06/04/2023 Morning



Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

# Memory Based Answers & Solutions

Time : 3 hrs. M.M. : 300

# JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

#### **IMPORTANT INSTRUCTIONS:**

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are **three** parts in the question paper consisting of **Physics, Chemistry** and **Mathematics** having 30 questions in each part of equal weightage. Each part (subject) has two sections.
  - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **–1 mark** for wrong answer.
  - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.





# **PHYSICS**

### **SECTION - A**

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

# Choose the correct answer:

- Kinetic energy of electron, proton and  $\alpha$ -particle is given as k, 2k and 4k respectively then which of the following gives the correct order of de-Broglie wavelength of electron, proton and  $\alpha$ -particle?
  - (1)  $\lambda_p > \lambda_\alpha > \lambda_e$
- (2)  $\lambda_{\alpha} > \lambda_{\rho} > \lambda_{e}$
- (3)  $\lambda_e > \lambda_p > \lambda_\alpha$
- (4)  $\lambda_e > \lambda_\alpha > \lambda_D$

# Answer (3)

**Sol.** 
$$\lambda = \frac{h}{\sqrt{2m \ K \cdot E \cdot }}$$

$$\Rightarrow \lambda_e : \lambda_p : \lambda_\alpha = \frac{1}{\sqrt{m_e}} : \frac{1}{\sqrt{2m_p}} : \frac{1}{\sqrt{16m_p}}$$

$$\Rightarrow \lambda_e > \lambda_p > \lambda_\alpha$$

- If the height of a tower used for LOS communication 2. is increased by 21%. The percentage change in range is
  - (1) 5%
- (2) 10%
- (3) 15%
- (4) 12%

#### Answer (2)

**Sol.** New range is  $\sqrt{2R(h+0.21h)}$ 

$$= \sqrt{2R(1.21)h}$$
$$= 1.1\sqrt{2Rh}$$

% increase in range = 10%

Pick the correct graph between potential V at 3. distance r from centre for the uniformly charged spherical shell of radius R.





Answer (4)

**Sol.** 
$$V = \frac{KQ}{R}$$
 for  $r \le R$ 

$$V = \frac{KQ}{r}$$
 for  $r > R$ 

A block of mass m is connected to one end of a spring and kept on a smooth surface. The other end of the spring is connected to fixed shaft rotating with constant angular speed ω. Find tension in spring.



- (2)  $2m\omega^2 r$
- (3)  $m\omega^2 r$
- (4)  $\frac{3}{2} m\omega^2 r$

#### Answer (3)

**Sol.**  $T = m\omega^2 r$ 



For the oscillations exhibited by the spring block system, on smooth surface, along the springs, the time period is equal to

- (1)  $2\pi\sqrt{\frac{m(k_1+k_2)}{k_1k_2}}$  (2)  $2\pi\sqrt{\frac{m(k_1+k_2)}{2k_1k_2}}$
- (3)  $2\pi\sqrt{\frac{m}{k_1+k_2}}$  (4)  $\pi\sqrt{\frac{m}{k_1+k_2}}$

### Answer (3)

Sol. Both springs can be considered equivalent to a parallel combination of springs

$$\Rightarrow$$
  $k_{eq} = k_1 + k_2$ 

$$\Rightarrow T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

# JEE (Main)-2023: Phase-2 (06-04-2023)-Morning



6.



Two identical current carrying coils with same centre are placed with their planes perpendicular to each other as shown.

If  $i = \sqrt{2}A$  and radius of coils is R = 1 m then magnetic field at centre C is equal to

(1)  $\mu_0$ 

- (3)  $2\mu_0$
- (4)  $\sqrt{2} \mu_0$

# Answer (1)

**Sol.**  $i = \sqrt{2}A$ 

$$B_{\text{net}} = \sqrt{B_1^2 + B_2^2}$$
$$= \sqrt{\left(\frac{\mu_0 i}{2R}\right)^2 + \left(\frac{\mu_0 i}{2R}\right)^2}$$

 $= \mu_0$ 

- A ball of mass m and radius r and density  $\rho$  is dropped in a liquid of density  $\rho_0$ . After moving for some time, the speed of the ball becomes constant, equal to  $v_0$ . The coefficient of viscosity of the liquid

  - (1)  $\frac{mg}{6\pi r v_0} \left( 1 \frac{\rho_0}{\rho} \right)$  (2)  $\frac{mg}{6\pi r v_0} \left( 1 + \frac{\rho_0}{\rho} \right)$
  - (3)  $\frac{mg}{3\pi r v_0} \left( 1 + \frac{\rho_0}{\rho_0} \right)$  (4)  $\frac{mg}{3\pi r v_0} \left( 1 \frac{\rho_0}{\rho} \right)$

# Answer (1)

**Sol.**  $6\pi\eta rv_0 = v\rho g - v\rho_0 g$  $= vg (\rho - \rho_0)$ 

$$=\frac{m}{\rho}g\left(\rho-\rho_0\right)$$

$$\therefore \quad \eta = \frac{mg}{6\pi r v_0} \left( 1 - \frac{\rho_0}{\rho} \right)$$

8. Assertion (A): Earth has atmosphere and moon doesn't.

Reason (R): Escape speed on moon is less than that of earth.

- (1) (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is true, but (R) is false
- (4) (A) and (R), both are false

#### Answer (1)

- Sol. Both (A) and (R), are true and escape speed on moon is less due to its small radius and acceleration due to gravity as compared to earth.
- The amount of heat supplied to a gas in a system 9. is equal to 1000 J, the system in return does 200 J of work on the surrounding. Find charge in internal energy of the gas.
  - (1) 800 J
- (2) 1200 J
- (3) 1000 J
- (4) 1100 J

# Answer (1)

Sol. Using first law of thermodynamics

$$\Delta Q = \Delta U + W$$

$$\Delta U = 1000 - 200$$

= 800 J

- 10. On a planet  $\rho$  (mass density) is same as that of earth while mass of planet is twice than that of earth. Ratio of weight of a body on surface of planet to that on earth is equal to
  - (1) 1

- (2)  $(2)^{\frac{1}{3}}$
- $(3) (2)^{-\frac{1}{3}}$
- (4) 2

Answer (2)

Sol. 
$$\frac{g_{p}}{g_{e}} = \frac{GM_{p}/R_{p}^{2}}{GM_{e}/R_{e}^{2}} = \frac{\left(\frac{M_{p}/\sqrt{\gamma_{3}^{2}}}{\rho_{p}^{2}}\right)^{1/3}}{\left(\frac{M_{e}/\sqrt{\gamma_{2}^{2}}}{\rho_{e}^{2}}\right)^{1/3}}$$

$$= \binom{M_p}{M_e}^{\frac{1}{3}}$$
$$= (2)^{\frac{1}{3}}$$

11. Assertion (A): Range of a horizontal projectile is maximum when angle of projection is  $\theta = 45^{\circ}$ .

**Reason (R):** Range is maximum when  $sin(2\theta) = 1$ .

- (1) (A) and (R) both are true and (R) is correct explanation of (A)
- (2) (A) and (R) both are true but (R) is not correct explanation of (A)
- (3) (A) is true and (R) is false
- (4) Both (A) and (R) are false

#### Answer (1)

**Sol.** 
$$R = \frac{u^2 \sin 2\theta}{g}$$

- For  $R_{max}$ ,  $sin(2\theta) = 1$
- $\theta = 45^{\circ}$



12. The capacitance of capacitor can be varied by filling dielectric constant K=4 as shown in figure. As x varies, the capacitance changes. For  $x=\frac{d}{3}$ , the equivalent capacitance is G and for  $x=\frac{2d}{3}$ , the equivalent capacitance is  $2 \mu F$ . Find the value of  $C_1$  in  $\mu F$ 



(1) 4

(2) 3

(3)  $\frac{4}{3}$ 

(4)  $\frac{3}{2}$ 

# Answer (3)

Sol. 
$$C_2 = \frac{\frac{3\varepsilon_0 A}{d} \times \frac{4\varepsilon_0 A \times 3}{2d}}{\frac{3\varepsilon_0 A}{d} + \frac{6\varepsilon_0 A}{d}}$$

$$= \frac{\varepsilon_0 A}{d} \left(\frac{3 \times 6}{9}\right)$$

$$= \left(\frac{2\varepsilon_0 A}{d}\right) = 2 \,\mu\text{F}$$

$$C_1 = \frac{\frac{3\varepsilon_0 A}{2d} \times \frac{3 \times 4\varepsilon_0 A}{d}}{\frac{3\varepsilon_0 A}{2d} + \frac{12\varepsilon_0 A}{d}}$$

$$= \frac{\varepsilon_0 A}{d} \left(\frac{\frac{3}{2} \times 12}{d}\right)$$

$$= \frac{\varepsilon_0 A}{d} \times \frac{18 \times 2}{27}$$

$$= \frac{12}{9} \left(\frac{\varepsilon_0 A}{d}\right)$$

$$= \left(\frac{12}{9}\right) \mu\text{F}$$

$$= \left(\frac{4}{3}\right) \mu\text{F}$$

13. The given figure shows a long cylindrical shell having current *I* flowing uniformly along the wall. The graph showing the variation of magnetic field (*B*) with the perpendicular distance(*r*) from the axis of the shell is







# Answer (2)

**Sol.** Using Ampere's circuital law  $B_{\text{binside}} = 0$ 

$$B_{\text{outside}} = \frac{\mu \cdot i}{2\pi r}$$

$$\therefore B_{\text{outside}} \propto \frac{1}{r}$$

14. Which of the following logic gate is correct according to given circuit?



- (1) OR gate
- (2) NAND gate
- (3) AND gate
- (4) NOR gate

# Answer (1)

**Sol.** Output =  $A + B \Rightarrow OR$  gate

# JEE (Main)-2023: Phase-2 (06-04-2023)-Morning



- 15. Find the radius of the orbit corresponding to the 4<sup>th</sup> excited state in Li++. (a<sub>0</sub> is the radius of first orbit in H-atom)
  - (1)  $\frac{25}{3}a_0$
  - (2)  $\frac{16}{3}a_0$
  - $(3) 25a_0$
  - $(4) 12a_0$

# Answer (1)

**Sol.** 
$$r_n = \frac{a_0 n^2}{z}$$
  
=  $a_0 \left(\frac{25}{3}\right)$ 

16. In the given diagram, different type of transition of is named as A, B, C and D, then which transition emits shortest wavelength.



(3) C

(4) D

#### Answer (D)

Sol. For particular atom

$$\lambda \propto \frac{1}{\Delta E}$$

$$\Delta E \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For A 
$$\Delta E \propto \left(\frac{1}{9} - \frac{1}{16}\right) = -K\left(\frac{7}{144}\right) \approx K \times 0.486$$

For B 
$$\Delta E \propto \left(\frac{1}{4} - \frac{1}{16}\right) = K\left(\frac{3}{16}\right) \approx K \times 0.1875$$

For C, 
$$\Delta E \propto \left(\frac{1}{4} - \frac{1}{9}\right) = K\left(\frac{5}{36}\right) \approx K \times 0.1388$$

For D, 
$$\Delta E \propto \left(1 - \frac{1}{4}\right) = K \frac{3}{4} \approx K \times 0.75$$

So, for D,  $\Delta E$  is high, so  $\lambda_D$  is shortest.

During simple harmonic motion of a pendulum, the square of time period  $(T^2)$  can be plotted against length of pendulum (1) by



Answer (1)

Sol. 
$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$T^2 \propto I$$

In an EM wave ratio of average electric field and magnetic field energy density in a region of wave is equal to

$$(1) \ \frac{2\varepsilon_0}{\mu_0 C^2}$$

- (3) 1:1
- $(4) \quad \frac{\varepsilon_0}{2\mu_0 C^2}$

#### Answer (3)

- Sol. Average energy density contained with electric and magnetic field component of an EM wave remains
- 19. A rod is fixed at one end and other end is pulled with force F = 62.8 kN, Young's modulus of rod is  $2 \times 10^{11}$  N/m<sup>2</sup>. If the radius of cross-section of rod is 20 mm the strain produced in rod is





- $(1) 2.5 \times 10^{-3}$
- $(2) 2.5 \times 10^{-4}$
- $(3) 2 \times 10^{-3}$
- $(4) 2 \times 10^{-4}$

# Answer (2)

**Sol.** Strain = 
$$\left(\frac{F}{AY}\right) = \frac{62.8 \times 10^3}{3.14 \times (0.02)^2 \times 2 \times 10^{11}} = 2.5 \times 10^{-4}$$

- 20. A ray undergoes refraction at boundary of a medium such that incident angle is 45° while refraction angel is 30°. Wavelength and frequency of incident ray are  $\lambda_1$  and  $\nu_1$  while for refracted ray are  $\lambda_2$  and  $\nu_2$ , then
  - (1)  $\lambda_1 = \lambda_2, v_1 = \frac{v_2}{\sqrt{2}}$  (2)  $\lambda_1 = \lambda_2, v_2 = 2v_1$
  - (3)  $\lambda_1 = \sqrt{2}\lambda_2$ ,  $\nu_1 = \nu_2$  (4)  $\lambda_1 = \frac{\lambda_2}{\sqrt{2}}$ ,  $\nu_1 = \nu_2$

#### Answer (3)

**Sol.**  $i = 45^{\circ}, r = 30^{\circ}$ 

$$\mu = \sqrt{2}$$

$$\Rightarrow C_2 = \frac{C}{\sqrt{2}}$$

$$\Rightarrow \lambda_2 = \frac{\lambda_1}{\sqrt{2}}$$

and  $v_1 = v_2$ 

#### **SECTION - B**

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each guestion, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A block of mass 100 gm is placed on smooth surface, moves with acceleration of a = 2x, then the change is kinetic energy can be given as  $\left(\frac{x''}{10}\right)$ .

Find the value of n

### Answer (2)

**Sol.** 
$$\frac{v \, dv}{dx} = 2x$$

$$\int v\,dv = \int 2x\,dx$$

$$\Rightarrow \frac{1}{2} \left( v_f^2 - v_i^2 \right) = x^2$$

$$\Rightarrow \frac{1}{2}m(v_f^2-v_i^2)=mx^2$$

$$\Delta k = \left(0.1x^2\right) = \left(\frac{x^2}{10}\right)$$

22. A car is moving with speed of 15 m/s towards a stationary wall. A person in the car press the horn and experience the change in frequency of 40 Hz due to reflection from stationary wall. Find the frequency of horn.

(Use 
$$v_{\text{sound}} = 330 \text{ m/s}$$
)

# Answer (420 Hz)

Sol.



$$f' = \left(\frac{c+v}{c-v}\right) f_0$$

$$\frac{f'}{f_0} = \left(\frac{c+v}{c-v}\right) = \frac{1 + \left(\frac{v}{c}\right)}{1 - \left(\frac{v}{c}\right)} = \frac{345}{315}$$

$$\Rightarrow \frac{f'}{f_0} - 1 = \frac{345}{315} - 1 = \frac{30}{315}$$

$$\Rightarrow \frac{f'-f_0}{f_0} = \frac{30}{315}$$

$$\Rightarrow \frac{40 \times 315}{30} = f_0$$

$$f_0 = (4 \times 105)$$

$$= 420 Hz$$

# JEE (Main)-2023: Phase-2 (06-04-2023)-Morning

23. If the length of a conductor is increases by 20 percent and cross-sectional area is decreased by 4 percent, then calculate the percentage change in resistance of a conductor.

Answer (25.00)

**Sol.** 
$$R = \left(\frac{\rho I}{A}\right)$$

$$R' = \frac{\rho I'}{A'} \implies I' = 1.2I$$

A' = 0.96A

$$R' = \frac{\rho \times 1.2I}{0.96A} = \frac{10}{8} \left(\frac{\rho I}{A}\right)$$

$$\frac{R'-R}{R} = \left(\frac{1}{4}\right)$$

⇒ 25 percent

24.



At equilibrium position a 75 N force starts acting on the block attach with the spring as shown. Maximum extension in spring in meter is

# Answer (2)

**Sol.** 
$$\Delta I_{\text{max}} = \frac{2F}{k}$$

$$=\frac{2\times75}{75}$$

$$= 2 m$$

25.



Two solid spheres of mass  $m = \frac{1}{2}$  kg each are connected at the ends of a light rod as shown in the figure. The assembly rotates about axis AA'. Then moment of inertia of the assembly is equal to  $\frac{x}{5}$  kgm<sup>2</sup> value of x is equal to

Answer (01.27)

**Sol.** 
$$MI = \left[ \left( \frac{2}{5} Mr^2 \right) + \left( MR^2 \right) \right] \times 2$$
  
 $= \left[ \frac{2}{5} \times \frac{1}{2} \times (0.1)^2 + \frac{1}{2} \times (0.5)^2 \right] \times 2$   
 $= \frac{0.02}{5} + \frac{1.25}{5}$ 

26. The path of an object moving with constant speed is shown in figure. The ratio of magnitude of average velocity to instantaneous speed is equal to  $\sqrt{x}$  find x.



Answer (2)

**Sol.** |Average velocity| = 
$$\sqrt{2}v$$
  
Instantaneous speed =  $v$ 

- 27.
- 28.
- 29.
- 30.