JEE-Mains-06-04-2023 [Memory Based]
 [Morning Shift]

Physics

Question: Current $\sqrt{2 I}$ in both rings, find resultant B?

Solution:

Current $=\sqrt{2} I$
$B_{1}=B_{2}=\frac{\mu_{0}(\sqrt{2} I)}{2 a}$
So,
$B_{N}=\sqrt{B_{1}^{2}+B_{2}^{2}}$
$=\frac{\mu_{0}}{2 a}(\sqrt{2} I) \sqrt{2}=\left(\frac{\mu_{0} I}{a}\right)$

Question: If rate of heat supplied to the system is 1000 watt and the rate of work done by the system is 200 watt. Find rate of change of internal energy.
Answer: 800.00

Solution:

$\frac{d Q}{d t}=+1000$ watt
$\frac{d w}{d t}=+200 \mathrm{watt}$
$\frac{d Q}{d t}=\frac{d w}{d t}+\frac{d u}{d t}$
$+1000=+200+\frac{d w}{d t}$
$\frac{d w}{d t}=+800 \mathrm{watt}$

Question: Find the ratio of energy density of E and B in EM waves.
Options:
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) None of these

Answer: (a)
Solution:
Average electric field energy density $=\frac{1}{2} \varepsilon_{0} E^{2}$
Average magnetic field energy density $=\frac{B^{2}}{2 \mu_{0}}$
As both are equal
$\frac{\frac{1}{2} \varepsilon_{0} E^{2}}{\frac{B^{2}}{2 \mu_{0}}}=1$
Question: Percentage error in equivalent resistance if connected in parallel (10 ± 0.5) ohm and (15 ± 0.5) ohm
Options:
(a) 13%
(b) 3%
(c) $13 / 5 \%$
(d) $13 / 3 \%$

Answer: (d)
Solution:
$\frac{\Delta R_{\text {eq }}}{R_{e q}^{2}}=\frac{\Delta R_{1}}{\Delta R_{1}^{2}}+\frac{\Delta R_{2}}{\Delta R_{2}^{2}}$
$\frac{\Delta R_{\mathrm{eq}}}{R_{\mathrm{eq}}}=\left(\frac{0.5}{10^{2}}+\frac{0.5}{15^{2}}\right) \times \frac{15 \times 10}{15+10}$
$=0.5\left(\frac{1}{10^{2}}+\frac{1}{15^{2}}\right) \times \frac{150}{25}$
$=3\left(\frac{1}{100}+\frac{1}{225}\right)=3\left(\frac{225+100}{225 \times 100}\right)$
$\frac{\Delta R}{R} \times 100=\frac{3 \times 325}{225 \times 100} \times 100=\frac{13}{3} \%$
Question: Assertion: Earth has atmosphere while moon does not.
Reason: Escape velocity in moon is very small than earth.

Options:

(a) A correct, R correct \& R is correct explanation
(b) A correct, R correct but not correct explanation
(c) A correct, R false
(d) A false, R false

Answer: (a)

Solution: A correct, R correct \& R is correct explanation
Question: A mass of 100 g is rotated with a spring of natural length 20 cm , with angular velocity $5 \mathrm{rads}^{-1}$. Find tension in spring $\left[\mathrm{R}=\right.$ spring constant $\left.7.5 \mathrm{~nm}^{-1}\right]$
Answer: 0.75

Solution:

kx
$T=k x=m \omega^{2}\left(l_{0}+x\right)$
$7.5 x=\frac{1}{10} \times 25(0.2+x)$
$3 x=0.2+x$
$x=0.1$
so $T=k x=7.5 \times 0.1=0.75 \mathrm{~N}$

Question: A solid infinite cylindrical wire with radius a is carrying current I find the graph of magnetic field inside \& outside the wire.

Answer:

Solution:

R
Dependency of magnetic fixed in solid current carrying wire
$B_{\text {out }}=\frac{\mu_{0} i}{2 \pi r}$
$B_{\text {surface }}=\frac{\mu_{o} i}{2 \pi R}$

Current through h loop
$i_{1}=\frac{i}{\pi R^{2}} \times \pi r^{2}$
$\oint B \cdot d l=\mu_{o} i$
$B .2 \pi r=\mu_{o} \frac{i \times \pi r^{2}}{\pi R^{2}}$
$B=\frac{\mu_{o} i}{2 \pi R^{2}} \times r$
$B \propto r$
Question: A: range is max at $\theta=45^{\circ}$
R : range is max when $\sin 2 \theta=1$

Options:

(a) R : true A : False
(b) R : true A : True
(c) R : False A : False
(d) R : False A : True

Answer: (b)
Question: Graph of electric potential inside conducting solid sphere is

Solution:

$v_{\text {inside }}=v_{\text {surface }}=\frac{k Q}{R}=$ constant

Question: In a capacitor when liquid of dielectric constant ' k ' is filled upto height $\mathrm{d} / 3$ then capacitance is $2 \mu \mathrm{~F}$. Find capacitance when it is filled till $x=2 \mathrm{~d} / 3$ Take $k=2$

Answer: 2.5
Solution:
$\frac{2 \mathrm{~d}}{3} \uparrow$ \qquad

$C_{e q}=\frac{\frac{3 A k \varepsilon}{d} \cdot \frac{3 A \varepsilon_{0}}{2 d}}{3 \frac{A \varepsilon_{0}}{d}\left[k+\frac{1}{2}\right]}$
$2=\frac{3 K}{\left(K+\frac{1}{2}\right)^{2}} \frac{A \varepsilon_{0}}{2 d} \Rightarrow 2=\frac{3 \times 2}{\frac{5}{2}} \frac{A \varepsilon_{0}}{2 d} \Rightarrow \frac{A \varepsilon_{0}}{d}=\frac{10}{6}$

$$
\begin{aligned}
& \hline \\
& \hline-\mathbf{k -}-\overline{-}-------\cdots \frac{\mathbf{d}}{3} \\
& C_{e q}=\frac{\frac{3 A K \varepsilon_{0}}{2 d} \cdot \frac{3 A \varepsilon_{0}}{d}}{\frac{3 A \varepsilon_{0}}{d}\left[\frac{k}{2}+1\right]}=\frac{3 A \varepsilon_{0}}{2 d}\left[\frac{k}{\left[\frac{k}{2}+1\right]}\right. \\
& C_{e q}=\frac{3}{2}\left(\frac{10}{6}\right)\left[\frac{2}{2}\right]=2.5 \mathrm{~F}
\end{aligned}
$$

Question: If retardation of a body of mass 10 gram is given as $2 x$, where x is the position of the particle starting from origin at rest. If loss of kinetic energy is $\left[\frac{10}{x}\right]^{-n}$ find n .
Answer: 2.00

Solution:

$\Delta K E=W=\int_{0}^{x} \operatorname{mad} x$
$\Delta K E=\frac{10}{100} \int_{0}^{x}(-2 x) d x=-\frac{1}{100} \cdot x^{2}=-\left[\frac{x^{2}}{100}\right]=\left(\frac{10}{x}\right)^{-2}$
So $\mathrm{n}=2$.
Question: Two spheres of mass 2 kg each placed on the ends of a light rod and $\mathrm{r}=10 \mathrm{~cm}$ and dist b / w the centres $=40 \mathrm{~cm}$ find MOI about centre of the rod perpendicular to the line joining centres.

Answer: 0.17

Solution:

I
I
I
$K \leftarrow 40 \mathrm{~cm} \rightarrow 1$

$$
\begin{aligned}
& I=I_{c m}+m l^{2} \\
& =\frac{2}{5} M R^{2}+M l^{2} \\
& =\frac{2}{5} \times 2 \times(0.1)^{2}+2(0.2)^{2} \\
& I=\frac{4}{500}+\frac{8}{100} \\
& I=\frac{4+40}{500}=\frac{44}{500} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

For 2 spheres

$$
I_{\text {final }}=2 \times I=2 \times \frac{44}{500}=0.176 \mathrm{~kg} \mathrm{~m}^{2}
$$

Question: Resistivity of semiconductor changes with temp according to which graph Options:
(a)

(b)

(c)

(d)

Answer: (d)

Question: Alpha, electron, proton has KE is such that $\mathrm{K}_{\alpha}=4 \mathrm{~K}, \mathrm{~K}_{\mathrm{e}}=2 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=\mathrm{K}$ write order of de broglie wave
Solution: $\lambda_{\mathrm{e}}>\lambda_{\mathrm{P}}>\lambda_{\alpha}$
Question: For the oscillations exhibited by the spring block system on the smooth surface along the spring, the time period is equal to

Options:

(a) $2 \pi \sqrt{\frac{m\left(K_{1}+K_{2}\right)}{K_{1} K_{2}}}$
(b) $2 \pi \sqrt{\frac{m\left(K_{1}+K_{2}\right)}{2 K_{1} K_{2}}}$
(c) $2 \pi \sqrt{\frac{m}{K_{1}+K_{2}}}$
(d) $\pi \sqrt{\frac{m}{K_{1}+K_{2}}}$

Answer: (c)

Solution:

Since the springs are in parallel connection
$k_{e q}=k_{1}+k_{2}$
$T=2 \pi \sqrt{\frac{M}{K_{1}+K_{2}}}$
Question: A car is moving with speed of $15 \mathrm{~m} / \mathrm{s}$ towards a stationary wall. A person in the car press the horn and experience the change in frequency of 40 Hz due to reflection from the stationary wall. Find the frequency of horn. (Use $\mathrm{v}_{\text {sound }}=330 \mathrm{~m} / \mathrm{s}$)

Answer: 420.00

Solution:

$15 \mathrm{~m} / \mathrm{s}$

f_{0}
$f^{\prime}=f_{0}\left[\frac{V}{V-V_{C}}\right]$
$f^{\prime \prime}=f^{\prime}\left[\frac{V+V_{C}}{V}\right]$

$f^{\prime \prime}=f_{0}\left[\frac{V}{V-V_{C}}\right]\left[\frac{V+V_{C}}{V}\right]$
$f^{\prime \prime}=f_{0}\left[\frac{V+V_{C}}{V-V_{C}}\right]$
$f^{\prime \prime}-f_{0}=40$
$f_{0}\left(\frac{330+15}{330-15}\right)-f_{0}=40$
$f_{0}\left[\frac{23}{21}-1\right]=40$
$f_{0}=420$
Question: Communication system
Height of the tower increased 21% percentage increase in range.

Options:

(a) 10
(b) 12
(c) 14
(d) 15

Answer: (a)

Solution:

Range $=\sqrt{2 R_{E} h}$
$R_{1}=\sqrt{2 R_{E} \cdot h}=\sqrt{2 R_{E} \cdot h}$
$R_{2}=\sqrt{2 R_{E}\left[h+\frac{21}{100} \cdot h\right]}=\sqrt{2 R_{E}(1.21 h)}$
$\frac{R_{1}}{R_{2}}=\frac{\sqrt{2 R_{E} h}}{\sqrt{2 R_{E}(1.21 h)}}=\frac{1}{\sqrt{1.21}}=\frac{1}{1.1}$
$\Rightarrow R_{2}=1.1 R_{1}$
$\%$ change in $\mathrm{R}=\frac{\left(R_{2}-R_{1}\right)}{R_{1}} \times 100$
$=\frac{1.1 R_{1}-R_{1}}{R_{1}} \times 100$
$\frac{1.1-1}{1} \times 100=10 \%$
Question: If length of wire is increased 20% and area is increased 4% the $\%$ change in resistance is

Answer: 15.00

Solution:

$R=\frac{\rho l}{A}$
$R^{\prime}=\frac{\rho(1.2 \ell)}{1.04 A} \Rightarrow R^{\prime}=\frac{12}{1.04} R=1.15 R$
$\Rightarrow \uparrow 15 \%$
Question: A Body has mass m and moving with const vel in viscous fluid having coiff. of viscosity η density is ρb liquid density $\rho \mathrm{L}$ find vel v

Solution:

$\frac{m g\left(1-\frac{\rho}{S}\right)}{6 \pi \eta r}=v$

Question: Which gate is this

Options:

(a) NOR
(b) OR
(c) AND
(d) NOT

Answer: (a)

