda \left(\vec{b} \times \vec{c} \right)$ $= \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -2 \\ -1 & 4 & 3 \end{vmatrix}$ $= \lambda \left(2\hat{i} - \hat{j} + 2\hat{k} \right)$ $\vec{a} \cdot \vec{d} = 18$

$$\Rightarrow \lambda (4-3+8) = 18$$

$$\Rightarrow \lambda = 2$$

$$\left|\vec{a} \times \vec{d}\right|^2 = a^2 d^2 - \left(\vec{a} \cdot \vec{d}\right)^2$$

$$= 29 \times 36 - 18^2$$

$$= 18(58 - 18)$$

$$= 18 \times 40$$

$$= 720$$

Question: If ${}^{2n}C_3 : {}^{n}C_3 = 10$, then $\frac{n^2 + 3n}{n^2 - 3n + 4}$ is equal to Answer: 2.00

Answer: 2.00 Solution:

 $^{2n}C_3$: $^{n}C_3 = 10$

$$\frac{2n(2n-1)(2n-2)}{n(n-1)(n-2)} = 10$$

$$\Rightarrow \frac{2(2n-1) \cdot 2(n-1)}{(n-1)(n-2)} = 10$$

$$4n-2 = 5n - 10$$

$$\Rightarrow n = 8$$

$$\frac{n^2 + 3n}{n^2 - 3n + 4} = \frac{64 + 24}{64 - 24 + 4} = \frac{88}{44} = 2$$