

JEE-Mains-06-04-2023 [Memory Based] [Morning Shift]

Chemistry

Question: Polymer which is named as orlon is?

Options:

(a) Polyacrylonitrile (b) Polycarbonate

(c) Polyethene (d) Polyamide Answer: (a)

Solution: Orlon is also called Acrilan or Polyacrylonitrile

Question: The correct set of strong oxidising and reducing agent

Ce⁴⁺, Yb²⁺, Tb⁴⁺ and Eu²⁺

Options:

(a) Ce⁴⁺, Tb⁴⁺, Yb²⁺, Eu²⁺ (b) Tb⁴⁺, Yb²⁺, Ce⁴⁺, Eu²⁺

(c) Tb^{4+} , Eu^{2+} , Yb^{2+} , Ce^{4+}

(d) Yb^{2+} , Eu^{2+} , Tb^{4+} , Ce^{4+}

Answer: (a)

Solution: Ce⁴⁺, Tb⁴⁺ act as oxidising agent and Yb²⁺, Eu²⁺ act as reducing agent

Ouestion: Match column I (Deficiency) with column II (Disease)

(
Vitamins Deficiency	Disease
(P) Vitamin A	(1) Scurvy
(Q) Vitamin C	(2) Xeropthalmia
(R) Vitamin B ₁	(3) Cheilosis
(S) Vitamin B ₂	(4) Beri-Beri

Options:

(a) P-2, Q-1, R-4, S-3

(b) P-2, Q-4, R-3, S-1

(c) P-4, Q-2, R-4, S-1

(d) P-3, Q-2, R-4, S-1

Answer: (a)

Solution: Fact based

Question: Y form FCC lattice in which X occupies 1/3 of tetrahedral Voids. Then formula of the compound will be

Options:

- (a) X_3Y_2
- (b) XY₃

(c) X₂Y₃ (d) X₃Y

Answer: (c)

Solution: tetrahedral voids are 8 in count in FCC thus X is 8/3 and Y = 4 hence the formula

Question: Which of the following have highest electron gain enthalpy difference?

Options:

- (a) F, Ne
- (b) Ar, F
- (c) Ne, Cl
- (d) Ar, Cl

Answer: (a)

Solution: Fact based

EA values are F = -333, C1 = -349, Ne = 116, Ar = 96

Question: Name reactions Matching

Name Reaction	Reagents
(P) Etard Reaction	(1) NaOI
(Q) Iodoform	(2) CO/HCl, Anh. AlCl ₃
(R) Gatterman aldehyde	(3) CrO ₂ Cl ₂ , CS ₂ , H ₃ O ⁺
(S) HVZ	(4) X ₂ /red P, H ₂ O

Options:

- (a) P-3, Q-1, R-2, S-4
- (b) P-3, Q-2, R-1, S-4
- (c) P-3, Q-4, R-2, S-1
- (d) P-1, Q-3, R-2, S-4

Answer: (a)

Solution: Fact based

Question: Match column I (Compound) with column II (Type of Bond)

Nitrogen oxides	Type of Bonds
(P) N ₂ O	(1) N-N bond
(Q) N_2O_5	(2) N-O-N bond
(R) NO ₂	(3) N=N or N triple bond N
(S) N_2O_4	(4) N=O

Options:

- (a) P-1, Q-4, R-2, S-3
- (b) P-3, Q-2, R-4, S-1
- (c) P-1, Q-2, R-4, S-3
- (d) P-1, Q-3, R-2, S-4

Answer: (b)

Solution: structure-based question

Question: Photochemical smog is maximum in

Options:

(a) Himalayan Region

(b) Green Healthy vegetation

(c) Marshy Lands

(d) Industrial Region

Answer: (d)

Solution: Hydrocarbons and nitrogen oxides produced by automobiles and factories.

Question: Which of the reaction is correct among the following with appropriate enzyme? **Options:**

(a) Sucrose → Glucose + fructose : Enzyme – Invertase

(b) Glucose \rightarrow CO₂ + Ethanol : Enzyme : Maltase

(c) Protein → Amino acid : Enzyme : Zymase

(d) Starch → Maltose : Enzyme : Pepsin

Answer: (a)

Solution: Sucrose → Glucose + fructose : Enzyme – Invertase

Question: Which of the following is used for settling of cement?

Options:

(a) Gypsum

(b) Limestone

(c) Clay

(d) Silica

Answer: (a)

Solution: Setting of cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement.

Question: which of the following is having square Pyramidal shape

Options:

(a) XeOF₄

(b) BrF₅

(c) IF₅

(d) ICl_4^-

Answer: (a)

Solution: XeOF₄ has geometry of Sp³d² and shape of square pyramidal

Question: Assertion: Loss of the electron from hydrogen atom results in nucleus (H⁺) of \sim 1.5 \times 10⁻³ pm size.

Reason: H⁺ does not exist freely and is always associated with other atoms or molecules.

Options:

- (a) Both assertion and reason are correct but reason is not correct explanation
- (b) Both assertion and reason are correct but reason is correct explanation
- (c) Both assertion and reason are incorrect
- (d) Assertion is correct and reason is incorrect

Answer: (b)

Solution: Loss of the electron from hydrogen atom results in nucleus (H⁺) of $\sim 1.5 \times 10^{-3}$ pm size. This is extremely small as compared to normal atomic and ionic sizes of 50 to 200pm. As a consequence, H⁺ does not exist freely and is always associated with other atoms or molecules. Thus, it is unique in behavior.

Question: Assertion: The magnetic Moment of $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ are 5.92 BM

and 1.74 BM respectively.

Reason: The oxidation state Fe is +3.

Options:

- (a) Both assertion and reason are correct but reason is not correct explanation
- (b) Both assertion and reason are correct but reason is correct explanation
- (c) Both assertion and reason are incorrect
- (d) Assertion is correct and reason is incorrect

Answer: (a)

Solution: water as ligand do not cause pairing in complex but CN- does

Question: If radius of ground state hydrogen is 51 pm, find out the radius of 5th orbit of Li²⁺ (closest integer)

Options:

- (a) 170 pm
- (b) 180 pm
- (c) 120 pm
- (d) 425 pm

Answer: (d)

Solution: Apply r = 51*5*5/3

Question: Identify the product formed in the following reaction.

$$\frac{\text{conH}_2}{\text{cooch}_3} \xrightarrow{\text{Br}_2/\text{NaOH}} ?$$

Options:

(a)

(b)

Answer: (d) Solution:

Question: Matrix match for detection of element

Column-I	Column-II
(A) Nitrogen	(P) AgX
(B) Sulphur	(Q) (NH4)3PO4.12MoO3
(C) Phosphorous	(R) Fe(SCN) ₃
(D) Halogens	(S) Fe ₄ [Fe(CN) ₆] ₃

Options:

- (a) A-P, B-R, C-Q, D-S
- (b) A-R, Q, B-P, C-Q, D-S
- (c) A-S, B-R, C-Q, D-P
- (d) A-Q, B-R, C-P, D-S

Answer: (c)

Solution: A-S, B-R, C-Q, D-P

Question: Consider the following reaction.

 $A_2B_3(g) \rightleftharpoons 2A(g) + 3B(g)$

If the initial concentration of $A_2B_3(g)$ is c, find the value of α

Options:

$$(a) \left(\frac{K_{eq}}{27c^4}\right)^{\frac{1}{5}}$$

$$(b) \left(\frac{K_{eq}}{c^4}\right)^{\frac{1}{5}}$$

Options:

(a)
$$\left(\frac{K_{eq}}{27c^4}\right)^{\frac{1}{5}}$$

(b) $\left(\frac{K_{eq}}{c^4}\right)^{\frac{1}{5}}$

(c) $\left(\frac{K_{eq}}{108c^4}\right)^{\frac{1}{5}}$

(d) $\left(\frac{K_{eq}}{4c^4}\right)^{\frac{1}{5}}$

$$(d) \left(\frac{K_{eq}}{4c^4}\right)^{\frac{1}{5}}$$

Answer: (c) **Solution:**

$$\left(\frac{K_{eq}}{108c^4}\right)^{\!\!\frac{1}{5}}$$