JEE-Mains-06-04-2023 [Memory Based]
 [Morning Shift]

Chemistry

Question: Polymer which is named as orlon is?

Options:

(a) Polyacrylonitrile
(b) Polycarbonate
(c) Polyethene
(d) Polyamide

Answer: (a)
Solution: Orlon is also called Acrilan or Polyacrylonitrile

Question: The correct set of strong oxidising and reducing agent
$\mathrm{Ce}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Tb}^{4+}$ and Eu^{2+}

Options:

(a) $\mathrm{Ce}^{4+}, \mathrm{Tb}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}$
(b) $\mathrm{Tb}^{4+}, \mathrm{Yb}^{2+}, \mathrm{Ce}^{4+}, \mathrm{Eu}^{2+}$
(c) $\mathrm{Tb}^{4+}, \mathrm{Eu}^{2+}, \mathrm{Yb}^{2+}, \mathrm{Ce}^{4+}$
(d) $\mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}, \mathrm{Tb}^{4+}, \mathrm{Ce}^{4+}$

Answer: (a)
Solution: $\mathrm{Ce}^{4+}, \mathrm{Tb}^{4+}$ act as oxidising agent and $\mathrm{Yb}^{2+}, \mathrm{Eu}^{2+}$ act as reducing agent

Question: Match column I (Deficiency) with column II (Disease)

Vitamins Deficiency	Disease
(P) Vitamin A	(1) Scurvy
(Q) Vitamin C	(2) Xeropthalmia
(R) Vitamin B 1	(3) Cheilosis
(S) Vitamin B ${ }_{2}$	(4) Beri-Beri

Options:

(a) P-2, Q-1, R-4, S-3
(b) P-2, Q-4, R-3, S-1
(c) P-4, Q-2, R-4, S-1
(d) P-3, Q-2, R-4, S-1

Answer: (a)
Solution: Fact based

Question: Y form FCC lattice in which X occupies $1 / 3$ of tetrahedral Voids. Then formula of the compound will be

Options:

(a) $\mathrm{X}_{3} \mathrm{Y}_{2}$
(b) XY_{3}
(c) $\mathrm{X}_{2} \mathrm{Y}_{3}$
(d) $X_{3} Y$

Answer: (c)

Solution: tetrahedral voids are 8 in count in FCC thus X is $8 / 3$ and $\mathrm{Y}=4$ hence the formula

Question: Which of the following have highest electron gain enthalpy difference?
Options:
(a) F, Ne
(b) Ar, F
(c) Ne, Cl
(d) Ar, Cl

Answer: (a)
Solution: Fact based
EA values are $\mathrm{F}=-333, \mathrm{Cl}=-349, \mathrm{Ne}=116, \mathrm{Ar}=96$

Question: Name reactions Matching

Name Reaction	Reagents
(P) Etard Reaction	(1) NaOI
(Q) Iodoform	(2) $\mathrm{CO} / \mathrm{HCl}, \mathrm{Anh} . \mathrm{AlCl}_{3}$
(R) Gatterman aldehyde	(3) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{CS}_{2}, \mathrm{H}_{3} \mathrm{O}^{+}$
(S) HVZ	(4) $\mathrm{X}_{2} /$ red $\mathrm{P}, \mathrm{H}_{2} \mathrm{O}$

Options:

(a) P-3, Q-1, R-2, S-4
(b) P-3, Q-2, R-1, S-4
(c) P-3, Q-4, R-2, S-1
(d) P-1, Q-3, R-2, S-4

Answer: (a)
Solution: Fact based

Question: Match column I (Compound) with column II (Type of Bond)

Nitrogen oxides	Type of Bonds
(P) $\mathrm{N}_{2} \mathrm{O}$	(1) N-N bond
(Q) $\mathrm{N}_{2} \mathrm{O}_{5}$	(2) N-O-N bond
(R) NO_{2}	(3) $\mathrm{N}=\mathrm{N}$ or N triple bond N
(S) $\mathrm{N}_{2} \mathrm{O}_{4}$	(4) $\mathrm{N}=\mathrm{O}$

Options:

(a) P-1, Q-4, R-2, S-3
(b) P-3, Q-2, R-4, S-1
(c) P-1, Q-2, R-4, S-3
(d) P-1, Q-3, R-2, S-4

Answer: (b)
Solution: structure-based question

Question: Photochemical smog is maximum in Options:
(a) Himalayan Region
(b) Green Healthy vegetation
(c) Marshy Lands
(d) Industrial Region

Answer: (d)
Solution: Hydrocarbons and nitrogen oxides produced by automobiles and factories.

Question: Which of the reaction is correct among the following with appropriate enzyme? Options:
(a) Sucrose \rightarrow Glucose + fructose : Enzyme - Invertase
(b) Glucose $\rightarrow \mathrm{CO}_{2}+$ Ethanol : Enzyme : Maltase
(c) Protein \rightarrow Amino acid : Enzyme : Zymase
(d) Starch \rightarrow Maltose : Enzyme : Pepsin

Answer: (a)
Solution: Sucrose \rightarrow Glucose + fructose : Enzyme - Invertase

Question: Which of the following is used for settling of cement?
Options:
(a) Gypsum
(b) Limestone
(c) Clay
(d) Silica

Answer: (a)
Solution: Setting of cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement.

Question: which of the following is having square Pyramidal shape Options:
(a) XeOF_{4}
(b) BrF_{5}
(c) IF_{5}
(d) ICl_{4}^{-}

Answer: (a)
Solution: XeOF_{4} has geometry of $\mathrm{Sp}^{3} \mathrm{~d}^{2}$ and shape of square pyramidal

Question: Assertion: Loss of the electron from hydrogen atom results in nucleus $\left(\mathrm{H}^{+}\right)$of \sim $1.5 \times 10^{-3} \mathrm{pm}$ size.
Reason: H^{+}does not exist freely and is always associated with other atoms or molecules.
Options:
(a) Both assertion and reason are correct but reason is not correct explanation
(b) Both assertion and reason are correct but reason is correct explanation
(c) Both assertion and reason are incorrect
(d) Assertion is correct and reason is incorrect

Answer: (b)

Solution: Loss of the electron from hydrogen atom results in nucleus $\left(\mathrm{H}^{+}\right)$of $\sim 1.5 \times 10^{-3} \mathrm{pm}$ size. This is extremely small as compared to normal atomic and ionic sizes of 50 to 200 pm . As a consequence, H^{+}does not exist freely and is always associated with other atoms or molecules. Thus, it is unique in behavior.

Question: Assertion: The magnetic Moment of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ are 5.92 BM and 1.74 BM respectively.
Reason: The oxidation state Fe is +3 .

Options:

(a) Both assertion and reason are correct but reason is not correct explanation
(b) Both assertion and reason are correct but reason is correct explanation
(c) Both assertion and reason are incorrect
(d) Assertion is correct and reason is incorrect

Answer: (a)
Solution: water as ligand do not cause pairing in complex but CN - does

Question: If radius of ground state hydrogen is 51 pm , find out the radius of $5^{\text {th }}$ orbit of Li^{2+} (closest integer)

Options:

(a) 170 pm
(b) 180 pm
(c) 120 pm
(d) 425 pm

Answer: (d)
Solution: Apply r $=51 * 5 * 5 / 3$

Question: Identify the product formed in the following reaction.

$\xrightarrow[\text { Heat }]{\mathrm{Br}_{2} / \mathrm{NaOH}}$?

Options:

(a)

(b)

(c)

(d)

Answer: (d)
Solution:

Question: Matrix match for detection of element

Column-I	Column-II
(A) Nitrogen	(P) AgX
(B) Sulphur	(Q) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}$
(C) Phosphorous	(R) $\mathrm{Fe}(\mathrm{SCN})_{3}$
(D) Halogens	(S) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$

Options:

(a) A-P, B-R, C-Q, D-S
(b) A-R, Q, B-P, C-Q, D-S
(c) A-S, B-R, C-Q, D-P
(d) A-Q, B-R, C-P, D-S

Answer: (c)
Solution: A-S, B-R, C-Q, D-P

Question: Consider the following reaction.
$\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g})$

If the initial concentration of $\mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{~g})$ is c , find the value of α
Options:
(a) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{27 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(b) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{\mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(c) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$
(d) $\left(\frac{\mathrm{K}_{\mathrm{eq}}}{4 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$

Answer: (c)
Solution:
$\left(\frac{\mathrm{K}_{\mathrm{eq}}}{108 \mathrm{c}^{4}}\right)^{\frac{1}{5}}$

