NARAYANA GRABS

THE LION'S SHABE IN JEE-ADV-2022

5
RANKS in OPEN GATEGORY onvy Frow Napayina

JEE MAIN (APRIL) 2023 (08-04-2023-AN)
Mamory Based Duestion Paper PHYSICS

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The effective resistance in the following circuit across terminal A and B is equal to

(1) 5Ω
(2) 10Ω
(3) 20Ω
(4) 40Ω

Answer (1)
Sol. Equivalent circuit

$\frac{1}{R}=\frac{1}{10}+\frac{1}{20}+\frac{1}{20}$
$\Rightarrow R=5 \Omega$
2. If the emf generated in the moving rod in uniform magnetic field B is 0.08 V , then find the speed (v) of the rod.

* $B=0.4 \mathrm{~T}$

(1) $1 \mathrm{~m} / \mathrm{s}$
(2) $2 \mathrm{~m} / \mathrm{s}$
(3) $3 \mathrm{~m} / \mathrm{s}$
(4) $4 \mathrm{~m} / \mathrm{s}$

Answer (2)
Sol. $\varepsilon=B / v$
$v=\frac{\varepsilon}{B I}=\frac{0.08 \times 100}{0.4 \times 10}=2 \mathrm{~m} / \mathrm{s}$
3. Which of the following expressions give the value of acceleration due to gravity (g^{\prime}) at the altitude h above the surface of earth. (R : radius of earth, g : acceleration due to gravity at surface of earth)
(1) $g^{\prime}=g \frac{h^{2}}{R^{2}}$
(2) $g^{\prime}=\frac{g R^{2}}{(R+h)^{2}}$
(3) $g^{\prime}=g\left(1-\frac{h}{R}\right)$
(4) $g^{\prime}=g\left(1-\frac{h^{2}}{R^{2}}\right)$

Answer (2)
Sol. $g^{\prime}=\frac{G M_{e}}{(R+h)^{2}}$

$$
g^{\prime}=\frac{g R^{2}}{(R+h)^{2}}
$$

4. Find the distance from a point charge of magnitude $5 \times 10^{-9} \mathrm{C}$, where the electric potential is 50 V
(1) 90 cm
(2) 70 cm
(3) 60 cm
(4) 50 cm

Answer (1)
Sol. $V=\frac{k Q}{r}$
$50=\frac{9 \times 10^{9} \times 5 \times 10^{-9}}{r}$
$r=0.9 \mathrm{~m}$
5. Match column I with column II and choose the correct option.

	Column I		Column II
I.	Torque	a.	$\mathrm{M}^{0} \mathrm{LT}^{-2}$
II.	Stress	b.	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
III.	Coefficient of viscosity	c.	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
IV.	Gravitational potential gradient	d.	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$

(1) I \rightarrow a, II \rightarrow c, III \rightarrow b, IV \rightarrow d
(2) I \rightarrow d, II \rightarrow b, III \rightarrow c, IV \rightarrow a
(3) I \rightarrow d, II $\rightarrow \mathrm{c}$, III \rightarrow b, IV \rightarrow a
(4) I \rightarrow a, II $\rightarrow \mathrm{c}$, III $\rightarrow \mathrm{d}, \mathrm{IV} \rightarrow \mathrm{b}$

Answer (3)
Sol. Torque $=r \times F=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Stress $=\frac{F}{A}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Coefficient of viscosity $=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
Gravitational potential gradient $=\mathrm{M}^{0} \mathrm{LT}^{-2}$
6. Which of the following is the highest energy electromagnetic wave?
(1) X-rays
(2) Infra Red
(3) Microwaves
(4) Radiowave

Answer (1)

Sol. Since out of the given options, X-rays have the highest frequency.
\Rightarrow Option (1) is correct
7. A carnot engine working between $27^{\circ} \mathrm{C}$ and 127° performs 2 kJ of work. The amount of heat energy rejected is equal to
(1) 4 kJ
(2) 6 kJ
(3) 8 kJ
(4) 12 kJ

Answer (2)
Sol. $2 \mathrm{~kJ}=x\left(1-\frac{300}{400}\right)$
$2 \mathrm{~kJ}=\frac{\mathrm{x}}{4}$
$\Rightarrow x=8 \mathrm{~kJ}$
\Rightarrow Heat lost $=6 \mathrm{~kJ}$
8. Statement-I: Electromagnet are made of soft iron.

Statement-II: Soft iron has lower permeability and high retentivity.
Choose the correct option related to statements.
(1) Statement-I is true and statement-II is true
(2) Statement-I is true and statement-II is false
(3) Statement-I is false and statement-II is true
(4) Statement-I is false and statement-II is false

Answer (2)
Sol. Soft iron has low retentivity and high permeability.
9. If a satellite is orbiting the earth at a height h has angular momentum ' L '. Then, the same satellite at a height 10 times ' h ' will have angular momentum equal to
(1) $\sqrt{10} L$
(2) $\sqrt{5} L$
(3) $3 L$
(4) $\sqrt{20} L$

Answer (1)
Sol. $\because \quad \frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$
$\Rightarrow m^{2} v^{2} r^{2}=G M m r$
$L^{2} \propto r$
$\therefore \quad \frac{L_{1}}{L_{2}}=\sqrt{\frac{h}{10 h}}$
$\Rightarrow \quad L_{2}=\sqrt{10} L$
10. Consider 2 statements:

Statement 1: We can get displacement from acceleration-time graph.
Statement 2: We can get acceleration from velocity-time graph.
Then
(1) Both statements are true
(2) Both statements are false
(3) Statement 1 is true and statement 2 is false
(4) Statement 1 is false and statement 2 is true

Answer (4)

Sol. To get displacement from acceleration-time graph, we will need 1 initial value (for velocity).

Also, $a=\frac{d v}{d t}$
\Rightarrow Slope will give a.
11. A projectile launched on a horizontal surface follows a trajectory given by $y=x-\frac{x^{2}}{20}$ where y-axis is in vertical upward direction. Maximum height attained by projectile is (All units are in SI)
(1) 10 m
(2) 5 m
(3) 20 m
(4) 40 m

Answer (2)
Sol. $y=x-\frac{x^{2}}{20}$
at maximum height $\frac{d y}{d x}=0$
$\Rightarrow x=10 \mathrm{~m}$
at $x=10 \mathrm{~m}, y=10-5=5 \mathrm{~m}$
12. An antenna of length / emits radiation of wavelength λ. The power emitted by the antenna is proportional to:
(1) $\left(\frac{1}{\lambda}\right)^{2}$
(2) $\frac{1}{\lambda}$
(3) $\frac{\lambda}{l}$
(4) $\frac{1}{1 \lambda}$

Answer (1)
Sol. Since $P \propto\left(\frac{l}{\lambda}\right)^{2}$
\Rightarrow Option (1) is correct.
13. In a radioactive process, $\frac{1}{8}$ th of the initial amount of the element is decayed. If in 5 days further, $8 \times 10^{-3} \mathrm{~kg}$ of the element decayed, find the original amount of element.
(1) 128 grams
(2) 64 grams
(3) 256 grams
(4) 32 grams

Answer (2)
Sol. $\frac{1}{8}=\frac{1}{2^{3}}$
$\Rightarrow 3$ half lives $=3$ days
$\Rightarrow \quad \frac{\mathrm{b}}{2}=1$ day
Let m : initial mass
$\Rightarrow \frac{m}{8}-\frac{m}{8 \times 32}=8 \mathrm{grams}$
$\Rightarrow m=\frac{64 \times 32}{32-1} \simeq 65 \mathrm{~g}$.
14. Find the change in energy stored in a capacitor of 600 pF capacitance charged at 50 V , once connected with another 600 pF uncharged capacitor.
(1) $0.56 \mu \mathrm{~J}$
(2) $0.4 \mu \mathrm{~J}$
(3) $0.86 \mu \mathrm{~J}$
(4) $0.32 \mu \mathrm{~J}$

Answer (1)
Sol. $U_{i}=\frac{1}{2} C v^{2}, U_{f}=\frac{1}{2} C\left(\frac{v}{2}\right)^{2}$
$\Delta U=\frac{3}{8} C v^{2}$
$=\frac{3}{8} \times 600 \times 10^{-12} \times(50)^{2}$
15. Phasor of a particle performing SHM is as shown in the diagram. The SHM has angular frequency ω and at $t=0$ the phasor lies along OP. At any time t further the projection of phasor along y-axis is given by

(1) $R \sin \left(\omega t+\frac{\pi}{6}\right)$
(2) $R \cos \left(\omega t+\frac{\pi}{6}\right)$
(3) $R \sin \left(\omega t-\frac{\pi}{6}\right)$
(4) $R \cos \left(\omega t-\frac{\pi}{6}\right)$

Answer (1)
Sol. θ at any time t

$$
\begin{aligned}
& =\omega t=30^{\circ} \\
& \Rightarrow \quad y_{\text {projection }}=R \sin \theta \\
& \quad=R \sin \left(\omega t+\frac{\pi}{6}\right)
\end{aligned}
$$

16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A body of mass 5 kg has the linear momentum of $100 \mathrm{~kg} \mathrm{~ms}^{-1}$ and acted upon by the force of 2 N for 2 seconds, then change in kinetic energy in Joule is

Answer (81.60)

Sol. $\quad F \times t=\Delta P$

$$
\begin{aligned}
\Rightarrow 2 & \times 2=P_{f}-100 \\
P_{f} & =104 \mathrm{~kg} \mathrm{~ms}^{-1} \\
\Delta K & =\frac{P_{f}^{2}}{2 m}-\frac{P_{i}^{2}}{2 m}=\frac{1}{2 \times 5} \times\left(104^{2}-100^{2}\right) \\
& =\frac{1}{10} \times 4 \times 204=81.6 \mathrm{~J}
\end{aligned}
$$

22. In a YDSE experiment, fringe width is 2 mm when wavelength of light used is $\lambda=400 \mathrm{~nm}$. Find the fringe width (in mm) when wavelength is 600 nm .
Answer (3)

Sol. $\beta=\frac{\lambda D}{d}$

$$
\begin{aligned}
& \Rightarrow \frac{\beta^{\prime}}{\beta}=\frac{600}{400}=1.5 \\
& \Rightarrow \beta^{\prime}=3 \mathrm{~mm}
\end{aligned}
$$

23. A block moving with speed $1 \mathrm{~m} / \mathrm{s}$ comes to rest after moving for 20 cm over a rough surface. The coefficient of friction between the block and surface is \qquad
Answer (00.25)
Sol. $\because \quad v^{2}-u^{2}=2 a S$
$0^{2}-1^{2}=2(-\mu g) \frac{20}{100}$
$\mu=\frac{1}{4}=0.25$
24. The ratio of magnetic field due to coil at centre and at a distance of R from the centre on the axis passing through the centre and perpendicular to the plane of ring is $\sqrt{x}: 1$ (R is the radius of coil), find the value of x.
Answer (8)

Sol.

$$
B_{C}=\left(\frac{\mu_{0} i}{2 R}\right)
$$

$$
\begin{aligned}
& B_{P}=\frac{\mu_{0}}{4 \pi} \times \frac{2 \times i \times \pi R^{2}}{\left(R^{2}+R^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0}}{2 R} \frac{i}{2 \sqrt{2}}=\left(\frac{\mu_{0} i}{4 \sqrt{2} R}\right)
\end{aligned}
$$

$$
\frac{B_{C}}{B_{P}}=\frac{4 \sqrt{2}}{2}=\sqrt{8}: 1
$$

25. In the given diagram image forms at a distance of 15 cm inside the

medium of refractive index 1.5 . Find the object distance (in cm) from point P.

Answer (12.00)
Sol. $\frac{1.5}{15}-\frac{1}{u}=\left(\frac{1.5-1}{30}\right)=\frac{0.5}{30}=\frac{1}{60}$
$\frac{1}{10}-\frac{1}{u}=\frac{1}{60} \Rightarrow \frac{1}{10}-\frac{1}{60}=\frac{1}{u}$
$\frac{1}{u}=\frac{5}{60} \Rightarrow u=\frac{60}{5}=12 \mathrm{~cm}$
26. Ratio of wavelengths of photons corresponding to first and second line of Balmer series in an emission spectrum is given by $\frac{x}{20}$ for a hydrogen like species. Value of x is equal to

Answer (27)
Sol. $\frac{1}{\lambda_{1}}=-R\left(\frac{1}{9}-\frac{1}{4}\right)$
$\frac{1}{\lambda_{2}}=-R\left(\frac{1}{16}-\frac{1}{4}\right)$
$\Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\frac{36}{5} \times \frac{3}{16}=\frac{27}{20}$
$\Rightarrow x=27$
27.
28.
29.
30.

