

JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS & SOLUTIONS

Reproduced from Memory Retention

6 06 APRIL, 2023

© 9:00 AM to 12:00 Noon

Duration: 3 Hours Maximum Marks: 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020)

TOP 100 AIRS IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

VIKAAS
For Class X to XI
Moving Students
TARGET 2025

VISHWAAS
For Class XI to XII
Moving Students

TARGET 2024

VISHESH For Class XII Passed Students

TARGET 2024

Starting From: 12 & 19 APRIL'23

Avail Scholarship up to 90% through R-NET on EVERY SUNDAY

Reliable Institute: A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel.: 0744-3535544, 2665544 I Website: www.reliablekota.com I E-mail: info@reliablekota.com

CHEMISTRY

1. Predict expression for α in terms of K_{eq} and concentration C:

$$A_2B_3 (aq) \rightleftharpoons 2A^{3+}(aq) + 3B^{2-} (aq)$$

$$(1*) \left(\frac{K_{eq}}{108C^4}\right)^{1/5} \qquad (2) \left(\frac{K_{eq}}{5C^4}\right)^{1/5} \qquad (3) \left(\frac{4K_{eq}}{5C^4}\right)^{1/5} \qquad (4) \left(\frac{9K_{eq}}{5C^4}\right)^{1/5}$$

$$(2) \left(\frac{\mathrm{K}_{\mathrm{eq}}}{5\mathrm{C}^4}\right)^{1/5}$$

$$(3) \left(\frac{4K_{eq}}{5C^4}\right)^{1/2}$$

(4)
$$\left(\frac{9K_{eq}}{5C^4}\right)^{1/5}$$

$$A_2B_3 (aq) = 2A^{3+}(aq) + 3B^{2-}(aq)$$

 \mathbf{C}

$$C(1-\alpha)$$

$$3C\alpha$$

$$K_{eq} = \frac{(2C\alpha)^2 (3C\alpha)^3}{C}$$

$$K_{eq} = 108C^4\alpha^5$$

$$\alpha = \left(\frac{K_{eq}}{108C^4}\right)^{1/5}$$

Radius of first orbit of hydrogen atom is 51 pm. Determine the radius of 5th orbit of Li²⁺ 2.

Ans. 425 pm

Sol.
$$r_{H} = 51 \text{ pm}$$

$$(r_{\rm H}^{2+})_5 = (r_{\rm H})_1 \times \frac{{\rm n}^2}{Z} = 51 \times \frac{5^2}{3} = 425 \text{ pm}$$

How many moles of Ba₃(PO₄)₂ will be formed by the reaction of 5 moles of BaCl₂ and 3 moles of 3. $Na_3(PO_4)$.

Ans.

Sol.
$$3 \operatorname{BaCl}_2 + 2\operatorname{Na}_3 \operatorname{PO}_4 \longrightarrow \operatorname{Ba}_3(\operatorname{PO}_4)_2 + 6\operatorname{NaCl}$$

5 mole 3 mole

Moles of Ba₃(PO₄)₂ = $\frac{5}{3}$

- In which of the following pairs of elements electron gain enthalpy difference is highest? 4.
 - (1) Cl, Ar
- (2) Cl, Ne
- (3) F, Ar
- (4) F, Ne

(2) Ans.

- Chlorine has most negative ΔH_{eg} (-349 kJ/mole) whereas Neon has most positive ΔH_{eg} (116 kJ/mole) Sol.
- In an ionic solid element Y crystallises in ccp lattice and element X occupy $\frac{1}{3}$ rd of tetrahedral void. 5.

Find formula of ionic solid.

Ans. X_2Y_3

For 1 unit cell, Sol.

No. of particles

$$X \qquad \frac{1}{3} \times 8$$

Y

Formula of Ionic solid = $X_{8/3}Y_4 = X_2Y_3$

The shing potential The value of $log_{10}K$ for a reaction A =6.

(Given
$$\Delta H^{o}_{298K} = -54.67 \text{ kJmol}^{-1}$$

$$\Delta S^{o}_{298K} = 10 \text{ kJmol}^{-1}$$

and
$$R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$$

$$2.303 \times 8.314 \times 298 = 5705$$

Ans.

Sol.
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -54.07 \times 1000 - 298 \times 10$$

$$=-57050$$

$$\Delta G^{\circ} = -2.303 \text{ RTlog}_{10} \text{K}$$

$$log K = 10$$

Determine the amount of urea (NH₂CONH₂) to be added in 1000 g of water to decrease its vapour 7. presssure by 25%.

Sol.
$$\frac{P^{\circ} - P_{S}}{P^{\circ}} = \frac{n}{N+n} = \frac{1}{4}$$

$$\Rightarrow$$
 4n = N + n

$$n = \frac{N}{3} = \left(\frac{1000}{18}\right) \times \frac{1}{3}$$

$$\therefore$$
 Amount of urea is $\frac{(1000)}{18 \times 3} \times 60 = \frac{10000}{9}$ gm

8. Which of the following slows down the process of setting of the cement?

Ans. Gypsum

9. Number of ambidentate ligands in given complex $[M(en)(SCN)_4]$:

Ans. 4

Sol. SCN⁻ is an ambidentate ligand S & N both are donor atom.

10. $2[Au(CN)_2]^- + Zn \longrightarrow [Zn(CN)_4]^{2-} + 2Au \downarrow$

(A) Redox reaction

(C) Displacement reaction

(B) Combination reaction

(D) Decomposition reaction

- (1*) A & B
- (2) B only
- (3) A & D
- (4) B & D

Sol. $2[Au(CN)_2]^- + Zn \longrightarrow [Zn(CN)_4]^{2-} + 2Au \downarrow$

It is a redox, displacement reaction.

11. A \Rightarrow Spin only magnetic moment of $[Fe(CN)_6]^{-3}$ is 1.73 B.M. and $[Fe(H_2O)_6]^{+3}$ is 5.92 B.M. R \Rightarrow In both cases Fe have +3 oxidation state

Ans. Both A & R are correct but R is not the correct explanation

Sol. $[Fe(CN)_6]^{-3}$: Fe^{+3} : $3d^5$ with S.F.L

$$\Rightarrow$$
 n = 1

Magnetic moment = 1.73 B.M

 $\left[Fe(H_2O)_6\right]^{+3}Fe^{+3}:3d^5$ with W.F.L

$$\Rightarrow$$
 n = 5

Magnetic moment = 5.92 B.M

12. Assertion: Radius of H^+ is 1.5×10^{-3} pm

Reason: H⁺ cannot exist independently

Sol. Both assertion and reason are correct but reason is not a correct explanation of assertion.

13. Oxidation number of Mo in Ammonophosphomolybdate

Ans. 6

Sol. (NH₄)₃PMo₁₂O₄₀ or (NH₄)₃PO₄.12MoO₃

$$+3 + 5 + 12x - 80 = 0$$

$$12x = 80 - 8$$

$$12x = 72$$

$$x = 6$$

14. Which of following are reducing and oxidising agent respectively.

(1) Eu^{+2} , Ce^{+4}

(2) Ce^{+3} , Ce^{+4}

 $(3) Eu^{+4}, Eu^{+2}$

 $(4) \text{ Tb}^{+2}, \text{ Ce}^{2+}$

(1) Ans.

 $Eu^{2+} \longrightarrow Eu^{3+} + e^{-}$ Sol.

Eu²⁺ → Good reducing agent

$$e^- + Ce^{4+} \longrightarrow Ce^{3+}$$

Ce⁴⁺ is a good oxidising agent

Column-II 15. Column-I

- (P) N₂O₅
- (i) N-N bond
- $(Q) N_2O$
- (ii) N-O-N bond
- $(R) N_2O_4$
- and (iii) N=N / N=N bond
- (S) NO₂
- (iv) N=O bond

P - (ii), Q - (iii), R - (i), S - (iv)Ans.

Sol.

$$\sum_{0}^{N} N - N = 0$$

$$O$$
 N O

16. Polymer which is named as orlon

(1) Polyamide

(2) Polyacrylonitrile

(3) Polycarbamate

(4) Polyethene

Ans. (2)

17.
$$CONH_2 \xrightarrow{Br_2/KOH} Major product$$

$$(1)\bigcirc\bigcirc\bigcirc\bigcirc$$

Ans. (2)

18. Column I

- (i) Vitamin A
- (ii) Vitamin C (Ascorbic acid)
- (iii) Riboflavin
- (iv) Thiamine
- (1) $i\rightarrow c$, $ii\rightarrow d$, $iii\rightarrow a$, $iv\rightarrow b$
- (3) $i\rightarrow d$, $ii\rightarrow c$, $iii\rightarrow b$, $iv\rightarrow a$

Ans. (2)

Column II

- (a) Beri-beri
- (b) Cheilosis
- (c) Xerophthalmia
- (d) Scurvy
- (2) $i\rightarrow c$, $ii\rightarrow d$, $iii\rightarrow b$, $iv\rightarrow a$
- (4) $i\rightarrow c$, $ii\rightarrow b$, $iii\rightarrow d$, $iv\rightarrow a$
- **19.** Photochemical smog found mainly in
 - (1) Industrial area

(2) Marshy place

- (3) Hilly area of Himachal
- (4) Cold humid climate

Ans. (1)

20. Column I (Chemical reactions)

- (i) Glucose \rightarrow CO₂ + Ethanol
- (ii) Sucrose → Glucose + Fructose
- (iii) Starch \rightarrow Maltose
- (iv) Protein \rightarrow Amino acids
- (1) $i\rightarrow c$, $ii\rightarrow d$, $iii\rightarrow b$, $iv\rightarrow a$
- (3) $i\rightarrow c$, $ii\rightarrow d$, $iii\rightarrow a$, $iv\rightarrow b$

Ans. (1)

Column II (Enzymes used)

- (a) Pepsin
- (b) Diastase
- (c) Zymase
- (d) Invertase
- (2) $i\rightarrow d$, $ii\rightarrow c$, $iii\rightarrow b$, $iv\rightarrow a$
- (4) $i\rightarrow c$, $ii\rightarrow b$, $iii\rightarrow d$, $iv\rightarrow a$

21. How many bromo products are formed when ethane is reacted with excess of Br₂ on heating?

Ans. (9)

Sol.
$$CH_3-CH_3 \xrightarrow{Br_2/h\nu} CH_3-CH_2-Br + CH_3-CH \xrightarrow{Br} + CH_2-CH_2 + CH_3-C \xrightarrow{Br} Br$$

$$+ CH_2-CH \xrightarrow{Br} + CH_2-C \xrightarrow{Br} Br + CH_2-C \xrightarrow{Br} Br + CH_2-CH \xrightarrow{Br} Br$$

$$+ CH_2-CH \xrightarrow{Br} Br + CH_2-C \xrightarrow{Br} Br + Br \xrightarrow{CH-CH-Br} Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

$$+ Br - CH-C \xrightarrow{Br} Br + Br - C-C-Br$$

22. Match the following with the correct name of reaction

- (I) CH_3 -COOH $\xrightarrow{\text{Red-P} + Br_2}$
- (II) CH_3 -C- $CH_3 \xrightarrow{NaOI}$
- (III) \bigcirc CO + HCl + AlCl₃
- $(1)\,(I) \to (Q),\,(II) \to (R),\,(III) \to (P)$
- $(2) (I) \rightarrow (R), (II) \rightarrow (Q), (III) \rightarrow (P)$
- $(3) (I) \rightarrow (Q), (II) \rightarrow (P), (III) \rightarrow (R)$
- $(4)\:(I)\to (P),\:(II)\to (Q),\:(III)\to (R)$

Ans. (1)

- (P) Gattermann Koch reaction
- (Q) Hell Volhard Zelinsky
- (R) Iodoform reaction

23.
$$CH_3CH_2$$
-Br \xrightarrow{NaI} CH_3 - CH_2 - I + $NaBr$

Which of the following statement is correct?

- (1) Acetic acid solvent can take in above reaction.
- (2) NaI is soluble in acetone but NaBr is precipitate in acetone
- (3) NaI is precipitated in acetone but NaBr is soluble in acetone
- (4) When acetone is taken in solvent transition state is highly polar

Ans. (2)

24.
$$\begin{array}{c}
\text{LiAlH}_4 \\
\text{NH-C-CH}_3
\end{array}$$

$$\begin{array}{c}
\text{Br}_2 \\
\text{CH}_2\text{COOH}
\end{array}$$
(Q)

Product (P) and (Q) are respectively

NH-CH₂-CH₃ and
$$Br$$

$$Br$$

$$NH-C-CH3$$

$$Br$$

$$NH-C-CH3$$

(2)
$$CH_2$$
-NH-CH₃ and Br

(3)
$$NH-CH_2-CH_3$$
 and Br $NH-C-CH_3$

$$(4) \bigcirc NH-CH-CH_3$$
 and
$$Br \bigcirc NH-C-CH_3$$

Ans. (3)

SATYAM CHAKRAVORTY

(Classroom) ··→

selected for

(Indian National Olympiad in Informatics 2023)

Success Delivered to the Deserving

RELIABLE INSTITUTE: A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India

Tel.: 0744-3535544, 2665544 | Website: www.reliablekota.com | E-mail: info@reliablekota.com

