JEE-Mains-06-04-2023 [Memory Based] [Morning Shift] ## Chemistry **Question:** Polymer which is named as orlon is? **Options:** (a) Polyacrylonitrile (b) Polycarbonate (c) Polyethene (d) Polyamide Answer: (a) Solution: Orlon is also called Acrilan or Polyacrylonitrile Question: The correct set of strong oxidising and reducing agent Ce⁴⁺, Yb²⁺, Tb⁴⁺ and Eu²⁺ **Options:** (a) Ce⁴⁺, Tb⁴⁺, Yb²⁺, Eu²⁺ (b) Tb⁴⁺, Yb²⁺, Ce⁴⁺, Eu²⁺ (c) Tb^{4+} , Eu^{2+} , Yb^{2+} , Ce^{4+} (d) Yb^{2+} , Eu^{2+} , Tb^{4+} , Ce^{4+} Answer: (a) **Solution:** Ce⁴⁺, Tb⁴⁺ act as oxidising agent and Yb²⁺, Eu²⁺ act as reducing agent **Ouestion:** Match column I (Deficiency) with column II (Disease) | (| | |----------------------------|------------------| | Vitamins Deficiency | Disease | | (P) Vitamin A | (1) Scurvy | | (Q) Vitamin C | (2) Xeropthalmia | | (R) Vitamin B ₁ | (3) Cheilosis | | (S) Vitamin B ₂ | (4) Beri-Beri | #### **Options:** (a) P-2, Q-1, R-4, S-3 (b) P-2, Q-4, R-3, S-1 (c) P-4, Q-2, R-4, S-1 (d) P-3, Q-2, R-4, S-1 Answer: (a) Solution: Fact based **Question:** Y form FCC lattice in which X occupies 1/3 of tetrahedral Voids. Then formula of the compound will be ## **Options:** - (a) X_3Y_2 - (b) XY₃ (c) X₂Y₃ (d) X₃Y Answer: (c) **Solution:** tetrahedral voids are 8 in count in FCC thus X is 8/3 and Y = 4 hence the formula Question: Which of the following have highest electron gain enthalpy difference? ## **Options:** - (a) F, Ne - (b) Ar, F - (c) Ne, Cl - (d) Ar, Cl Answer: (a) Solution: Fact based EA values are F = -333, C1 = -349, Ne = 116, Ar = 96 ### Question: Name reactions Matching | Name Reaction | Reagents | |------------------------|--| | (P) Etard Reaction | (1) NaOI | | (Q) Iodoform | (2) CO/HCl, Anh. AlCl ₃ | | (R) Gatterman aldehyde | (3) CrO ₂ Cl ₂ , CS ₂ , H ₃ O ⁺ | | (S) HVZ | (4) X ₂ /red P, H ₂ O | ## **Options:** - (a) P-3, Q-1, R-2, S-4 - (b) P-3, Q-2, R-1, S-4 - (c) P-3, Q-4, R-2, S-1 - (d) P-1, Q-3, R-2, S-4 Answer: (a) Solution: Fact based ### Question: Match column I (Compound) with column II (Type of Bond) | Nitrogen oxides | Type of Bonds | |----------------------|----------------------------| | (P) N ₂ O | (1) N-N bond | | (Q) N_2O_5 | (2) N-O-N bond | | (R) NO ₂ | (3) N=N or N triple bond N | | (S) N_2O_4 | (4) N=O | ### **Options:** - (a) P-1, Q-4, R-2, S-3 - (b) P-3, Q-2, R-4, S-1 - (c) P-1, Q-2, R-4, S-3 - (d) P-1, Q-3, R-2, S-4 Answer: (b) **Solution:** structure-based question Question: Photochemical smog is maximum in **Options:** (a) Himalayan Region (b) Green Healthy vegetation (c) Marshy Lands (d) Industrial Region Answer: (d) **Solution:** Hydrocarbons and nitrogen oxides produced by automobiles and factories. **Question:** Which of the reaction is correct among the following with appropriate enzyme? **Options:** (a) Sucrose → Glucose + fructose : Enzyme – Invertase (b) Glucose \rightarrow CO₂ + Ethanol : Enzyme : Maltase (c) Protein → Amino acid : Enzyme : Zymase (d) Starch → Maltose : Enzyme : Pepsin Answer: (a) Solution: Sucrose → Glucose + fructose : Enzyme – Invertase Question: Which of the following is used for settling of cement? ## **Options:** (a) Gypsum (b) Limestone (c) Clay (d) Silica Answer: (a) **Solution:** Setting of cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement. Question: which of the following is having square Pyramidal shape ## **Options:** (a) XeOF₄ (b) BrF₅ (c) IF₅ (d) ICl_4^- Answer: (a) **Solution:** XeOF₄ has geometry of Sp³d² and shape of square pyramidal **Question:** Assertion: Loss of the electron from hydrogen atom results in nucleus (H⁺) of \sim 1.5 \times 10⁻³ pm size. **Reason:** H⁺ does not exist freely and is always associated with other atoms or molecules. #### **Options:** - (a) Both assertion and reason are correct but reason is not correct explanation - (b) Both assertion and reason are correct but reason is correct explanation - (c) Both assertion and reason are incorrect - (d) Assertion is correct and reason is incorrect Answer: (b) **Solution:** Loss of the electron from hydrogen atom results in nucleus (H⁺) of $\sim 1.5 \times 10^{-3}$ pm size. This is extremely small as compared to normal atomic and ionic sizes of 50 to 200pm. As a consequence, H⁺ does not exist freely and is always associated with other atoms or molecules. Thus, it is unique in behavior. **Question:** Assertion: The magnetic Moment of $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ are 5.92 BM and 1.74 BM respectively. **Reason:** The oxidation state Fe is +3. #### **Options:** - (a) Both assertion and reason are correct but reason is not correct explanation - (b) Both assertion and reason are correct but reason is correct explanation - (c) Both assertion and reason are incorrect - (d) Assertion is correct and reason is incorrect Answer: (a) Solution: water as ligand do not cause pairing in complex but CN- does Question: If radius of ground state hydrogen is 51 pm, find out the radius of 5th orbit of Li²⁺ (closest integer) ### **Options:** - (a) 170 pm - (b) 180 pm - (c) 120 pm - (d) 425 pm Answer: (d) **Solution:** Apply r = 51*5*5/3 Question: Identify the product formed in the following reaction. $$\frac{\text{conH}_2}{\text{cooch}_3} \xrightarrow{\text{Br}_2/\text{NaOH}} ?$$ #### **Options:** (a) (b) Answer: (d) Solution: Question: Matrix match for detection of element | Column-I | Column-II | |-----------------|---| | (A) Nitrogen | (P) AgX | | (B) Sulphur | (Q) (NH4)3PO4.12MoO3 | | (C) Phosphorous | (R) Fe(SCN) ₃ | | (D) Halogens | (S) Fe ₄ [Fe(CN) ₆] ₃ | ## **Options:** - (a) A-P, B-R, C-Q, D-S - (b) A-R, Q, B-P, C-Q, D-S - (c) A-S, B-R, C-Q, D-P - (d) A-Q, B-R, C-P, D-S Answer: (c) Solution: A-S, B-R, C-Q, D-P **Question:** Consider the following reaction. $A_2B_3(g) \rightleftharpoons 2A(g) + 3B(g)$ If the initial concentration of $A_2B_3(g)$ is c, find the value of α ## **Options:** $$(a) \left(\frac{K_{eq}}{27c^4}\right)^{\frac{1}{5}}$$ $$(b) \left(\frac{K_{eq}}{c^4}\right)^{\frac{1}{5}}$$ Options: (a) $$\left(\frac{K_{eq}}{27c^4}\right)^{\frac{1}{5}}$$ (b) $\left(\frac{K_{eq}}{c^4}\right)^{\frac{1}{5}}$ (c) $\left(\frac{K_{eq}}{108c^4}\right)^{\frac{1}{5}}$ (d) $\left(\frac{K_{eq}}{4c^4}\right)^{\frac{1}{5}}$ $$(d) \left(\frac{K_{eq}}{4c^4}\right)^{\frac{1}{5}}$$ Answer: (c) **Solution:** $$\left(\frac{K_{eq}}{108c^4}\right)^{\!\!\frac{1}{5}}$$