

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Delicate balance of CO₂ and O₂ is not disturbed by
 - (1) Deforestation
- (2) Photosynthesis
- (3) Burning of coal
- (4) Burning of petroleum

Answer (2)

- **Sol.** Deforestation & burning of fossil fuels increase CO₂ level and disturb the balance in the atmosphere.
- 2. Which of the following options correctly represent the structure of Buna -S?

$$+CH_2 - CH = CH - CH_2 - CH - CH_2 + CH_2 - CH_2 + CH_2$$

- (1)
- (2) $-(CH_2 CH = CH CH_2)$
- (3) $-(H_2C CH = CH CH_2 CH = CH)$ CH
- (4) $-(CH_2 CH = CH CH_2 CH = CH CH_2)$

Answer (1)

Sol. Buna-S is formed by polymerisation of 1, 3 – butadiene & styrene

- 3. Relation between radius of a lattice (r) and edge length (a) of an FCC unit cell is _____.
 - (1) $r = \frac{a}{2}$
- $(2) \quad r = \frac{\sqrt{2}a}{2}$
- (3) $r = \frac{\sqrt{2}a}{4}$
- (4) $r = \frac{\sqrt{3}a}{4}$

Answer (3)

Sol. In an F.C.C. unit cell, the lattice points along the diagonal of a square face are in contact with each other.

 $\therefore \sqrt{2}a = 4r$

$$\Rightarrow r = \frac{\sqrt{2}a}{4}$$

- 4. The increasing order of metallic character
 - (1) Be > Ca > K
- (2) K > Ca > Be
- (3) Ca > K > Be
- (4) K > Be > Ca

Answer (2)

- **Sol.** Metallic character increases down the group and decreases from left to right along a period.
- ∴ K > Ca > Be (Metallic character)
- During bleeding from cut FeCl₃ is used to stop bleeding as
 - (1) CI cause coagulation
 - (2) Ferric ion cause coagulation
 - (3) FeCl₃ dilutes blood
 - (4) Bleeding does not stop

Answer (2)

- **Sol.** Fe⁺³ ion coagulate blood which is colloid.
- 6. Correct order of magnetic moment of [Ni(CO)4], [CoF₆]⁻³, [FeF₆]⁻³, [Cr(H₂O₆)]⁺³
 - (1) $[FeF_6]^{-3} > (CoF_6)^{-3} > [Cr(H_2O_6)]^{+3} > [Ni(CO)_4]$
 - (2) $[FeF_6]^{-3} > [Ni(CO)_4] > [Cr(H_2O_6)]^{+3} > [CoF_6]^{-3}$
 - (3) $[CoF_6]^{-3} > [FeF_6]^{-3} > [Ni(CO)_4] > [Cr(H_2O_6)]^{+3}$
 - (4) $[CoF_6]^{-3} > [Ni(CO)_4] > [Cr(H_2O_6)]^{+3} > [FeF_6]^{-3}$

Answer (1)

$$\textbf{Sol.} [\text{FeF}_{6}]^{-3} > \left[\text{CoF}_{6} \right]^{-3} > \left[\text{Cr} \big(\text{H}_{2} \text{O}_{6} \big) \right]^{+3} > \left[\text{Ni} \big(\text{CO} \big)_{4} \right]$$

- Consider, a mixture of 2 moles of oxygen, 4 moles of Neon gas.
 - Neglect any vibrational degree of freedom.
 - Calculate the total internal energy of system (Assuming E = 0 at T = 0 K)
 - (1) 5RT
- (2) 11RT
- (3) 6RT
- (4) 7RT

Answer (2)

JEE (Main)-2023: Phase-2 (10-04-2023)-Evening

Sol. E =
$$(2)\left(\frac{5R}{2}\right)(T) + (4)\left(\frac{3R}{2}\right)(T)$$

= 11 RT

Which of the following is the correct hydride affinity 8. order of carbocations

(b)
$$C_6H_5 - \overset{\oplus}{C} - C_6H_5$$
 C_6H_5
(c) $\overset{\oplus}{C}$

(1) (c)
$$<$$
 (b) $<$ (d) $<$ (a) (2) (b) $<$ (d) $<$ (c) $<$ (a)

(2) (b)
$$<$$
 (d) $<$ (c) $<$ (a)

$$(3)$$
 $(a) < (d) < (b) < (c)$

(3) (a)
$$<$$
 (d) $<$ (b) $<$ (c) (4) (c) $<$ (a) $<$ (d) $<$ (b)

Answer (1)

- Sol. The correct hydride affinity order of carbocations will be decided by the stability of carbocation. Higher the stability of carbocation, lower will be hydride affinity.
 - .. Correct hydride affinity order of carbocations is

- Water of crystallization in Soda ash and washing soda is respectively.
 - (1) 0,10
- (2) 10,0
- (3) 0,0
- (4) 0,1

Answer (1)

Sol. Soda ash is Na₂CO₃

Washing soda is Na₂CO₃.10H₂O.

Therefore correct answer is 0,10.

10. Order of acidic strength of

$$\begin{array}{c} \mathsf{NO}_2 \\ \hline \\ \mathsf{OH} \end{array}, \begin{array}{c} \mathsf{OH} \\ \hline \\ \mathsf{CH}_3 \mathsf{OH}, \end{array} \begin{array}{c} \mathsf{OH} \\ \hline \\ \mathsf{CH}_3 \end{array}$$

Answer (1)

Sol. Correct order is

- Y1. What process is used to make soap from fat?
 - (1) Saponification
 - (2) Electrolysis
 - (3) Solvay process
 - (4) Haber process

Answer (1)

Sol.

$$\begin{array}{c} O \\ | \\ CH_2-O-C-C_{17}H_{35} \\ | \\ O \\ CH-O-C-C_{17}H_{35} + 3NaOH \\ | \\ CH_2-O-C-C_{17}H_{35} \\ | \\ O \\ 3C_{17}H_{35}COONa + CH-OH \\ | \\ CH_2-OH \\ | \\ \end{array}$$

- Assertion: Higher energy is required for the conversion of Mg to Mg²⁻ than that for Mg to Mg⁻.
 Reason: Mg²⁻ has very small size and more charge.
 - Both Assertion and Reason are correct and Reason is the correct explanation of Assertion
 - (2) Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion
 - (3) Assertion is correct but Reason is incorrect
 - (4) Assertion is incorrect but Reason is correct

Answer (3)

- **Sol.** Since Mg²⁻ has higher charge density than Mg⁻, then interelectronic repulsion will be higher in case of Mg²⁻ as compared to Mg⁻.
 - Hence, higher energy is required for the conversion of Mg to Mg²⁻ than that of Mg to Mg⁻.
- 13. An unknown organic compound is heated with fuming HNO₃. The reaction mixture is treated with aq BaCl₂ solution which gives white precipitate. Identify the unknown organic compound.
 - (1) Phenylalanine
- (2) Proline
- (3) Cysteine
- (4) Valine

Answer (3)

Sol. The unknown organic compound contains S-atom which gets oxidised by fuming HNO₃ to SO₄²⁻ ions. Addition of aq BaCl₂ gives white precipitate of BaSO₄. Among the given compounds only cysteine has S-atom.

14. Following two columns are provided

	Column-I (Complex)		Column-II (CFSE)
a.	[Ti(H ₂ O) ₆] ²⁺	(i)	−1.2 Δ ₀
b.	[V(H ₂ O) ₆] ²⁺	(ii)	-0.6 Δ ₀
C.	[Mn(H ₂ O) ₆] ³⁺	(iii)	0
d.	[Fe(H ₂ O) ₆] ³⁺	(iv)	-0.8 Δ ₀

- (1) a(iv); b(i); c(ii); d(iii) (2) a(i); b(ii); c(iv); d(iii)
- (3) a(iv); b(iii); c(i); d(ii) (4) a(i); b(ii); c(iii); d(iv)

Answer (1)

Sol. CFSE =
$$-\frac{2}{5}\Delta_0(t_{2g} \text{ electrons}) + \frac{3}{5}\Delta_0$$
 (e_g electrons)

- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE**. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For a metal ion, μ = 4.9 B.M. Find out number of unpaired electrons

Answer (04.00)

Sol.
$$\sqrt{(n)(n+2)} = 4.92$$

 $(n)(n+2) = 24$
 $n = 4$

22. Find out difference in oxidation state of Xe in completely Hydrolysed form of XeF₄ and XeF₆

Answer (00.00)

Sol.
$$XeF_6 + 3H_2O \xrightarrow{Complete \\ Hydrolysis} XeO_3 + 6HF$$

$$XeF_4 + H_2O \xrightarrow{Complete} XeO_3 + Xe + O_2 + HF$$

JEE (Main)-2023 : Phase-2 (10-04-2023)-Evening

23. NH₃, NO, N₂, F₂, CO, CO₂, H₂O, and XeF₄
Fill the number of above molecules having only two lone pair of electrons.

Answer (3)

- **Sol.** These are N_2 , CO and H_2O .
- 24. How many electrons are gained by MnO_4^{Θ} in strongly alkaline medium?

Answer (1)

- **Sol.** MnO_4^{Θ} gains one electron to form MnO_4^{-2} in strongly alkaline medium.
- 25. Consider a reaction at equilibrium

$$A \rightleftharpoons 2B + C_{(g)}$$

If final pressure at equilibrium is 1 atm & $k_{p}=\frac{1}{27}$, then % dissociation of A will be (consider 1 – $\alpha\approx$ 1) (nearest integer)

Answer (21)

Sol.
$$A(g) \rightleftharpoons 2B(g) + C(g)$$

P --- ---
$$P(1-\alpha)$$
 $2P\alpha$ $P\alpha$

$$\therefore$$
 P_{total} = P(1 + 2 α)

$$k_p = \frac{(4P^2\alpha^2)P\alpha}{P(1-\alpha)} = \frac{4P^2\alpha^3}{1-\alpha}$$

$$k_{P} = \frac{4P_{T}^{2}\alpha^{3}}{(1-\alpha)(1+2\alpha)^{2}}$$

$$\frac{1}{27} = \frac{4P_T^2\alpha^3}{1}$$

$$P_T^2\alpha^3=\frac{1}{108}$$

$$\alpha^3 = \frac{1}{108}$$

$$\alpha = \left(\frac{1}{108}\right)^{1/3} \times 100$$

$$= \frac{100}{4.762}$$

$$\alpha \simeq 21$$

26. 0.02 M CH₃COOH has specific conductance, $K = 5 \times 10^{-5} \text{ S cm}^{-1}$. Also given limiting molar conductance of CH₃COOH is 400 S cm² mol⁻¹.

Therefore, K_a for CH_3COOH is $\times 10^{-7}$ M

Answer (8)

Sol. CH₃COOH CH₃COO[⊕] + H[⊕]

$$\Lambda_{m} = \frac{K \times 1000}{M} = \frac{5 \times 10^{-5} \times 10^{3}}{2 \times 10^{-2}}$$
$$= 2.5$$

$$\alpha = \frac{\Lambda_{\text{m}}}{\Lambda_{\text{m}^{\circ}}} = \frac{2.5}{400}$$

$$\therefore K = \frac{C\alpha^2}{1-\alpha}$$

$$=\frac{0.02\times\left(\frac{2.5}{400}\right)^2}{1-\frac{2.5}{400}}$$

$$=\frac{7.8125\times10^{-7}}{0.99375}$$

$$\simeq 7.861 \times 10^{-7}$$

$$K_a \simeq 8 \times 10^{-7} M$$

27. For a first-order reaction, if the value of $t_{1/2}$ is T, then the value of $t_{7/8}$ will be_____ T.

Answer (3)

Sol. t_{7/8} means 3 half lives.

$$\therefore$$
 $t_{7/8} = 3T$

- 28. Number of endothermic reactions among following
 - (a) $2HCI(g) \longrightarrow H_2(g) + CI_2(g)$
 - (b) $H_2O(I) \longrightarrow H_2O(g)$
 - (c) $C(s) + O_2(g) \longrightarrow CO_2(g)$
 - (d) Dissolution of NH₄CI
 - (e) $I_2(g) \longrightarrow 2I(g)$

Answer (04)

- **Sol.** Burning of carbon is exothermic, all other are endothermic.
- 29.
- 30.